PolyAutomata

Luca Cardelli

Microsoft Research
The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Trento, 2006-05-22.. 26
www.luca.demon.co.uk/ArtificialBiochemistry.htm

Polyautomata

Polyautomata are interacting automata that can form polymers, or generally can stick to each other and then unstick.

\&!a

\&?a
\%!a
\%? a "right" dissociation
=exclusive association link
between two specific automata
"left" association "right" association "left" dissociation

new a	Ororersebinders
A_{1}	$=!a\left({ }^{\nu} n_{r 1}\right) ; A_{2}(n)$
$A_{2}(n)$	$=!n ; A_{3}$
A_{3}	$=@ \Lambda_{3} ; A_{1}$
B_{1}	$=? a(n) ; B_{2}(n)+@ \Lambda_{2} ; B_{3}$
$\mathrm{B}_{2}(\mathrm{n})$	= ? $n ; B_{3}$
B_{3}	$=@_{\Lambda_{1}} ; \mathrm{B}_{1}$

They can be mapped to π-calculus.

```
new n!a(n)
?a(n)
!n
?n
```


Polyautomata Labels and Actions

Each transition label a has an associated set of one or more rates (or, in the non-stochastic case, just an integer arity >0). This is written:

$$
a @ r_{0}, r_{1}, \ldots, r_{n} \quad \operatorname{arity}(a)=n \quad(n>0)
$$

If $\operatorname{arity}(a)=1$, then r_{0} is called the interaction rate. This is for normal interaction transitions.

If arity(a)>1, then r_{0} is called the association rate and r_{1}, \ldots, r_{n} are the dissociation rates. This is for association and dissociation transitions.

An action is of the form:
? a_{i} input at rate $r_{i}, i \in 0 . . \operatorname{arity}(a)-1$
$!_{i} \quad$ output at rate $r_{i}, i \in 0$..arity(a)-1 τ @r delay at rate r, also written @r

If $\operatorname{arity}(a)=1$, then $? a_{0}!a_{0}$ are written simply ?a,! a (interaction)

If $\operatorname{arity}(a)>1$ then, for emphasis, ? a_{0} ! a_{0} may be written \&?a,\&!a (association), and
? $a_{\mathrm{i}}!a_{\mathrm{i}}$ for i>0 may be written $\%$? $a_{\mathrm{i}} \%!a_{\mathrm{i}}$ (dissociation).

If $\operatorname{arity}(a)=2$ then $\%$? $a_{1}, \%!a_{1}$ is written \%?a,\%!a.

Delay and Interaction Transition Rules

(Label abbreviation: @r)
$a @ r_{0}$

(Label abbreviation: ?a !a)

Association Rules

The current state carries a set of association markers S.

$$
a @ r_{0}, r_{1}, \ldots, r_{n}
$$

$$
\text { n not in } S, T
$$

(Label abbreviation: \&?a \&!a)

Complexed automata, uniquely linked through fresh n, and unable to transition through ? a_{0} ! a_{0} again, but otherwise free to evolve independently.
(They can transition through $a_{0}, ? a_{0}$ and through ? $a_{i}!a_{i}$ for i>0 in either order)

Dissociation Rules

区固 \leftrightarrow 相回

Complexation
 $A+B \underset{\wedge}{\stackrel{\mu}{\rightleftarrows}} A B$

$a @ \mu$ n＠1
polyautomata （formal）

$E \leqslant S \leftrightarrow E \leqslant S \rightarrow E \& D$ Enzymes
 $$
\mathrm{E}+\mathrm{S} \underset{\mathrm{k}_{1}}{\stackrel{\mathrm{k}_{0}}{\longrightarrow}} \mathrm{ES} \xrightarrow{\mathrm{k}_{2}} \mathrm{E}+\mathrm{P}
$$

Homodimerization

Actin-like
Polymerization/Depolymerization

Summary

- Polyautomata
- Carry "tokens" in the current state
- Fresh tokens created on complexation
- Prevent reusing resources before releasing resources
- Uses
- As a graphical automata-like notation for complexation
- As a finite subset of π-calculus, beyond interacting automata
- Applicability
- Can represent complexation, enzymatic reactions, some polymerization

> Q?

