Research is the process of going up alleys to see if they are blind. Marston Bates.

PolyAutomata

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento Centre for Computational and Systems Biology

Trento, 2006-05-22..26

www.luca.demon.co.uk/ArtificialBiochemistry.htm

Polyautomata

Polyautomata are interacting automata that can form *polymers*, or generally can *stick* to each other and then *unstick*.

new a(@r ₀	red=binders
A ₁ A ₂ (n) A ₃	= !a(^v n _{r1}); A ₂ (n) = !n; A ₃ = @A ₃ ; A ₁	
B ₁ B ₂ (n) B ₃	= ?a(n); B ₂ (n) + @A ₂ ; = ?n; B ₃ = @A ₁ ; B ₁	B ₃
	and the second second second	

They can be mapped to π -calculus.

new n !a(n) ?a(n) !n ?n

N Luca Cardelli

Polyautomata Labels and Actions

Each transition label a has an associated set of one or more rates (or, in the non-stochastic case, just an integer arity >0). This is written:

 $a@r_0,r_1,...,r_n$ arity(a)=n (n>0)

If arity(a)=1, then r_0 is called the interaction rate. This is for normal interaction transitions.

If arity(a)>1, then r_0 is called the association rate and $r_1,...,r_n$ are the dissociation rates. This is for association and dissociation transitions. An action is of the form:

- a_i input at rate r_i , $i \in 0$..arity(a)-1
- $|a_i|$ output at rate r_i , $i \in 0$...arity(a)-1
- $\tau @r$ delay at rate r, also written @r

If arity(a)=1, then ?a₀,!a₀ are written simply ?a,!a (interaction)

If arity(a)>1 then, for emphasis, ?a₀,!a₀ may be written &?a,&!a (association), and ?a_i,!a_i for i>0 may be written %?a_i,%!a_i (dissociation).

If arity(a)=2 then %?a₁,%!a₁ is written %?a,%!a.

Delay and Interaction Transition Rules

(Label abbreviation: ?a !a)

Association Rules

The current state carries a set of association markers S.

Dissociation Rules

 $a@r_0, r_1, \dots, r_n$

2006-05-26

 π -calculus (informally drawn)

polyautomata (formal) %!a1 %!a₂ &!a %?a₂ %?a₁ &?a $a@k_0, k_1, k_2$

Homodimerization

π-calculus (informally drawn)

Summary

• Polyautomata

- Carry "tokens" in the current state
- Fresh tokens created on complexation
- Prevent reusing resources before releasing resources

• Uses

- As a graphical automata-like notation for complexation
- As a finite subset of π -calculus, beyond interacting automata

• Applicability

- Can represent complexation, enzymatic reactions, some polymerization

