To explain all nature is too difficult a task for any one man or even for any one age. 'Tis much better to do a little with certainty, and leave the rest for others that come after you, than to explain all things. Isaac Newton.

Conclusions

Luca Cardelli
Microsoft Research
The Microsoft Research - University of Trento Centre for Computational and Systems Biology
Trento, 2006-05-22..26
www.luca.demon.co.uk/ArtificialBiochemistry.htm
Summary

- **Molecular Biology and Systems Biology**
 - “Don’t panic”: it’s incredibly complex, but there is continuous progress.
 - Much of the recent action is in understanding information flow.

- **Stochastics**
 - The foundation of chemical and biochemical processes.
 - Recently embedded in process calculi and languages.

- **Chemistry**
 - How to model it in process calculi.
 - How to convert to/from it.

- **Biochemistry**
 - How to model it in (more advanced) process calculi.
 - Circuitry based on biochemical assumptions.

- **Genetic Networks**
 - How to model them (by a different paradigm) in process calculi.
 - Investigating puzzling experimental results.

- **Membranes**
 - Examining some basic biological invariants.
 - How to model them in (even more advanced) process calculi.
Q: “The data are accumulating and the computers are humming, what we are lacking are the words, the grammar and the syntax of a new language…”

D. Bray (TIBS 22(9):325-326, 1997)

A: “The most advanced tools for computer process description seem to be also the best tools for the description of biomolecular systems.”

E. Shapiro (Lecture Notes)