
Artificial
Biochemistry

Complexation

Luca Cardelli

Microsoft Research

Trento, 2006-05-22..26

www.luca.demon.co.uk/ArtificialBiochemistry.htm

The purpose of models is not to fit the data
but to sharpen the questions. Samuel Karlin.

2006-05-26 2

L
u
c
a
 C
a
rd
e
ll
i

Complexation in Biochemistry

● Complexation
– Proteins form complexes

– Enzymes work by complexation

– Biological machines are often made of
complexes of dozens of proteins

● Abstraction
– Complexation is a fundamental
modeling abstraction

● Processes
– We can easily handle phosphorylation
(state) and solutions (composition)

– But there is no complexation in
process algebra

– How are we going to make
“processes stick together”
(so they each have their local state)

2006-05-26 3

L
u
c
a
 C
a
rd
e
ll
i

Encapsulating Interaction

2006-05-26 4

L
u
c
a
 C
a
rd
e
ll
i

Decay = Private Interaction

@λ
B

directive sample 5.0 10000

directive plot ?del; B()

new del@1.0:chan

let Delay(r:float, P:proc()) =

(new a@r:chan

run (!a | do ?a; P() or ?del))

let A() = Delay(1.0, B)

and B() = ()

run 1000 of A()
0

200

400

600

800

1000

1200

0 1 2 3 4 5 6

?del B()

B

=def

@λ;B = new a@λ (!a | ?a;B) a not occurring
in B

new a@λ

?a

!a

B
@λ

P
!a(νn)

S

Graphical Notation: bound output

The ν in front of n indicates that this is a
new n that is being sent as output. That n is
a binding occurrence (since the new is a
binder) and may be colored red as such.

Delay(r,P) = delay@r;PPrivate interaction, in mass, obeys the same
exponential decay law as degradation.

(Because each private interaction is a single event
sampled from an exponential distribution.)

2006-05-26 5

L
u
c
a
 C
a
rd
e
ll
i

Shared Private Interaction
directive sample 1.0 1000

directive plot ?c

let Share(Continue:proc(proc(),proc())) =

(new c@1.0:chan

let A() = ?c

and B() = !c

run Continue(A,B))

let Continue(A:proc(),B:proc()) =

(run 100 of (A() | B()))

run Share(Continue)

new c@λ

?c

!c

@λ
A

B

We want two processes A(-)
and B(-) that, no matter how
many times invoked, talk on a
single shared private channel
between themselves.

directive sample 1.0 1000

directive plot ?c

let Share(Ac:proc(chan),Bc:proc(chan),

Continue:proc(proc(),proc())) =

(new c@1.0:chan

let A() = Ac(c)

and B() = Bc(c)

run Continue(A,B))

let Ac(c:chan) = ?c

and Bc(c:chan) = !c

let Continue(A:proc(),B:proc()) =

(run 100 of (A() | B()))

run Share(Ac,Bc,Continue)

Now we abstract out the
bodies of the procedures
A(-),B(-) to pull them out
of the Question
boilerplate code.

“Client code”

“Client code”

Or, how to make
functional closures
in SPiM.

N

M

A and B are closures that
share c in their scope.

A and B are “returned”

A and B are invoked 100 times

Ac and Bc are closures that
have c as parameter.

Ac and Bc are invoked here

Ac and Bc are “passed” to
the library

“Library” code for
channel sharing

2006-05-26 6

L
u
c
a
 C
a
rd
e
ll
i

0

200

400

600

800

1000

1200

0 0.005 0.01 0.015 0.02

Ac()

Fast Decay as Shared Private Interaction

!c

B
?c

@λ

new c@λ

=def

All N fast decay
processes must share
the same private c!

Because the Bs
collectively help drive
the fast decay.

directive sample 0.1 1000

directive plot Ac()

let Share(Ac:proc(chan), Continue:proc(proc())) =

(new c@1.0:chan

let P() = Ac(c)

run Continue(P))

let Ac(c:chan) = do delay@1.0;Bc(c) or ?c;Bc(c)

and Bc(c:chan) = !c;Bc(c)

let Continue(A:proc()) =

(run 1000 of A())

run Share(Ac,Continue)

N

A B
@λ

A

Here we want to define a
fast decay A->B process,
and only later decide how
many copies of A there
should be; note that all
those copies must share
the same private channel.

2006-05-26 7

L
u
c
a
 C
a
rd
e
ll
i

Complexation
Modeling Techniques

2006-05-26 8

L
u
c
a
 C
a
rd
e
ll
i

Complexation

new a@µ red=binders

Afree = !a(νnλ); Abound(n)

Abound(n) = !n; Afree

Bfree = ?a(n); Bbound(n)

Bbound(n) = ?n; Bfree

complexation
(mass interactions

on global a)

decomplexation
(private interactions
on each separate n)

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Afree() Abound()

Bfree() Bbound()

λ=100 µ=1
0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Afree() Abound()

Bfree() Bbound()

λ=10 µ=1

0

50

100

150

200

0 0.2 0.4 0.6 0.8 1

Afree() Abound()

Bfree() Bbound()

λ=1 µ=1

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1

Afree() Abound()

Bfree() Bbound()

λ=1000 µ=1

Ab Bb

Af

Bf

Ab Bb
Af

Bf
Ab Bb

Af

Bf

Ab Bb

Af

Bf

150xA 200xB

directive sample 1.0 1000

directive plot Afree(); Abound(); Bfree(); Bbound()

val mu = 1.0 val lam = 1000.0

new a@mu:chan(chan)

let Afree() = (new n@lam:chan run !a(n); Abound(n))

and Abound(n:chan) = !n; Afree()

let Bfree() = ?a(n); Bbound(n)

and Bbound(n:chan) = ?n; Bfree()

run (150 of Afree() | 200 of Bfree())

A B A B

@µ

!n

?n

Af

Ab

Bb

Bf

@λ

!a(νnλ)

?a(n)

Bound output:
!a(νnλ);P = new n@λ (!a(n);P)

Complexation is
modeled by a shared

private channel.

A + B → A:B (binary reaction)

A:B → A + B (unary reaction)

2006-05-26 9

L
u
c
a
 C
a
rd
e
ll
i

Complexation: ππππ-reductions

new a@µ red=binders

Afree = !a(νnλ); Abound(n)

Abound(n) = !n; Afree

Bfree = ?a(n); Bbound(n)

Bbound(n) = ?n; Bfree

Afree | Bfree

= !a(νnλ); Abound(n) | ?a(n); Bbound(n)

→ new n@λ (Abound(n) | Bbound(n))

= new n@λ (!n; Afree | ?n; Bfree)

→ Afree | Bfree

← decomplexed state

← complexed state
(connected by “fresh” n)

← decomplexed state
(previous n is “forgotten”)

[Regev & Shapiro]

2006-05-26 10

L
u
c
a
 C
a
rd
e
ll
i

!a(νn,νm) !n !m

?a(n,m) ?n
?m

EnzymesE S E S E P

[E0] = [E] + [ES]

directive sample 1.0 1000

directive plot Efree(); Ebound(); Sfree(); Sbound(); P()

val k1 = 1.0 val km1 = 1.0 val k2 = 100.0

new a@k1:chan(chan,chan) new stop@1.0:chan

let P() = ?stop

let Efree() =

(new n@km1:chan new m@k2:chan

run !a(n,m); Ebound(n,m))

and Ebound(n:chan,m:chan) =

do !n; Efree() or !m; Efree()

let Sfree() = ?a(n,m); Sbound(n,m)

and Sbound(n:chan,m:chan) =

do ?n; Sfree() or ?m; P()

run (100 of Efree() | 200 of Sfree())

Michaelis-Menten steady-state approximation
(derived by assuming [ES]• = 0)

http://en.wikipedia.org/wiki/Enzyme

P
@k1

Ef

Eb

Sb

Sf

@k2
@km1

0

50

100

150

200

250

0 0.02 0.04 0.06 0.08

Efree() Ebound()
Sfree() Sbound()
P()

Ef

P

Sf

Eb Sb

P
?a

S

!a

E

k1,km1,k2

Notation

P

2006-05-26 11

L
u
c
a
 C
a
rd
e
ll
i

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

Efree() Ebound() Sfree() Sbound() P() ?S

Enzyme Equilibrium
directive sample 300.0 1000

directive plot Efree(); Ebound(); Sfree(); Sbound(); P(); ?S

val k1 = 1.0 val km1 = 1.0 val k2 = 0.01

new a@k1:chan(chan,chan) new S@1.0:chan new stop@1.0:chan

let P() = ?stop

let Efree() =

(new n@km1:chan new m@k2:chan

run !a(n,m); Ebound(n,m))

and Ebound(n:chan,m:chan) =

do !n; Efree() or !m; Efree()

let Sfree() =

do ?a(n,m); Sbound(n,m)
or ?S; () (* plotting total S *)

and Sbound(n:chan,m:chan) =

do ?n; Sfree()

or ?m; (P() | Sfree()) (* Holding S concentration constant *)
or ?S; () (* plotting total S *)

run 100 of Efree()

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S(p:proc(), tick:chan) = (p() | ?tick; S(p,tick))

let raising(p:proc(), t:float) =

(new tick:chan run (clock(t,tick) | S(p,tick)))

run raising(Sfree,1.0)

Total S is made to grow linearly.

E gets saturated at t=100..150.

After that, rate of production of P
reaches a steady state.

Ebound is hidden behind Sbound in the
plot because they are identical.

enzyme saturated

product growing at
constant rate

because enzyme is
saturated

2006-05-26 12

L
u
c
a
 C
a
rd
e
ll
i

Homodimerization

new a@µ red=binders

Afree = ?a(n); Ain(n) + !a(νnλ); Aout(n)

Ain(n) = ?n; Afree

Aout(n) = !n; Afree

directive sample 0.005 10000

directive plot Afree(); ?Abound

new Abound@1.0:chan

val mu = 1.0

val lam = 1.0

new a@mu:chan(chan)

let Afree() =

(new n@lam:chan

run do ?a(m); Ain(m)

or !a(n); Aout(n))

and Ain(n:chan) =

do ?n; Afree() or ?Abound

and Aout(n:chan) =

do !n; Afree() or ?Abound

run 1000 of Afree()

0

200

400

600

800

1000

1200

0 0.001 0.002 0.003 0.004 0.005

Afree() ?Abound

Af

?a(n)

Ai

!n

?n

Ao

!a(νn)

A

A

A

A

Af

?a(n)

Ai

!n

?n

Ao

!a(νn)

Af

?a(n)

Ai

!n

?n

Ao

!a(νn)

@λ@µ
Homodimerization is

symmetric complexation

2006-05-26 13

L
u
c
a
 C
a
rd
e
ll
i

Exercise (Open): Homotrimerization

2006-05-26 14

L
u
c
a
 C
a
rd
e
ll
i

Swap ComplexationA B D A D B

new b@µb new d@µd

AB(nb) = !d(νndλd); !nb; AD(nd)

AD(nd) = !b(νnbλb); !nd; AB(nb)

Bfree = ?b(nb); BA(nb)

BA(nb) = ?nb; Bfree

Dfree = ?d(nd); DA(nd)

DA(nd) = ?nd; Dfree

red=binders

AB(nb) : A connected to B via nb

AD(nd) : A connected to D via nd

BA(nb) : B connected to A via nb

DA(nd) : D connected to A via nd

Dfree | AB(nb) | BA(nb)
d
→ DA(nd) | !nb; AD(nd) | BA(nb) for new nd

nb
→ DA(nd) | AD(nd) | Bfree

2006-05-26 15

L
u
c
a
 C
a
rd
e
ll
i

Swap Complexation
Idea: reuse a private channel, instead of
always creating new ones.
Needs a little handshake on d’,b’ channels to properly
serialize the use of the private channel.

(Assumes that release rates of B and D are the same,
or else assumes using different weighted actions on
release)

new b@µb new b’@µb’

new d@µd new d’@µd’

AB(n) = ?d’; !n; !d(n); AD(n)

AD(n) = ?b’; !n; !b(n); AB(n)

Bfree = !b’; ?b(n); BA(n)

BA(n) = ?n; Bfree

Dfree = !d’; ?d(n); DA(n)

DA(n) = ?n; Dfree

new n@λn (AB(n) | BA(n) | Dfree)

A B D A D B

the unique channel used in all
the complexations of one A

with any B or D

This kind of technique is important, e.g., if
one wants to have any chance of generating
a finite CTMC.

Dfree | AB(n) | BA(n)
d’

→ ?d(n); DA(n) | !n; !d(n); AD(n) | BA(n)
n
→ ?d(n); DA(n) | !d(n); AD(n) | Bfree

d
→ DA(n) | AD(n) | Bfree

2006-05-26 16

L
u
c
a
 C
a
rd
e
ll
i

type P = chan(Q)

and Q = chan(P)

new pp@λpp:Q new qq@λqq:P

AB(p:P) = !pp(p); ?p(q); AD(q)

AD(q:Q) = !qq(q); ?q(p); AB(p)

CD(q:Q) = ?pp(p); !p(q); CB(p)

CB(p:P) = ?qq(q); !q(p); CD(q)

B(p:P) = …

D(q:Q) = …

new p:P@λp new q:Q@λq
(AB(p) | B(p) | CD(q) | D(q))

RecombinationA B C D A D C B

red=binders

Idea: reuse the private channels!

AB is connected to B by a private p:P

AD is connected to D by a private q:Q

CD is connected to D by a private q:Q

CB is connected to B by a private p:P

pp:chan(P) is a global channel used by AB to
find a CD to swap private channels with; AB
begins by offering its p on pp, then receives
its q on p.

qq:chan(Q) is a global channel used by AD to
find a CB to swap private channels with; AD
begins by offering its q on qq, then receives
its p on q.

the unique two channels
reused on each recombination

AB(p) | CD(q) | B(p) | D(q)
pp

→ ?p(q); AD(q) | !p(q); CB(p) | B(p) | D(q) (A gives p to C over pp)

p
→ AD(q) | CB(p) | B(p) | D(q) (C gives q to A over p)

2006-05-26 17

L
u
c
a
 C
a
rd
e
ll
i

Swap Interaction and Molecule Identities
First, define the notion of
swap interaction.

After that, the identities are used as private
channels for communication between the
molecules; here is complexation/decomplexation
rewritten in this style. (In this case, a is not
actually used.)

!?c(n,x).P | ?!c(y,m).Q � P{x<-m} | Q{y<-n}
red=binders

new ab@µ

Afree(a) = !?ab(a,b); Abound(a,b))

Abound(a,b) = !b; Afree(a)

Bfree(b) = ?!ab(a,b); Bbound(b,a)

Bbound(b,a) = ?b; Bfree(b)

A() = new a@1 Afree(a)

B() = new b@λ Bfree(b)

Aid(a) = !?ab(a,b); …

A() = new a@λ Aid(a) generating the identity Each process is parameterized by its own molecule
identity (its first parameter). The first thing that
happens in an interaction is then typically a swap of
identities over some public channel, by the above swap
interaction.

!?c(n,x).P = new p (!c(n,p); ?p(x); P (p not in P)

?!c(y,m).Q = ?c(y,p); !p(m); Q (p not in Q)

types: n:N, m:M, p:chan(M), c:chan(N,chan(M))

Here is a different programming style, which
scales up better to complex interactions.

Afree(a) | Bfree(b)
ab

→ Abound(a,b) | Bbound(b,a)
b
→ Afree(a) | Bfree(b)

2006-05-26 18

L
u
c
a
 C
a
rd
e
ll
i

RecombinationA B C D A D C B

Best idea: use molecule identities. (Try instead
generalizing the Swap example by reusing
connections: it’s hard, and it seems to lead to
recursive channels!)

AB(a,b) means “I am a connected to b” where a,b
are molecule identities.

An A in state AB looks for a CD complex by
communicating with a C in state CD over a public
channel cd. Note “?!cd((c,d),(a,b))”; it means that
AB and CD start the recombination protocol by
swapping their identities and all the other
identities they know. Then !b(c) means that BA,
through its molecule identity b, is told to
disconnect (from A) and to reconnect to c.

B and D have a more passive role; they are just
being told how to reconnect over their molecule
identities.

a:chan; c:chan; b:chan(chan); d:chan(chan)

recomb intitiation rates are attached to cd,cb

recomb dissociation rates are attached to b,d

N.B. it would be trivial to treat this as an X+Y=Z+W reaction, but the idea
here is that each of A,B,C,D is not an isolated molecule, but may be attached
to other things, e.g. it may be part of a polymer; those connections, and the
identities of A,B,C,D should be preserved by the recombination.

new cd new cb

AB(a,b) = ?!cd((c,d),(a,b)); !b(c); AD(a,d)

AD(a,d) = ?!cb((c,b),(a,d)); !d(c); AB(a,b)

CD(c,d) = !?cd((c,d),(a,b)); !d(a); CB(c,b)

CB(c,b) = !?cb((c,b),(a,d)); !b(a); CD(c,d)

BA(b,a) = ?b(c); BC(b,c)

BC(b,c) = ?b(a); BA(b,a)

DC(d,c) = ?d(a); DA(d,a)

DA(d,a) = ?d(c); DC(d,c)

AB() = new a,b (AB(a,b) | BA(b,a))

CD() = new c,d (CD(c,d) | DC(d,c))

AD() = new a,d (AD(a,d) | DA(d,a))

CB() = new c,b (CB(c,b) | BC(b,c))

(AB() | CD() | AD() | CB())

red=binders

2006-05-26 19

L
u
c
a
 C
a
rd
e
ll
i

Exercise: Middle OutA CB A C B

2006-05-26 20

L
u
c
a
 C
a
rd
e
ll
i

Polymerization

2006-05-26 21

L
u
c
a
 C
a
rd
e
ll
i

Bidirectional

Polymerization
new c@µ new stop@1.0

Afree =

!c(νrhtλ); Abrht(rht)) +

?c(lft); Ablft(lft)

Ablft(lft) =

!c(νrhtλ); Abound(lft,rht))

Abrht(rht) =

?c(lft); Abound(lft,rht)

Abound(lft,rht) = ?stop

A A A A

?c(r) !c(νl)

Ar

Af

Al

Ab

?c(l)

?c(l)

!c(νr)

!c(νr)

Free

Bound
right

Bound
left

Bound
both

Monomer
Automaton

Afree

Ablft

Abrht

Abound

!c(νr)?c(l)

?c(l)

?c(l)

?c(l)

!c(νr)

!c(νr)!c(νr)

Free

Bound
right

Bound
left

Bound
both

Free

Bound
right

Bound
left

Bound
both

directive sample 10000.0

directive plot Afree(); Ablft(); Abrht(); Abound()

val lam = 1.0 val mu = 1.0

new c@mu:chan(chan) new stop@1.0:chan

let Afree() =

(new rht@lam:chan run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:chan) =

(new rht@lam:chan run

!c(rht); Abound(lft,rht))

and Abrht(rht:chan) =

?c(lft); Abound(lft,rht)

and Abound(lft:chan, rht:chan) =

?stop

run (2 of Afree())

Communicating Automata
Bound output !c(νr) and input ?c(l)
on automata transitions
to model complexation

Polymerization is
iterated

complexation.

2006-05-26 22

L
u
c
a
 C
a
rd
e
ll
i

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

0

20

40

60

80

100

120

0 200 400 600 800 1000

Abound() ?count

Bidirectional Polymerization

Circular Polymer Lengths
directive sample 1000.0

directive plot Abound(); ?count

type Link = chan(chan)

type Barb = chan

val lam = 1000.0 (* set high for better counting *)

val mu = 1.0

new c@mu:chan(Link)

new enter@lam:chan(Barb)

new count@lam:Barb

let Afree() =

(new rht@lam:Link run

do !c(rht); Abrht(rht)

or ?c(lft); Ablft(lft))

and Ablft(lft:Link) =

(new rht@lam:Link run

!c(rht); Abound(lft,rht))

and Abrht(rht:Link) =

?c(lft); Abound(lft,rht)

and Abound(lft:Link, rht:Link) =

do ?enter(barb); (?barb | !rht(barb))

or ?lft(barb); (?barb | !rht(barb))

(* each Abound waits for a barb, exhibits it, and passes it to

the right so we can plot number of Abound in a ring *)

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/1000.0 val d = 1.0/ti

let step(n:int) =

if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(1000))

new tick:chan

let Scan() = ?tick; !enter(count); Scan()

run 100 of Afree()

run (clock(100.0, tick) | Scan())

Scanning and counting the size of the circular polymers (by a cheap trick).

Polymer formation is complete within 10t; then a different polymer is scanned every 100t.

100xAfree, initially.

The height of each rising
step is the size of a
separate circular polymer.
(Unbiased sample of nine
consecutive runs.)

2006-05-26 23

L
u
c
a
 C
a
rd
e
ll
i

Af

Al

Ab

?c(l)

Unidirectional

Polymerization
new c@µ new stop@1.0

Init =

!c(νrhtλ); ?stop

Afree =

?c(lft); Ablft(lft)

Ablft(lft) =

!c(νrhtλ); Abound(lft,rht)

Abound(lft,rht) = ?stop

A+

!c(νr)
I

Init

Afree

Ablft

Abound

I A I

A A+

Af

Al

Ab

?c(l)
!c(νr)

!c(νr)

...A+ ...A+

2006-05-26 24

L
u
c
a
 C
a
rd
e
ll
i

Actin-like

Poly/Depolymerization
Ap pA

A p A p

new c@µ

Afree =

!c(νlftλ); Ablft(lft)) +

?c(rht); Abrht(rht)

Ablft(lft) =

!lft; Afree +

?c(rht); Abound(lft,rht)

Abrht(rht) =

?rht; Afree

Abound(lft,rht) =

!lft; Abrht(rht)

!c(νl)?c(r)

?r !l

Af

Al

Ab

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
left

Bound
both

Ar

!c(νl)

Monomer
Automaton

r←
νl!l

?c(r)

?r

?c(r)
!l

Free

Bound
left

Bound
both

!c(νl)

!l

?c(r)

?r

?c(r)
!l

Free

Bound
right

Bound
both

!c(νl)

Bound
right

Bound
left

2006-05-26 25

L
u
c
a
 C
a
rd
e
ll
i

Exercise: Zipper

2006-05-26 26

L
u
c
a
 C
a
rd
e
ll
i

Complex Complexity

2006-05-26 27

L
u
c
a
 C
a
rd
e
ll
i

Complexes: The Chemical Way

A 69 Ap

B 69 Bp

C 69 Cp

ABC 69 ApBC

ABC 69 ABpC

ABC 69 ABCp

ApBC 69 ApBpC

ApBC 69 ApBCp

ABpC 69 ApBpC

ABpC 69 ABpCp

ABCp 69 ApBCp

ABCp 69 ABpCp

ApBpC 69 ApBpCp

ApBCp 69 ApBpCp

ABpCp 69 ApBpCp

v12 v13 v14 v15 v16 v17 v18 v19 v20 v21 v22 v23

ApBpCp

ABpCp

ApBCp

ApBpC

ABCp

ABpC

ApBC

ABC

v24v11v10v9v8v7v6v5v4v3v2v1N

ABC

ApBC

ABpC

ABCp
ApBpC

ApBCp
ABpCp
ApBpCp

2n x 2n(2n-1)

2n
ABC1

2n
domain
reactions

complex
species reactions

(twice number of
edges in n-dim
hypercube)

2n(2n-1)

A, B, Cn

domains

Stoichiometric
Matrix

The matrix is very sparse, so
the corresponding ODE system
is not dense. But it still has 2n

equations, one per species, plus
conservation equations
([ABC]+[ApBC]=constant, etc.).

System description is
exponential in the number
of basic components.

2006-05-26 28

L
u
c
a
 C
a
rd
e
ll
i

Complexes: The Process Way

A(x) 69 Ap(x)

B(x) 69 Bp(x)

C(x) 69 Cp(x)
2n

A(x) = ?kn;Ap(x) Ap(x) = ?ph;A(x)

B(x) = ?kn;Bp(x) Bp(x) = ?ph;B(x)

C(x) = ?kn;Cp(x) Cp(x) = ?ph;C(x)

new x (A(x) | B(x) | C(x))

2n

When the local domain reactions are not independent,
we can use lateral communication so that each
component is aware of the relevant others.

n

(Its “run-time” behavior or
analysis potentially blows-up just
as in the previous case.)

System description is
linear in the number of
basic components.

domain
reactions

processes

complexation channel
kinase channel

phosphatase channel

2006-05-26 29

L
u
c
a
 C
a
rd
e
ll
i

Summary

● Complexation
– Requires the “full power” of π-calculus.

– Or possibly an “interesting” finite subset of it (Cf. history-dependent automata).

● Polymerization
– Automata that stick together.

– Easily done in π-calculus, but beyond standard automata theory.

● Compositionality
– Complexation leads to exponential blowup of state space
(and of chemical and ODE based descriptions).

2006-05-26 30

L
u
c
a
 C
a
rd
e
ll
i

Q?

