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Epidemics

Developing the Use of Process Algebra in the
Derivation and Analysis of Mathematical Models
of Infectious Disease

R. Norman and C. Shankland

Department of Computing Science and Mathematics, University of Stirling, UK.
{ces,ran}@cs.stir.ac.uk

Abstract. We introduce a series of descriptions of disease spread using
the process algebra WSCCS and compare the derived mean field equa-
tions with the traditional ordinary differential equation model. Even the
preliminary work presented here brings to light interesting theoretical
questions about the “best” way to defined the model.



Epidemics

linfect ?infect

Susceptible O
?infect

Recovered

Infected
@recover

?infect

As opposed to the way it is normally done.
http://mathworld.wolfram.com/Kermack-McKendrickModel.html

The model consists of a system of three coupled nonlinear ardinary
differential equations,
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where ¢ is time, S (21 is the number of susceptible people, 7 () is the
number of people infected, & (1 is the number of people who have
recovered and developed immunity to the infection, £ is the
infection rate, and y is the recovery rate.

val recover_rate = 0.01
val infect_rate = 0.0001

new infect @infect_rate:chan()

let Recovered() =
2infect; Recovered()

and Susceptible() =
?infect; Infected()

and Infected() =
do linfect; Infected()
or ?infect; Infected()
or delay@recover_rate; Recovered()

run (500 of Susceptible() | 1 of Infected())
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Exercise: Epidemic Simulations

http://mathworld.wolfram.com/Kermack-McKendrickModel.html

The key value governing the time evolution of these equations is
the so-called epidemiclogical threshold,

_Fs
-

Fa (4

Mote that the choice of the notation & is a bit unfortunate, since it
has nothing to do with &, & is defined as the number of
secondary infections caused by a single primary infection; in other
words, it determines the number of people infected by contack with
a single infected person before his death or recovery.

When &y < 1, each person who contracts the disease will infect
fewer than one person before dying or recavering, so the outhreak
will peter out (7 fd 2 <0). When By = 1, each person who gets the
disease will infect more than one person, so the epidemic will
spread (@ fd2 =00, Ky is probably the single most important

Knowing that
B = infect_rate
Y = recover_rate

try various values to see how the
infection progresses.

In the previous example, Ry =5
(everybody gets infected).

You can get Ry = 1 (infection dies out)
by reducing the S population to 100.

But stochastic effects (initial
infected population = 1l) play a major
role between Ry = 1 and R, = 5.



MHC Class I Flytrap



MHC Class I Antigen Presentation

part of the cellular immune
response

MHC class I complexes present
self and foreign peptide at the cell
surface

recognized by T lymphocytes and
natural killer cells

also required for development of
self tolerant T cells in thymus
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Source: Jonathan W. Yewdell, Eric Reits, and Jacques Neefjes. Making sense of mass destruction: quantitating MHC class |
antigen presentation. Nature Reviews Immunology, 3(12):952-961, 2003.



MHC Class I Peptide Binding

T.J.Elliott



Fly

Itrigger @escaping

scaped,captured

escaped,

captured ?CGPTUPed

Trap

O?‘rr'iggge

(escaped,captured) fresh channels for each
fly-trap interaction

@closing

C.f.: L.Cardelli, T.J.Elliott, L.Goldstein,

F'Y"'rlap A_.Phillips. J.M.Werner.

We want to model the situation where the trap is shutting at a constant rate, but different
kinds of flies are escaping at different “dissociation” rates.

Hence we cannot model this simply as a channel of given rate where trap and flies synchronize.

We need to model a race between two delays in two independent processes But in the end, both
the trap and the fly must agree on whether the fly was captured or not. (With no deadlock.)

directive sample 4.0 10000

|€SCGp€dO directive plot ?plotSlowEscaped; ?plotFastEscaped:

IplotSlowCaptured:; ?plotFastCaptured
new plotSlowEscaped@1.0:chan()
new plotFastEscaped@1.0:chan()
new plotSlowCaptured@1.0:chan()
new plotFastCaptured@1.0:chan()

new trigger@1000.0:chan(chan(),chan())
val closing = 3.0

val slowEscaping = 1.0

val fastEscaping = 5.0

?escaped

let Fly(escaping:float, plotEscaped:chan(), plotCaptured:chan()) =
(new captured@1000.0:chan()
new escaped@1000.0:chan()
Itrigger(captured,escaped);
do delay@escaping; lescaped; ?plotEscaped

lcaptured

?plotSlowEscaped ?plotFastEscaped ?plotSlowCaptured ?plotFastCaptured or 7cap‘rur‘ed' ’)pIoTCap‘rur'ed

100 )

80 | let Trap() =

60 | ?trigger(captured,escaped);

I— delay@closing;

40 - do ?escaped or lcaptured

20 run (

. 100 of Fly(slowEscaping,plotSlowEscaped,plotSlowCaptured) |

‘ ‘ ‘ ‘ ‘ ‘ 100 of Fly(fastEscaping plotFastEscaped plotFastCaptured) |
0 0.2 0.4 0.6 0.8 1 1.2 1.4

200 of Trap())



The two definitions are alpha-convertible!

Different Flyfraps? crph oy

Who is the fly and who is the trap?

It's a race, first, between @closing and @escaping.

Fly @escaping'G lescaped O Fly ?captured

@escaping
O ............ .C

?captured lescaped

Trap @Closir‘\‘g‘ Olcapfured :

| ed
captur ?escaped
> 1f @escaping wins the race, the fly has escaped. If @closing wins the race, the fly is captured.
L9 ' '
€ 5 If @closing wins the race, there is a second race If @escaping wins the race, there is a second race
L & petween @escaping and ?lcaptured between @closing and ?lescaped
2 9 If @escaping wins the race, the fly has escaped. If @closing wins the race, the fly is captured.
<
= ;C_g If @closing wins the race, the fly is captured. If @escaping wins the race, the fly has escaped.
H (Race between finite @escaping and infinite ?lcaptured) (Race between finite @closing and infinite ?lescaped)

Equivalent flytraps if = transitions have infinite rate?



Flytrap Product Automata
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Exercise (Open)

e Prove or disprove that the two flytraps are equivalent

- Not necessarily for all infermediate states or quantities but, e.g.,
e Do Escaped-Flies have the same distribution in both version?

- What about the infinite-rate version?



Repressilator

A synthetic oscillatory network
of transcriptional regulators
Michael B. Elowitz & Stanislas Leibler

Departments of Molecular Biology and Physics, Princeton University, Princeton,
New [ersey (08544, USA

Networks of interacting biomolecules carry out many essential
functions in living cells', but the ‘design principles’ underlying the
tunctioning of such intracellular networks remain poorly under-
stood, despite intensive efforts including quantitative analysis of
relatively simple systems®. Here we present a complementary
approach to this problem: the design and construction of a
synthetic network to implement a particular function. We used
three transcriptional repressor systems that are not part of any
natural biological clock®™ to build an oscillating network, termed

MATURE| VOL 403 |20 JANUARY 2000 | www.nature.com



Gene Gates and Circuits

A gene gate neg(a,b) 2
a b ?a.; t.; neg(a,b) +
_f.—eF ; (tr(b) | neg(a,b))

tr(p) = (Ip.. tr(p)) + 15

A geneﬁc circuit (engineered in E.Coli)

1 L neg(a,b) |
c neg b neg(bc) |
l 1 neg(c,a)

neg neg

A stochastic simulation (in SPiM)

The stochastic-n program

val dk = 0.001
val inh = 0.001
val cst = 0.1

(* Decay rate *)
(* Inhibition rate *)
(* Constitutive rate *)

let tr(p:chanQ)) =
do !p; tr(p) or delay@dk

let neg(a:chan(), b:chan(Q)) =
do ?a; delay@inh; neg(a,b)
or delay@cst; (tr(b) | neg(a,b))

(* The circuit *)

val bnd = 1.0 (* Protein binding rate *)

new a@bnd:chan() new b@bnd:chan() new c@bnd:chan()
run (neg(c,a) | neg(a,b) | neg(b,c))

r=1.0, e=0.1, h=0.001, 8=0.001

e L i 4 LAY Ly R Wy T LY - A 5 P ab |
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Scaling Moles and Rates

Say the original reaction specifies a guantity of 1mol for a given species A,
with reaction rates expressed in mol/Ls (rate of change in concentration mol/L
of reactants). (Or maybe it specifies a concentration of 1uM = one millionth of a mole
per liter, with rates expressed in uM/s; it does not matter here.) How many processes
should we use for the simulation? Well, we can't use quantity 1; that's too few!

So, let's multiply all mol quantities by say, 10, and use that many processes.
What effect does that have on the reactions? Unary (decay) reactions now
operate on an initial quantity 10*bigger. However those are exponential decays,
which means that the half-life (and the general shape) of the reaction is
independent of the initial quantity. So the time it takes for such reactions to
operate does not change, and we do not have to scale the time axis (although
our vertical axis is now off by a factor of 10).

Binary reactions, however, now operate on 10*bigger quantities and by the
mass action law run 100 times faster (-k(10*[A] 10*[B])), which means they are
10 times too fast with respect to the degradations. We can compensate by
dividing the rates of those reactions by 10, the scaling factor.

That way, in the end, our plots have the same curves as for any other scaling
factor, and an accurate timeline, but the vertical axis numbers must be divided
by 10 to compare with the original 1mol quantity.



Scaling Quantities and Rates

For example:  Scaling down the molecules by a factor of 2

c Molecules halved Binary rate doubled Both rates doubled Degradation rate doubled Degradation rate halved
A 1 + A 2 — O 1000 molecules each 1000 molecules 1000 molecules 1000 molecules each 1000 molecules each
AZ %deg O c=1.0 deg=1000.0 c=2.0 deg=1000.0 c@2.0 deg=2000.0 c=1.0 deg=1000.0 ¢=1.0 deg=500.0
y*2 (plot rescaled) y*2 y*2 y*2 y*2, x/2
2000 4——— ——Al() —— A2() 1000 —— Al() —— A2() 1000 4————— —— Al() —— A2() 1000 4———— —— Al() —— A2() 1000 4————— —— Al() —— A2() 1000 ——Al() —— A2()
1800 900 900 900 900 900 4
1600 4 800 800 800 800 4 800 4
1400 4 700 4 700 4 700 4 700 4 700 4
1200 4 600 - 600 600 - 600 4 600
1900 4 \\ \\R 500 4 900 4 & 500 500 4 5007
600" ] 300 300" 4 300 4 300 4 300 4
400 4 200 4 200 4 200 4 200 4 200 4
200 4 100 100 100 100 4 100
0 T T T T 0 T T T T 0 T T T T 0 T T T T 0 T T T T 0 T T T T
0 0.0005  0.001 0.0015  0.002  0.0025 0 0.0005 0.001  0.0015 0.002  0.0025 0 0.0005  0.001 0.0015  0.002  0.0025 0 0.0005  0.001 0.0015  0.002  0.0025 0 0.0005  0.001 0.0015  0.002  0.0025 0 0.001 0.002 0.003 0.004 0.005
does not match does not match does not match

Original reaction
2000 molecules each
¢=1.0 deg=1000.0

To get the same curves (up to rescaling jg;"r‘;‘gaifoﬁ“r’;’;‘:s

of the y axis) we need to scale up the by the same factor
directive sample 0.0025 1000 . : rks too, but then
T rate of binary reactions (only) by the works oo, bul The
new c@1.0:chan same fClCTOI". the x axis as well.

val deg = 1000.0

let A1() = ?2c:()
and A2() = do !c;() or delay@deg;()

run 2000 of (A1) | A2())



ERK Pathway

Mathematical modeling of the influence of RKIP
on the ERK signaling pathway

Kwang-Hyun Cho!”, Sung-Young S}liill. Hyun-Woo Kim', Olaf Wolkenhauer?”,
Brian McFerran™‘and Walter Kolch3-®



ERK Pathway

Raf-1* .

e

@ Raf-1*RKIP

L

MEK-PP ERK RKIP-P RP

) Mathematical modeling of the influence of RKIP
Fig. 1. Graphical representation of the ERK signaling pathway Regulated by RKIP: a cirele O s .
represents a state for the concentration of a protein and a bar 0 a kinetic parameter of reaction on the ERK Slgﬂallﬂg Pathwa}"
to be estimated. The directed arc (arrows) connecting a circle and a bar represents a direction
of a signal flow. The bi-directional thick arrows represent a association and a dissociation rate

at same time. The thin unidirectional arrows represent a production rate of products. Kwang-Hyun Chol”, Sung-Young Shinl. Hyun-Woo Kim!. Olaf Wolkenhauer®".

Brian McFerran’and Walter Kolch’3



(* ERK Signalling, Cho et al. *)
directive sample 50.0 1000
directive plot

(* Plot all *)

ERK Pathway

Ikl as "Raf-1*"; 2kl as "RKIP"; k3 as "Rafls_RKIP"; ?k3 as "ERK-PP"; ?bl as "Rafls_RKIP_ERKPP"

k6 as "MEK-PP"; ?ké as "ERK"; ?b2 as "MEKPP_ERK": k9 as "RKIPP"; ?k9 as "RP"; ?b3 as "RKIPP_RP"

(* Plot Fig 5 top left

Ikl as "Raf-1*"; 2kl as "RKIP"; k3 as "Rafls_RKIP" *)

(* Plot Fig 5 top right

?k6 as "ERK"; k6 as "MEK-PP"; ?2b2 as "MEKPP_ERK"; ?k3 as "ERK-PP" *)

(* Plot Fig 5 bottom left

Ik3 as "Rafls_RKIP" ; ?k3 as "ERK-PP"; ?bl as "Rafls_RKIP_ERKPP" *)

(* Plot Fig 5 bottom right

Ik9 as "RKIPP"; ?k9 as "RP"; ?b3 as "RKIPP_RP"; 2kl as "RKIP" *)

(* Plot MEK-PP
Iké as "MEK-PP" *)

new b1@1.0:chan() (* dummy barbs for plotting *)

new b2@1.0:chan()
new b3@1.0:chan()

(*
val quantity = 100.0
val concentration = 1.0

(* Binary reactions *)

new k1 @ 0.53/quantity :chan()
new k3 @ 0.625/quantity :chan()
new k6 @ 0.8/quantity :chan()
new k9 @ 0.92/quantity :chan()

(* Decay reactions *)
val k2 =0.0072

val k4 =0.00245

val k5 =0.0315

val k7 =0.0075

val k8 =0.071

val k10 = 0.00122

val k11 = 0.87

*)

Initial concentrations

ml1=25, m2=2.5, m3=0, m4=0, m5=0, m6=0, m7=2.5, m8=0,
m9=2.5, m10=3, m11=0

Rafl1s=2.5, RKIP=2.5, Rafls_RKIP=0,
Rafls_RKIP_ERKPP=0,

ERK=0, RKIPP=0, MEKPP=2.5, MEKPP_ERK=0, ERKPP=2.5,
RP=3, RKIPP_RP=0

Reactions
[01] Raf-1* + RKIP --sk1 Raf-1*_RKIP
[02] Raf-1*_RKIP -->k2 Raf-1* + RKIP
[03] Raf-1*_RKIP + ERK-PP -->k3 Raf-1*_RKIP_ERK-PP
[04] Raf-1*_RKIP_ERK-PP --sk4 Raf-1*_RKIP + ERK-PP
[05] Raf-1*_RKIP_ERK-PP -->k5 Raf-1* + RKIP-P + ERK
[06] MEK-PP + ERK -->ké6 MEK-PP_ERK
[07] MEK-PP_ERK -->k7 MEK-PP + ERK
[08] MEK-PP_ERK -->k8 MEK-PP + ERK-PP
[09] RKIP-P + RP -->k9 RKIP-P_RP
[10] RKIP-P_RP -->k10 RKIP-P + RP
[11] RKIP-P_RP --5k11 RKIP + RP
*
)

[ ) [ )
in SPIiM
let Rafls() =

Ik1; Raf1s_RKIP()

and RKIP() =
2kL; ()

and Rafls_RKIP() =
do delay@k2; (Raf1s() | RKIP())
or |k3; Rafls_RKIP_ERKPP()

and ERKPP() =
?k3: ()

(*1[01]*)

(* ?[011%)

(* [02]%)
(*1003]™)

(* 2[03]%)

and Rafls_RKIP_ERKPP() =
do delay@k4; (Raf1s_RKIP() | ERKPP()) (* [04]%)
or delay@k5; (Rafls() | RKIPP() | ERK() (* [05]*)
or ?bl

and MEKPP() =

Iké: MEKPP_ERK() (*1[06]*)
and ERK() =
2k6: () (* 2[06]*)

and MEKPP_ERK() =

do delay@k7: (MEKPP() | ERK()) * [07]1%)
or delay@k8; (MEKPP() | ERKPP()) (* [08]%)
or ?b2
and RKIPP() =
1k9; RKIPP_RP() (* 1I[091 %)
and RP() =
?k9: () (* 2[0917%)
and RKIPP_RP() =
do delay@k10; (RKIPP() | RP()) * [101%)
or delay@k11; (RKIP() | RP()) * [111%)

or ?b3

let many(n:float, p:proc()) = if n<=0.0 then () else p(); many(n-1.0, p)

run many(2.5*quantity*concentration, Raf1s)
run many(2.5*quantity*concentration, RKIP)
run many(2.5*quantity*concentration, ERKPP)
run many(2.5*quantity*concentration, MEKPP)
run many(3.0*quantity*concentration, RP)
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SPiM Simulation
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Original Simulation

Birding of RKIP to Raf* binding cf MEK-PP to ERK-F
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Mathematical modeling of the influence of RKIP Fig. 5. Simulation results of the mathematical modeling for fixed initial condition: the upper
on the ERK signaling pathway left shows the dynamics for Raf-1* RKIP, and their complex Raf-1*/RKIP, the upper right

Kvan:Hyun Chol", Sung Young Shi', oo Kin, Ol Wolkenhane”, shows the activity of MEK-PP which phosphorylates and activates ERK. the lower left shows
: 8 kb _ : .
Brian MeFerran™“and Walter Kolel the activity of ERK-PP, and the lower right shows the activity of RP.



Epidemics ODE

Kermack, W. O. and McKendrick, A. 6. "A Contribution to the
Mathematical Theory of Epidemics." Proc. Roy. Soc. Lond. A
115, 700-721, 1927.

http://mathworld.wolfram.com/Kermack-McKendrickModel.html



Epidemics

directive sample 500.0 1000
directive plot Recovered(); Susceptible(); Infected()

!infCCT ?infCCT new infect @0.001:chan()
val recover = 0.03
: let Recovered() =
SUSCCPTIble < > 7infec1' Infec-'.ed ?infect; Recovered()
. E and Susceptible() =
: @recover sinfect: Infected)
Recover.ed and Infected() =

do linfect; Infected()
or ?infect; Infected()
or delay@recover; Recovered()

5
: Iﬂf@CT run (200 of Susceptible() | 2 of Infected())

25

Recovered() —— Susceptible()

Infected()

200 -

150 -

100 -

50 -

0 50 100 150 200



DS D
S = iy I

I=ligyI®?i;Io1.R
\R = ?l(f);R

J

(6+T 5T IT+T)

I+ " I+T1-
I >R 7‘

“useless”

reactions
\R+I >"R+T)
[S]° = -t[S][I]
[L]° = t[S][T]-r[I]
[R]* = r[I]
a5
Automata match & ="
the standard % = oIS — b7
ODE modell % oy

(the Kermack-MMcEendrick, or STR model)|

ODE

4
H

Concertration Species |:| Fluxes |:| Parameters D Compartiments

cER

180 -

Cell Designer
ODE Solver output for reactions:
o0 F S+I ST I+I

I ->"R
with t = 0.001 r = 0.03 [S]=200 [I]=2

a0 -

1 1 1 1 1 1 ]
0 20 40 &0 i) 100 120 140 160 180

Tirne
L]
et 20000

250

ODE Solver output for

200

150+

100

50 F

M




Simplified Model

not useless! /S _ 5 T T I
linfect I ()
R
\_

Il(.r) Io® T, R
Susceptible O o,mcecf% Infected

useless

0 J

Not totally obvious e

that one coul/d have S + I %T I + I
simplified the
automata model. \I —' R

(Tt -
[S] = -t[S][I]
directive sample 500.0 1000 o —
directive :Ic::pRecover'ed(); Susceptible(); Infected() [I] - T[S][I]_P[I]
25 Recovered() —— Susceptible() Infected() [R ]. = r‘ [I ]
\_

new infect @0.001:chan()
val recover = 0.03

200 -

let Recovered() = Same ODE, hence

0 160 - :
. equivalent
and Susceptible() =

?infect; Infected() 100 1 automata mOdels.

and Infected() = 50
do linfect; Infected()
or delay@recover; Recovered()

run (200 of Susceptible() | 2 of Infected()) 0 50 100 150 200
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A

?a?b

.
Ib

—A() —B(

Groupies ODE

-
A = la(r.),A @® Db(r), B]

B = Ib(r.),B @® ?Cl(r.);A

.

g
A+B —r A+A
\B+A —r B+B

([AT = c[AYRI-rBIIA]
[B' = r[BIATTTATIE]

([AT = 0]

Wrong Answer?

: ODE predicts stability [A]"=0

: for any value of [A], while the
: stochastic system is stable only :
: when [A] is either O or Max. :



Doped Groupies ODE

’

A = la(r.),A @® ab(r.),B Ad = !a(r);Ad
B = Ib(r.),B @ Da(r),A Bd - Ib(r.), Bd

.

(A+B =" A+A A+B, —" B+B,
\B+A —" B+B | B+A; " A+A,

([AT = cLAYRI-rBIAT-r[AIBJ+r[BI[A] | [A4] = O
[B]' = F[BHATTTATIBI-r[BI[AJ+r[AIB] | [B.] = O

[A4].[B4] are constant;

([A]' = -r'k([A]_[B]) ATIBFO %Q]]:r,:lf,a?] assume them both = k
o — At [A]R[B]:[AT=[B]'~0
\[B] - r'k([A]'[B]) At [AJ=[B]: [AT=[B]*=0

Wrong Answer?

dx1/dt = -1.0*(x1-x2),1.0 ] :
d2/dr=107(1x2),00 | ODE predicts converging stable equilibrium at:

[A]=[B] instead of the total chaos observed in:
the stochastic system! :
1 For k=0 (no dope), predicts deadlock [A]*=[B]*=0 .
Matlab but at any value of [A], which is definitely not true ¢
et e in the stochastic system. .

.....
DDDDDDDDDDDDDDDDDDDD
0000000000000000000000000000000000000000000000000000000000000000000000000000000000




200

180 -
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Hysteric Groupies ODE

Azl A ®2bA A =2bB | Ay=lagy Ay ]
B=lb.B®?a:B" B'=?aA | By=!b,By

A+B - A+B'  A+B' " A+A [A+B, > A'+B, A'+B, —»" B+B, )
B+A —»r B+A" B+A' ->rB+B |B+A, 5" B+A, B+A, -r A+B, )

——Ga() ——Gb()

[A]" = r[A][B']-r[B][A]-r[A][B4]+r[B'][A,]
[A] = r[BI[A]-r[B][AT+r[Al[B]-r[A]IB,] | [A ] = O]| [AT = r[BI[A]-r[B][AJ+rk[A]-rk[A’]
[B]" = r[B][A']-r[A][B]-r[B][As]+r[A][Bs] |[B ] = 0| [B] = r[BI[A]-r[A][B]-rk[B]+rk[A’]
[B') = r[Al[B]-r[A][B']+r[BI[A4]-r[B'][A4]

[A] = r[AJ[B]-r[B][A]-rk[AT+rk[B] )

[BT = r[A][B]-r[A][B'}+rk[B]-rk[BT] |

[A4].[B4] are constant;
assume them both = k

: ODE predicts dampened

' [
. oscillation. while the nak Wpong dx1/dt=x1*x4-x3*x1-0.01*x1+0.01*x4, 1.0
: . dx2/dt=x3*x1-x3*x2+0.01*x1-0.01*x2, 0.0
. stochasic SYSTCI’\’\ keeps oat Answer? dx3/dt=x3*x2-x1*x3-0.01*x3+0.01*x2, 0.0
. Osc'lla.l.lng a.‘. max Ievel dx4/dt=x1*x3-x1*x4+0.01*x3-0.01*x4, 0.0
: . o7
r=1.0 o
- k=001 | :
o5
0.4}
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Tyson Cell Cycle

Proc. Natl. Acad. Sci. USA

Vol. 88, pp. 7328-7332, August 1991
Cell Biology

Modeling the cell division cycle: cdc2 and cyclin interactions

(maturation promoting factor/metaphase arrest/weel /cdc25)

JoHN J. TysoN

Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Communicated by David M. Prescott, May 20, 1991 (received for review January 23, 1991)

ABSTRACT The proteins cdc2 and cyclin form a het-
erodimer (maturation promoting factor) that controls the major
events of the cell cycle. A mathematical model for the interac-
tions of cdc2 and cyclin is constructed. Simulation and analysis
of the model show that the control system can operate in three
modes: as a steady state with high maturation promoting factor
activity, as a spontaneous oscillator, or as an excitable switch.
We associate the steady state with metaphase arrest in unfer-
tilized eggs, the spontaneous oscillations with rapid division
cycles in early embryos, and the excitable switch with growth-
controlled division cycles typical of nonembryonic cells.

Passage through the cell cycle is marked by a temporally
organized sequence of events including DNA replication,
mitosis, and the appearance of certain cell-cycle spcclﬁc
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Tyson Cell Cycle

Fic. 1. The relationship between cyclin and cdc2 in the cell
cycle. In step 1, cyclin is synthesized de novo. Newly synthesized
cyclin may be unstable (step 2). Cyclin combines with cdc2-P (step
3) to form “‘preMPF."" At some point after heterodimer formation,
the cyclin subunit is phosphorylated. (Assuming phosphorylation is
faster than dimerization, I write the two-step process as a single step,
rate-limited by dimerization.) The cdc2 subunit is then dephospho-
rylated (step 4) to form ‘*active MPF."" In principle, the activation of
MPF may be opposed by a protein kinase (step 5). Assuming that
active MPF enhances the catalytic activity of the phosphatase (as
indicated by the dashed arrow), 1 arrange that MPF activation is
switched on in an autocatalytic fashion. Nuclear division is triggered
when a sufficient quantity of MPF has been activated, but concur-
rently active MPF is destroyed by step 6. Breakdown of the MPF
complex releases phosphorylated cyclin, which is subject to rapid
proteolysis (step 7). Finally, the cdc2 subunit is phosphorylated (step
8, possibly reversed by step 9), and the cycle repeats itself. aa, amino
acids; ~P, ATP; P;, inorganic phosphate.

Table 1. Kinetic equations governing the cyclin—cdc2 cycle in
Fig. 1

d[C2]/dr = kelM] = ks[~PI[C2] + ks[CP]
d[CP)/dt = —k;[CPI[Y] + ks[~P][C2] — ks[CP]

dlpM]/dr = ks[CPI[Y] — [PMIF(IM]) + ks[~P][M]
dIM]/dt = [pMIF(IM]) — ks[~P)[M] — ke[M]
dlY]/dt = k[aa] — kY] — k5[CPI[Y]

dlYP]/dt = kg[M] — ks[YP]

t, time; k;, rate constant for stepi (i = 1, . . ., 9); aa, amino acids.
The concentrations [aa] and [~ P] are assumed to be constant. There
are six time-dependent variables: the concentrations of cdc2 ([C2]),
cdc2-P ([CP]), preMPF = P-cyclin-cdc2-P ([pM]), active MPF =
P-cyclin—cdc2 ([M]), cyclin ([Y]), and cyclin-P ([YP]). The activation
of step 4 by active MPF is described by the function F([M]) = k' +
kq([M]/[CT])?, where k4 is the rate constant for step 4 when [active
MPF] = 0 and &, is the rate constant when [active MPF] = [CT],
where [CT] = total cdc2. I assume k4 >> k,'. This form of F([M]) is
only one of many possible ways to describe the autocatalytic
feedback of active MPF on its own production.

Table 2. Parameter values used in the numerical solution of the
model equations

Parameter Value Notes
ki[2a)/[CT] 0.015 min~! .
ks 0
k[CT] 200 min~! *
ky 10-1000 min~! (adjustable)
ks 0.018 min~!
ks[~P] 0 t
ke 0.1-10 min~! (adjustable)
ks 0.6 min~! +
ks[~P] >>ky §
ko >>ke 8

*It is assumed that [CT] = [C2] + [CP] + [pM] + (M] = constant.
For growing cells, this implies that cdc? protein is continuously
synthesized to maintain a constant concentration of cdc2 subunits
(31).

TIn the absence of evidence to the contrary, it is assumed that newly
synthesized cyclin is stable (k2 = 0). If k» # 0, the behavior of the
model is basically unchanged, as long as ky << kia[CT]. In accord
with experimental evidence, I assume that cyclin-P subunits re-
leased from MPF complexes are quickly degraded (half-life = 1
min).

#In all calculations reported here, I ignore rephosphorylation of the
cdc2 subunit of active MPF (step 5). Similar results can be obtained
with ks # 0. 5

8] assume that cdc2 protein is phosphorylated as soon as it dissoci-
ates from the active MPF complex—i.e., kg[~P] >> kg >> ks. This
allows us to neglect the first differential equation in Table 1 (i.e.,
d[C2]/dt = 0) and [C2] = (ke/ks[~P))[CP] << [CP].



The Tyson Cell Cycle in SPiM

directive sample 10.0 1000 new c3@k3:chan
directive plot Cyclin(); Cdc2P1(); Cdc2(): new c4@k4:chan

Cdc2P1_CyclinP1(); €dc2_CyclinP1(); CyclinP1() let genCyclin() = delay@k1; (Cyclin() | genCyclin()

val factor = 200.0 (* Scaling Factor *)

and Cyclin() =

val k1 = 5.0 (* 0.015 cyclin production cranked up *) do delay@k2; ()

val k2 = 0.0 or 2¢3; Cdc2P1_CyclinP1()
= 200.

val k3 = 200.0/factor and Cdc2P1() =

val k4p = 0.018 dolc3: ()

val k4 = 200.0/factor =

val K5 = 0.0 or delay@k9; Cdc2()

val k6 = 1.0 and Cdc2() =

val k7 = 0.6 delay@k8; Cdc2P1()

:2: :g - 18%0.0 and Cdc2P1_CyclinP1() =
e do delay@k4p; Cdc2_CyclinP1()

(* THE REACTIONS or 2c4; Cdc2_CyclinP1()

k1 0 ->Cyclin - =

k2 Cyclin->0 and Cdc2_CyclinP1() =

do lc4; Cdc2_CyclinP1()
or delay@k5; Cdc2P1_CyclinP1()

k4p Cdc2P1_CyclinP1 -> Cdc2_CyclinP1 or delay@k6; (CyclinP1() | Cdc2())
k4 Cdc2P1_CyclinP1 + Cdc2_CyclinP1 -> 2* Cdc2_CyclinP1 and CyclinP1() =
k5 Cdc2_CyclinP1 -> Cdc2P1_CyclinP1 delay@k7: ()

k3 Cyclin + Cdc2P1 -> Cdc2P1_CyclinP1

run genCyclin()

k6 Cdc2_CyclinP1 -> CyclinP1 + Cdc2 run 200 of Cdc2P1()

k7 CyclinP1->0

k8 Cdc2 -> Cdc2P1
k9 (Cdc2P1 -> Cdc2
*)



SPiM Simulation

Chycling)
133 Cdc2PI()
Cdc2()
Cdc2F1_CyclinF
170,57
Very high relative level of Cdc2P1,
in fast reaction (bad for simulation)
k8 Cdc2 -> Cdc2P1
142.14 k9 (Cdc2P1 -> Cdc2
val k8 = 1000.0
val k9 = 10.0
113.71
85.286
Cell Divisions
56.857
28.429

0
0.564974 k052 Live
imulation: Time = B0.520033 (6052 points at 1.4183 simTime/sysTime and running)



The Tyson Cell Cycle in BIOCHAM

%Description
%A -model of the cell cycle based on the interactions between cdc2 and cyclin.

%present(Cdc2,0.39).
%opresent(Cdc2~{p1},0.0001).
%present(Cyclin,0.0001).
%present(Cdc2~{p1}-Cyclin~{p1},0.0001).
%present(Cdc2-Cyclin~{p1},0.0001).
%present(Cyclin~{p1},0.0001).

present(Cdc2,1).
absent(Cdc2~{p1}).
absent(Cyclin).
absent(Cdc2-Cyclin~{p1}).
absent(Cdc2~{p1}-Cyclin~{p1}).
absent(Cyclin~{p1}).

ki for _=>Cyclin.
k2*[Cyclin] for Cyclin=>_.

k3*[Cyclin]*[Cdc2~{p1}]for Cyclin+Cdc2~{p1} => Cdc2~{p1}-Cyclin~{p1}.
k4p*[Cdc2~{p1}-Cyclin~{p1}] for Cdc2~{p1}-Cyclin~{p1} => Cdc2-Cyclin~{p1}.
k4*([Cdc2-Cyclin~{p1}1)*2*[Cdc2~{p1}-Cyclin~{p1}]

for Cdc2~{p1}-Cyclin~{p1} =[Cdc2-Cyclin~{p1}]=> Cdc2-Cyclin~{p1}.
k5*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1} => Cdc2~{p1}-Cyclin~{p1}.

ké6*[Cdc2-Cyclin~{p1}] for Cdc2-Cyclin~{p1} => Cyclin~{p1}+Cdc2.

k7*[Cyclin~{p1}] for Cyclin~{p1} =>_.
k8*[Cdc2] for Cdc2 => Cdc2~{p1}.
k9*[Cdc2~{p1}] for Cdc2~{p1} => Cdc2.

%Cdc2-Cyclin~{p1}=>Cdc2~{pl}.

macro(YT,[Cyclin]+[Cyclin~{p1}]+[Cdc2~{p1}-Cyclin~{p1}]+[Cdc2-Cyclin~{p1}]).
macro(CT,[Cdc2]+[Cdc2~{p1}]+[Cdc2~{p1}-Cyclin~{p1}]+[Cdc2-Cyclin~{p1}]).
macro(ratio,YT/CT).

parameter(k1,0.015).
parameter(k2,0.015).
parameter(k3,200).
parameter(k4p,0.018).
parameter(k4,180).
parameter(k5,0).
parameter(k6,1).
parameter(k7,0.6).
parameter(k8,100).
parameter(k9,100).



The Tyson Cell Cycle in Cellerator

Cell Cycle Model; Tyson (1991, 6 variables)

Crtation
Tyzon IT, (1591} . Modeling the cell division cycle: cde2 and cyclin interactions. PRAS, 88: 7328-7332. hitp /fwrwrw phias. orglegifc ontent/abstract/88/16/7328
Description

A model of the cell cycle based on the mteractions between cde2 and cyelin. The model has s dynamic varables: C2 {edc2), CP {cde2-P complex), pbd (P- cyclin-cdc2-P complex); M (actrve
MFPF, P-cyclin- cde? complex); ¥ (eycliny, and ¥P (cyclin-P) - Total cyclin concentration (Y1) is the sum YT=Y+YP+phi+hid

Rate constant Reaction
klaa=10.015 EmptyZet - T
k2=10 T -> EmptySet
k3=200 CE+7Y -=phd
kdprime + kA*¥MA[t]"2 phd -=> Il
kSnetP =0 M -= phd
k=1 M-=C2+ TP
E7=06 TP -=> EmptySet
k8notP = 1000000 C2-»= CP

k9 =1000 CP->C2

Variable IC ODE
o 0 C2TH = -(kBnotP*C2[t]) + kI*CP[t] + k6*M[t]
CP 1 CP'[t] = kSnotP*C2[t] - k9*CE[t] - k3*CP[t]* Tt]

M 0 M= -(SnotP*Ut]) - k6*Mt] +  kedprime + kd* Mt} 23 *p[t]
oM 0.3 pM[t] = kSnotP*MIt] - (kdprime + kA*MF 2% pM[t] + k3*CP[* T[]
T 0 T[] =klaa - k2*¥TTt] - kK3*CP[H*Y]t]

TP 0 YP[t] = k6*Mt] - k7*TE[t]

Ganerated by Cellerator Version 1.0 update 2.1125 uming Mathematica 4.2 for Mac OS5 X (Fune 4, 2002), November 25, 2002 14:40:26



MAPK Cascade

Proc. Natl. Acad. Sci. USA
Vol. 93, pp. 1007810083, September 1996
Biochemistry

Ultrasensitivity in the mitogen-activated protein kinase cascade

CHI-YING F. HuaNG AND JaMmEs E. FERRELL, JR.T

Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305-5332

Communicated by Daniel E. Koshland, Jr., University of California, Berkeley, CA, May 16, 1996 (received for review January 22, 1096)

ABSTRACT The mitogen-activated protein kinase
(MAPK) cascade is a highly conserved series of three protein
kinases implicated in diverse biological processes. Here we
demonstrate that the cascade arrangement has unexpected
consequences for the dynamics of MAPK signaling. We solved
the rate equations for the cascade numerically and found that
MAPK is predicted to behave like a highly cooperative en-
zyme, even though it was not assumed that any of the enzymes
in the cascade were regulated cooperatively. Measurements of
MAPK activation in Xenopus oocyte extracts confirmed this
prediction. The stimulus/response curve of the MAPK was
found to be as steep as that of a cooperative enzyme with a Hill
coefficient of 4-5, well in excess of that of the classical
allosteric protein hemoglobin, The shape of the MAPK stim-
ulus/response curve may make the cascade particularly ap-
propriate for mediating processes like mitogenesis, cell fate
induction, and oocyte maturation, where a cell switches from
one discrete state to another.

INPUT
(E1)

¥
MAPKKK 7_ > MAPKKK®

’
E2

MAPKK T_% MAPKK-P 5> MAPKK-PP

S

MAPKK P'ase

MAPK 5> MAPK-P T_> MAPK-PP

7

MAPK P'ase

QUTPUT

Fig. 1. Schematic view of the MAPK cascade. Activation of
MAFPK depends upon the phosphorylation of two conserved sites



MAPK Cascade

Ultrasensitivity in the mitogen-activated protein

cascade, Chi-Ying F. Huang and

James E. Ferrell, Jr., 1996, Proc. Nat! Acad. Sci. USA, 93, 10078-10083.

Biochemistry: Huang and Ferrell Proc. Nail. Acad. Sci. USA 93 (1996)

Table 2. Predicted Hill coefficients for MAP kinase cascade components: Varying the assumed Kw values

Range of effective HilleGetficients (nH)
Range of assumed K, predicted for

Reaction values APKEKK MAPKK MAPK

1. MAPKEK — MAPKKK* 60-1500 nM 1.0 1.7 4.9

2 MAPEEK* — MAPKEEK 00 nM 1.0 1.7 4.9
3. MAPKK — MAPKK-P 60-1500 nM 1.0 1.3-23 4.0-5.1
4. MAPEK-P — MAPEK 60-1500 nM 1.0 1.5-1.9 16-6.7
5 MAPKK-P — MAPKK-PP 60-1500 nM 1.0 1.3-24 3852
6. MAPEE-PP — MAPEE-P 60-1500 nM 1.0 L.7-1.8 4.1-64
7. MAPK — MAPE-P 60-1500 nM (300 nMT) 1.0 1.7 39-62
8 MAPK-P — MAPK 60-1500 nM 1.0 1.7 4352
9. MAPK-P — MAPK-PP 60-1500 nM 1.0 1.7 3461
10. MAPK-FPP — MAPK-P 60-1500 nM 1.0 1.7 47-51

The assumed K values for each reaction were individually varied over the ranges shown, with the assumed K values for
the other nine reactions held constant. The effective Hill coefficients were calculated from the steepness of the predicted
stimulus/response curves, as described in the text.
1The K., value for reaction 7 has been measured to be 300 nM for the phosphorylation of a mammalian MAPK by a MAPKK

(N. Ahn, personal communication). All of the other Km values were initially assumed to be 300 nM as well.

10 chemical
reactions

¥
MAPKKK o = MAPKKK®

4
E2

MAPKK 7= MAPKK-P &> MAPKK-PP

t ¢

MAPKK F'ase

MAPK > MAPK-P

| |

e MAPK Pase
Caleulations. Eqs. 1-10 represent the reactions of the MAPK KK-PP + KK P'ase == KK-PP-KK P'ase R .
cascade, which are shown schematically in Fig. 1. We have used dg eservoirs
Goldbeter and Koshland’s nomenclature for the rate constants— OUTPUT
the letter a denotes association, d denotes dissociation without kg B k
catalysis, and k denotes product formation (11). KKK denotes — KK-P + KK P'ase 161 ac Enzymes
MATIIIG RIS denotes MAPIE and K denotes MAPE Fic. 1. Schematic view of the MAPK cascade. Activation of
KKK + Fl s KKECEL 2 KKK + Bl N ar ks MAPK depends u pon the phosphorylation of two conserve_d si_tes
dl B e [Thr-183 and Tyr-185 in rat p42 MAPK/Erk2 (4, 5)]. Full activation
KKK + B2 kckmn KKK o 1 o1 ! of MAPKK also requires phosphorylation of two sites [Ser-218 and
d; ) KoP 4 K Pase s ke P ks KoK P . Ser-222 in mouse Mek-1/MKK1 (6-10)]. Detailed mechanisms for the
o K R s 0 S activation of various MAPKKKs (e.g., Raf-1, B-Raf, Mos) are not vet
eSSt s sk At g s E . established; here we assume that MAPKKKs are activated and inac-
? ao o . . . . - #
. K-P + KK-PP — K-P-KK-PP —» K-PP + KK-PP  [9] twqted by enzymes we denote El1 and E2. MAPKKK ) denotes
KK-P + KK P'ase —= KK-PKK P'ase do activated MAPKKK. MAPKK-P and MAPKK-PP denote singly and

dy
I'%y d10
— KK + KK Pase 141 K-PP + K P'ase d.f:» KK-PP-K P'ase
10
= k- Kio

KK-P + KKK* =KK-P-KKK* — KK-PP + KKK*  [5] — K-P + K P'ase [10]

s

doubly phosphorylated MAPKK, respectively. MAPK-P and
MAPK-PP denote singly and doubly phosphorylated MAPK. P'ase
denotes phosphatase.



As 18 Ordinary Differential Equations
Plus 7 conservation equations

i
;[K—P] = K KKK-PP| — ag[ K-P][K P'ase]

+ deK-P+ K P'ase] — adK-PIKK-PP]

+ do[K-P+ KK-PP] + k[K-PP- K P'ase] 1241

d
a1 7 o RERIE AR The 10 reactions described above give rise to 18 rate
+ KRR B2 i equations.
;—l[[KKK-El] = a,[KKK][E1]- (d, + k)[KKK-E1]  [12]
. ;—l[[K-P'K P’ase] = a3[K-P][K P'ase]
7 [KKK*] = —a,[KKK*J[E2]+ d[KKK*E2]

+ ky[KKK-E1] + (ky + ds)[KK-KKK*] — a:[KKK*]KK]

+ (ks + d<)[KK-P-KKK*] — aJKK-PIKKK*] [13]

One equation for each
species (8) and complex
(10), but not for constant
concentration enzymes (4)

— (ds + kg)[K-P-K P'ase] [25]
d
g7 [K-P-KK-PP] = as[K-P][KK-PP]

d _ CATRLP . KR
G [KKK*E2] = ;[ KKK*J[E2] = (d; + ko) [KKK*E2] (ds + ko)[K-P - KK-PP] 126]

1141 d _ -
77 [K-PP] = —ai[K-PP][K Pasc]

i[KK] = —a[KK|[KKK*] + d3] KK-KKK*|

dat + dy[K-PP-K Plase] + kJ[K-P-KK-PP]  [27]

e . ;
+ kJKK-P KK P'ase] [1s] £ [K-PPK Prase] = a,oK-PP|[K P'ase]
. dt
d

q; [KKKKK'] = a5[KK][KKK"] — (dyo + ki J[K-PP-K P'ase] [28]

— (dy + ky)[KK-KKK*] [16]

i
i[KK-P] = —a,[KK-P][KK P'ase] + d,[KK-P-KK P'ase]
+ kKK -KKK*] + ko KK-PP-KK P'ase]
+ d{KK-P-KKK*] — adKK-PI[KKK*] [17]

+ dfKK-P-KKK*] — afKK-PIKKK*] 117]

[Ely = [E1] + [KKKE1] 1301 In addition, there are seven conservation equations (Eqgs.
[E2,] = [E2] + [KKK"E2] 1311 29-33).

[KK,u] = [KK] + [KK-P] + [KK-PP] + [KKKKK']

1
; |[KK-PKK P'ase] = a,[KK-P|[KK P'ase]
— (dy + ky)[KK-P-KK P'ase] [18]
+ [KK-P-KKK*] + [KK-P-KK P'ase]
+ [KK-PP-KK P'ase]
+ [KK-PP-K] + [KK-PP-K-P] 132]
[KK P'asei ] = [KK P'ase] + [KK P'ase-KK-P]

i
%[KK-P-KKK*] = as[KK-P][KKK*]

[KKK,o = [KKK] + [KKK*] + [KKK-E1]
+ [KKK*-E2]

— (ds + ks)[KK-P-KKK"] 1191

d
37 [KK-PP] = k[KK-PKKK '] ~ a,[KK-PP][KK P'ase]

+ d[KK-PP+KK P'ase] — a;[KK-PP][K] + [KK P'ase - KK-PP] [33]

+ [KKK" K] + [KKK"-K-P] [29]

+ (d; + k;)[K:KK-PP]
+ (dy + ko)[K-P-KK-PP]
— a [K-P[KK-PP] [20]
1
%[KK-PP‘KK Pase] = ag[KK-PP][KK P’ase]
— (ds + Ke)[KK-PP-KK P'ase] [21]
1
#[K] = —a;[K][KK-PP] + d;[K-KK-PP]
+ ks[K-P-K P'ase] [22]

d
3¢ [KKK-PP] = a;[K][KK-PP] ~ (d; + k;)[KKK-PP]
123]

[Kiot] = [K] + [K-P] + [K-PP] + [KK-PP-K]
+ KK-PP-K-P| + [K-P+K P'ase] + [K-PP-K P'ase]  [34]
[K Prase,,] = [K P'ase] + [K-P-K P'ase]
+ [K-PP:K P'ase] 135]
These equations were solved numerically using the Runge—
Kutta-based NDSolve algorithm in Mathematica (Wolfram
Research, Champaign, IL). An annotated copy of the Math-

ematica code for the MAPK cascade rate equations can be
obtained from J.E.F.

Each molecule

{ in exactly one state



The Circuit

(input)
[ | I | : !
KKK = KKK* KK e KK-P o—— KK-PP. K = K-P —no
T T ? T 7 (output)

E2 KK-Pase K-Pase



Enzymatic Reactions

Reaction View

intermediate
complex
E c .

o E+S = ES — P+E
S ——> P d

. . ivate bindings bet
Interaction View Pl
bind
. S() 2 new u@d new k@e
ol la (u,k): (lug: SO + k. PO)
] react
bind unbind react
aC ud ke ............ > @
EO) 2 ?a.(uk); Pug EQ + 2k, EQ))
@ PO .




As 12 processes (in SPiM)

let KKK() =
(new ul@d]1:Release new kl@r1:React

!al(ul,k1); (do !'ul;KKK() or !k1;KKKst())) [1]substrate
KKK:E1 complex
and KKKst() =
(new u2@d2:Release new k2@r2:React
do !a2(u2,k2); (do 'u2;KKKst() or 'k2; KKK()) [2]substrate

or ?a3(u3,k3); (do ?u3;KKKst() or ?k3;KKKst()) [3]kinase
or ?a5(u5,k5); (do ?uS;KKKst() or ?k5;KKKst())) [5]kinase

let E1() =

2al(ul,k1); (do 2ul;E1() or ?K1;E1() [1]enzyme

E1:KKK complex

let E2() =

?a2(u2,k2); (do ?u2;E2() or ?k2;E2()) [2]enzyme
let KK() =

(new u3@d3:Release new k3@r3:React

!a3(u3,k3); (do 'u3;KK() or 'k3; KK P())) [3]substrate
and KK _P() =

(new u4@d4:Release new kd@r4:React

new uS@d5S:Release new kS@r5:React

do !a4(u4,k4); (do 'u4;KK P() or 'k4;KK())

or !a5(u5,k5); (do 'uS;KK _P() or 'kS5; KK PP()))

[4]substrate
[S]substrate

and KK _PP() =
(new wo@d6:Release new k6@r6:React

do !a6(w§,k6); (do !u6;KK PP() or 'k6;KK P()) [6]substrate
OI' ?a7 u7, 3 V9 PNED) N, P V4 V4B ) ) ) TANPNSSD) ) ML, P Ve Vg nn/\ 7 kinase
( One process for each )17 .

or ?a9(u9,k9): . . ) [9]kinase
component (12) including
enzymes, but not for

and KKPse() = ymes, f

complexes.

or ?a6(u6,k6); (do ?u6;KKPse() or ?k6;KKPse()) [6]phtase

No need for conservation
equations: implicit in “choice”
Joperator in the calculus.

[7]substrate

and K P() =
(new u8@d8:Release new k8 @r8:React
new u9@d9:Release new k9@r9:React

do !a8(u8,k8); (do !u8;K P() or 'k8;K()) [8]substrate

or !a9(u9,k9); (do 'u9;K P() or !k9;K PP())) [9]substrate
and K PP() =

(new ul0@d10:Release new k10@r10:React

1a10(u10,k10); (do 'u10;K_PP() or 'k10;K_P())) [10]substrate
and KPse() =

do ?a8(u8.k8); (do ?u8;KPse() or ?k8;KPse()) [8]phtase

or 2a10(u10,k10); (do ?ul0;KPse() or ?k10;KPse()) [10|phtase



... and 30 Interaction Channels

type Release = chan()
type React = chan()
type Bond = chan(Release,React)

new al@1.0:Bond val dlil.() val rlil.O | a.(u.,k.): release (U-@d-) and react (k@r')
new a2@1.0:Bond val d2=1.0 val r2=1.0 'h e | d y Ib d h | | !
new a3@1.0:Bond val d3=1.0 val r3=1.0 channels passed over bond (;) channel.
new a4@1.0:Bond val d4=1.0 val r4=1.0 (NO behavior attached to channels

new a5@1.0:Bond val d5=1.0 val r5=1.0 except interaction rate.)

new a6@1.0:Bond val d6=1.0 val r6=1.0
new a7@1.0:Bond val d7=1.0 val r7=1.0
new a8@1.0:Bond val d8=1.0 val r8=1.0
new a9@1.0:Bond val d9=1.0 val r9=1.0
new al0@1.0:Bond val d10=1.0 val r10=1.0

run 100 of KKK() run 100 of KK() run 100 of K()
run 1 of E2() run 1 of KKPse() run 1 of KPse()
run 1 of E1()



MAPK Cascade Simulation in SPiM

=

KKK KKK* KK ——— KK-P — KK-PP K — K-P 4_
T ] I (ouTPuT)
E2 KK-P'ase K-P'ase
- . 15" stage:
1400 - KKK* barely rises
- 2nd stage:
/J KKK _EE; KK-PP rises, but is not stable
1000 KK-PP _KK 3rd stage:
£00 ' KKK* KK_P K-PP flips up to max
GO0 —KK_PP even anticipating 2"d stage
—K
., Rates and concentrations from paper:
- / ffI\“x /’f //I S :Eip 1xE2 (03 nh) B
200 ; = K-P - = 1xKKPase (0.3 nM)
120xKPase (120 nM)
a — . T 3xKKK (3 nM)

1200xKK (1.2 uM)
0 5 10 15 20 1200xK (1.2 uM)
.. d dx=rx =150, ax=1
InJCC'l'e (Kmx = (dx + rx) / ax, Km = 300 nM)

1xE1



MAPK Cascade Simulation in SPiM

e (input)
100 1 o
— KKK~
20 [ 8
&0 it —_ I _lp l. I —_ ip
= — i FE KKK 2 KKKY KK o KK-P e KK-PP K > K-P 4_
- K_P (output)
=0 7,
o E2 KK-P'ase K-P'ase
a
120
100 FH K All coefficients 1.0 lll
e —I“'H" 100xKKK, 100xKK, 100xK,
e FH _F 13XE2, 13XKKP56, 13xKPse.
:“"—FP nxE1 as indicated
40 4 B —
P (1xE1 is not sufficient to produce an output)
Z0 —  K_PF
o 4
120
100 —— ki
HFFF
=0 4 F
KK _P
[=1n] HKKE._FF
40 — K
— =R
=0 —  K_FPP
o 4
1Z0
100 — FH
1 5 B B
=0 45 K
KK _F
&0 — KK_FF
40 4 — K
K_F
=0 — K_PF
a 4 T T T J
(=] =0 100 =0 200 220




MAPK Cascade Simulation in SPiM

=

KKK KKK* KK e— KK-P — KK-PP K — K-P 4_
? ] 1 (ouTPuT)
E2 KK-P'ase K-P'ase
1 1s* stage:
T KKK* barely rises
KKK 2nd stage:
KK KK-PP rises, but is not stable
KK_P 3rd stage:
:EK—PP K-PP flips up to max
_KP even anticipating 2" stage
—K_PP
All coefficients 1.0 Il

100xKKK, 100xKK, 100xK,

B5xE2, 5xKKPse, 5xKPse.
— Input is 1xE1.
mJecTed Output is 90xK-PP (ultrasensitivity).




MAPK Cascade Simulation in SPiM

Parameters from paper
(wide rate range: 1-150, wide concentration range: 3nm - 1200nm)

14 KKK KKK* KK KK_P KK_PP K K_P K_PP
1200 -
1000 -
800 -
600 -
400 -
200 -

0 - ‘ ‘ ‘

Artificial parameters
(all rates 1.0, all concentrations 1000)

12 KKK KKK* KK KK_P KK_PP K K P K_PP

1000
800 -
600 -
400 -

200 - _;3.{:::::::::::2:FHFFq_m"fr,#.x,N-_a,..,,n»*h,h.ﬂw,.,_,_,._n\,\,.,-_-
0 B i T

0 10 20 30 40 50 60 70 80 90 100
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Inverter ODE

/No’rh,-(a,b) = Ib;Not,(a,b) & ?a:No‘r,o(a,b)\
Not,(a,b) = t,.:Not,(a,b)

A(a) = la;(A(a)|A(a)) linearly increasing input
\A(X(r)) I n Of NOThi(x(r‘)'Y(S)) /

(No‘rhi/x,y + A/x =" Not\,/x)y + A/x + A/x
Not,,/x,y —%! Not,/x,y
\A/x +n of Not,;//xy

([A/XT = r[Not, /x.y[A/X]
[Not,/x,y]* = -r[Not,;/x,yl[A/x]+del[Not,/x,y]
\[No‘r,o/x,y]' = r[Not,;/x,yl[A/x]-del[Not,,/x,y]

120 — Not_hi() Not_lo() A() —
directive sample 0.2 1000
100 directive plot Not_hi(); Not_lo(); A()
] new a@1.0:chan new b@1.0:chan
val del = 1.0
80 -
let Not_hi(a:chan, b:chan) =
do Ib; Not_hi(a,b) or ?a;
60 - Not_lo(a,b)
and Not_lo(a:chan, b:chan) =
40 delay@del;Not_hi(a,b)
” let A(a:chan) = la;(A(a)| A(a))
SPIM run (A(a) | 100 of Not_hi(a,b))
O T T
0 0.05 0.1 0.15 0.2
120 { \

100

80

B0

o} .
Matlab
. I ontinuous_sys_generator
0 50 100 150 200 250
interval/step [0:0.001:0.2] n=100, r=1, del=1
(A) dx1/dt = x2*x1 1
(Not,) dx2/dt = -x2*x1+x3 100

(Not),) dx3/dt = x2*x1-x3 0
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Recent studies have provided insights into the modular structure of
genetic regulatory networks and emphasized the interest of quan-
titative functional descriptions. Here, to provide a priori knowl-
edge of the structure of functional modules, we describe an
evolutionary procedure in sifico that creates small gene networks
performing basic tasks. We used it to create networks functioning
as bistable switches or oscillators. The obtained circuits provide a
variety of functional designs, demonstrate the crucial role of
posttranscriptional interactions, and highlight design principles
also found in known biological networks. The procedure should
prove helpful as a way to understand and create small functional
modules with diverse functions as well as to analyze large
networks.

580-585 | PNAS | January 13,2004 | vol.101 | neo.2

® ®
e N
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—I@eela Itm=0ln-

Fig. 1. Sketch of a bistable switch with reciprocal transcriptional repression
between genes a and b.

ceived, could serve the same purpose, perhaps even in a better
and more robust way.
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www.pnas.org/cgi/doi/10.1073/pnas.0304532101
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Frangois & Hakim Fig3A
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Desigh of genetic networks with specified functions by evolution in

silico
) Reactions Constants | Stability
a7 — n+A 0.20 0.9-1.4
A —Nothing | 0.0085 0.0-1.5
} b = b+B 0.37 0.7-1.3
B —Nothing 0.034 0.0-8.9
@ : 3 @ A+B—+ AB 0.72 0.1->10
/ \ A:B —Nothing 0.53 Irrelevant
L &) ik, brA— LA 0.19 0.7-7.6
+ | '::] A (A) A = b+A 0.42 0.2-1.5
— g~ b= 2A(b ) bA = bATB | 0.027 0.0-2.3
Fig 3A
T T T T ED t T T T
45 | Protein A —— a5 | Protein A ———
40 | o 40 |
35 Pulse of A Pulse of B @ 35 [ Freeevolution
o
30 F =
25 =
20 F o
15 | 5
10 t 3
5 L _
D 1 1 1 1 _ll.lluﬂ.u.“ )
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
time (min) time (min)

Fig 14A



Frangois & Hakim Fig3A, SPiM simulation

Parameters as in paper

3 copies of each gene.

35 35
SPiM simulation SPiM simulation 90 o .
SPiM simulation
a0 a0 80 ).h
i I
ﬁl W T B |
60 ! ¥ i
20 { 20 L | I i
il . —oma | e [
15 15 \ |, } —— aall 40 J, M‘ — dkB:0.034))
10 1 10 | i 30 i
- _ l T " 20 il
q 2 T ’
10 -
M | L TH Y T LS
. |" c [ - T T T
0 2000 4000 600 5000 10000 15000 20000 25000 0 2000 4000 6000
Spontaneous switch at ~500 .
(as di;cgssed in Supporting Text) Free evolution Spontaneous switch at ~1100
30xB injected at ~3000 100xB injected at ~3000
30xA injected at ~4000 30xA injected at ~4000
Modified for STGb”H’y: dkA = 0.02, dkB = 0.02
120 140 140
SPiM simulation SPiM simulation SPiM simulation
100 i 120 120
“ R A " |
_ LN, I A
" i —— dkA0.002) 80 ‘ W u' i g MU y f TR — dkA0.002()
/ I Ii( — dkB:0.002() &0 | ‘ &0 i — dkB-0.002()
4 W
} 40 Tk 40
e H 20 20 }
0 . : 0 T . 0 . .
0 5000 10000 15000 0 5000 10000 15000 0 5000 10000 15000

120xA injected at ~4000
120xB injected at ~8000

Free evolution



Circuit of Fig 3A with parameters from SupportingText Fig 8, plotted in Fig 13A

Frangois & Hakim Fig3Ast8

Reactions Constants “@@ . ,
i — a+A 0.52 }:. 800 Protein A |
A —Nothing | 0.00019 T < Pulseof A Pulse of B
b = B 0.79 g 600
B —Nothing 0.0030 @ + . S
: = 400
A+B— AB 0.053 @ 2
A Tt = £
A AT 0% / ® N\ o~ 2 20
A = b+A 0.31 + RN 0 : : .
Ime (min
Fig 13A
Fig 8
Y 5 / 140
il S 500 SPiM simulation 4?0 SPiM simulation SPiM simulation
"V ¥ 500 Tr\w.ﬁu.“_ 350 0 120
)ﬁN J \ 300 W Vg . J% . |
400
250
f 200 200 W 80 "( — dkA0.00019)
f J - JI — —— dkB-0.003()
. : 150
] 200 i ? MJ o J ][ ‘\N
100
100 \.\.’*\W 50 f 20
. : i ' ' 0 ' . 0 . ' .
L Sone gy 18000 5000 10000 15000 0O 5000 10000 15000 0O 5000 10000 15000

200xA injected at ~2500
500xB injected at ~5000
200xA injected at ~7500

200xB injected at O
600xA injected at ~2500
600xB injected at ~7500

Free evolution




(* Francois and Hakim circuit 3A %)

val
val
val
val
val
val
val
val
val

Francois & Hakim 3A in SPiM

pntAunb = 0.42
geneACst = 0.20
geneBCst = 0.37
geneBInh = 0.027
bA = 0.19

AB = 0.72

dkA = 0.0085

dkB = 0.034

dkAB = 0.53

Tet

Jet

Tet

et

et

and

run

ptnAQ) =
(new unb@pntAunb
do delay@dkA or !AB or !bA(Cunb);(?unb; ptnA(Q)))

ptnB() =
do delay@dkB or ?AB;cpxABQ)

cpxAB(Q) delay@dkAB
geneA() =
delay@geneACst; (ptnA(Q) | geneA(Q))

geneBfree() =
do delay@geneBCst; (ptnB() | geneBfree())
or ?bA(unb); geneBbound(unb)

geneBbound(unb:ch()) =
do delay@geneBInh; (ptnB() | geneBbound(unb))

or !unb; geneBfree()

(geneA() | geneBfree())






