Complexation

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Trento, 2006-05-22.. 26
www.luca.demon.co.uk/ArtificialBiochemistry.htm

Complexation in Biochemistry

- Complexation
- Proteins form complexes
- Enzymes work by complexation
- Biological machines are often made of complexes of dozens of proteins

- Abstraction
- Complexation is a fundamental modeling abstraction

- Processes
- We can easily handle phosphorylation (state) and solutions (composition)
- But there is no complexation in process algebra
- How are we going to make "processes stick together" (so they each have their local state)

Encapsulating Interaction

Decay $=$ Private Interaction

$$
=_{\text {def }}
$$

new a@ᄉ

$$
\text { @ } ; B=\text { new a@^ (!a|?a;B) } \begin{aligned}
& \text { a not occurring } \\
& \text { in } B
\end{aligned}
$$


```
directive sample 5.010000
directive plot ?del; B()
new del@1.0:chan
let Delay(r:float,P:proc())=
    (new a@r:chan
    run (!a | do ?a; P() or ?del))
let A() = Delay (1.0, B)
and }\textrm{B}()=(
run 1000 of A()
```

Private interaction, in mass, obeys the same exponential decay law as degradation.
(Because each private interaction is a single event sampled from an exponential distribution.)

Graphical Notation: bound output
The v in front of n indicates that this is a
 new n that is being sent as output. That n is a binding occurrence (since the new is a binder) and may be colored red as such.

Shared Private Interaction

Or, how to make functional closures in SPiM.

We want two processes $A(-)$ and $B(-)$ that, no matter how many times invoked, talk on a single shared private channel between themselves.


```
directive sample 1.0 1000
directive plot?c
let Share(Continue:proc(proc(),proc()))=
    (new c@1.0:chan
    let A() = ?c
    and B()=!c
    run Continue(A,B))
let Continue(A:proc(),B:proc())=
(run 100 of (A()|B())) "Client code"
run Share(Continue)
```

Now we abstract out the bodies of the procedures $A(-), B(-)$ to pull them out of the Question boilerplate code.

boilerplate code.	(new c@1.0:chan	
	let $A()=A c(c)$	
"Library" code for	and $B()=B C(C)$	
	run Continue (A, B))	
$A c$ and $B C$ are closures that have c as parameter.	let $A C(c: c h a n)=$? C	"Client code"
	and $B C$ (c:chan) $=!c$	
	let Continue(A:proc(),B:pr	
$A C$ and $B C$ are invoked here	- (run 100 of $(A() \mid B())$)	
$A c$ and $B c$ are "passed" to the library	run Share($A C, B C$, Continue $)$	

Fast Decay as Shared Private Interaction

All N fast decay processes must share the same private c !
Because the Bs collectively help drive the fast decay.

Here we want to define a fast decay A->B process, and only later decide how many copies of A there should be; note that all those copies must share the same private channel.

```
directive sample 0.11000
directive plot AC()
let Share(Ac:proc(chan), Continue:proc(proc()))=
    (new c@1.0:chan
    let P()=Ac(c)
    run Continue(P))
let Ac(c:chan) = do delay@1.0;Bc(c) or ?c;Bc(c)
and Bc(c:chan) =! c;Bc(c)
let Continue(A:proc())=
    (run 1000 of A())
run Share(Ac,Continue)
```


Complexation Modeling Techniques

$A<B<A$
Complexation

$$
\begin{array}{ll}
A+B \rightarrow A: B & \text { (binary reaction) } \\
A: B \rightarrow A+B & \text { (unary reaction) }
\end{array}
$$

new a@ μ

$A_{\text {free }}=!a\left({ }^{\nu} n_{\lambda}\right) ; A_{\text {bound }}(n)$
$A_{\text {bound }}(n)=!n ; A_{\text {free }}$
$B_{\text {free }}=? a(n) ; B_{\text {bound }}(n)$
$B_{\text {bound }}(n)=? n ; B_{\text {free }}$
Bound output:
$!a\left({ }^{\vee} n_{\wedge}\right): P=$ new $n @_{\wedge}(!a(n) ; P)$

> Complexation is modeled by a shared private channel.

decomplexation
(private interactions on each separate n)
$150 \times A 200 \times B$

Complexation: π-reductions
new $a @ \mu$
red=binders
[Regev \& Shapiro]

$$
\begin{array}{ll}
A_{\text {free }} & =!a\left({ }^{v} n_{\lambda}\right) ; A_{\text {bound }}(n) \\
A_{\text {bound }}(n) & =!n ; A_{\text {free }} \\
& =? a(n) ; B_{\text {bound }}(n) \\
B_{\text {free }} & =? B_{\text {free }}
\end{array}
$$

$$
\begin{array}{rl|l}
& A_{\text {free }} \mid B_{\text {free }} & \leftarrow \text { decomplexed state } \\
= & !a\left({ }^{v} n_{1}\right) ; A_{\text {bound }}(n) \mid ? a(n) ; B_{\text {bound }}(n) & \\
\rightarrow & \text { new n@^(} \left.A_{\text {bound }}(n) \mid B_{\text {bound }}(n)\right) & \leftarrow \begin{array}{r}
\text { complexed state }
\end{array} \\
= & \text { new n@^(!n; } \left.A_{\text {free }} \mid ? n ; B_{\text {free }}\right) & \begin{array}{l}
\text { (connected by "fresh" } n)
\end{array} \\
\rightarrow & A_{\text {free }} \mid B_{\text {free }} & \leftarrow \begin{array}{l}
\text { decomplexed state } \\
\text { (previous } n \text { is "forgotten") }
\end{array}
\end{array}
$$

\section*{Michaelis-Menten steady-state approximation (derived by assuming $[E S]^{\circ}=0$)

P

directive sample 1.01000
directive plot Efree(); Ebound(); Sfree(); Sbound(); P()
$\mathrm{val} \mathrm{k} 1=1.0 \mathrm{val} \mathrm{km} 1=1.0 \mathrm{val} \mathrm{k2}=100.0$ new a@k1:chan(chan,chan) new stop@1.0:chan let $P()=$? stop
let Efree() =
(new n@km1:chan new m@k2:chan run !a(n,m); Ebound(n,m))
and Ebound(n:chan,m:chan) =
do !n; Efree() or !m; Efree()
let $\operatorname{Sfree}()=? a(n, m) ;$ Sbound (n, m)
and Sbound(n:chan,m:chan) =
do ?n; Sfree() or ?m; P()
run (100 of Efree() | 200 of Sfree())

Enzyme Equilibrium

Total S is made to grow linearly.
E gets saturated at $t=100 . .150$. After that, rate of production of P reaches a steady state.

Ebound is hidden behind Sbound in the plot because they are identical.

 Homodimerization

new $a @ \mu$
red=binders

$$
\begin{aligned}
& A_{\text {free }}=? a(n) ; A_{\text {in }}(n)+!a\left({ }^{v} n_{\lambda}\right) ; A_{\text {out }}(n) \\
& A_{\text {in }}(n)=? n ; A_{\text {free }} \\
& A_{\text {out }}(n)=!n ; A_{\text {free }}
\end{aligned}
$$

Homodimerization is symmetric complexation

directive sample 0.00510000
directive plot Afree(); ?Abound new Abound@1.0:chan
$\mathrm{val} \mathrm{mu}=1.0$
val lam = 1.0
new a@mu:chan(chan)
let Afree() =
(new n@lam:chan run do ?a(m); Ain(m) or!a(n); Aout(n))
and $\operatorname{Ain}(n:$ chan $)=$ do ?n; Afree() or ? Abound
and Aout(n:chan) =
do!n; Afree() or ? Abound
run 1000 of Afree()

Exercise (Open): Homotrimerization

园目

new b@ ${ }^{6}$ bew d@ ${ }^{d}$
$A_{B}(n b)=!d\left({ }^{\vee} n d_{A d}\right) ;!n b ; A_{D}(n d)$
$A_{D}(n d)=!b\left({ }^{v} n b_{A b}\right) ;!n d ; A_{B}(n b)$
$B_{\text {free }}=? b(n b) ; B_{A}(n b)$
$B_{A}(n b)=? n b ; B_{\text {free }}$
$D_{\text {free }}=? d(n d) ; D_{A}(n d)$
$D_{A}(n d)=? n d ; D_{\text {free }}$
$A_{B}(n b)$: A connected to B via nb $A_{D}(n d): A$ connected to D via nd $B_{A}(n b)$: B connected to A via $n b$ $D_{A}($ nd $): D$ connected to A via nd

$$
\begin{aligned}
& D_{\text {free }}\left|A_{B}(n b) \quad\right| B_{A}(n b) \\
& { }^{d} \rightarrow D_{A}(n d)\left|!n b ; A_{D}(n d)\right| B_{A}(n b) \text { for new } n d \\
& { }^{n b} \rightarrow D_{A}(n d)\left|A_{D}(n d) \quad\right| B_{\text {free }}
\end{aligned}
$$

园目

$$
\begin{aligned}
& \text { new b@ub new } b^{\prime} @_{\mu b^{\prime}} \\
& \text { new } d @_{\mu d} \quad \text { new } d^{\prime} @_{\mu d^{\prime}} \\
& \begin{array}{ll}
A_{B}(n) & =? d^{\prime} ;!n ;!d(n) ; A_{D}(n) \\
A_{D}(n) \quad=? b^{\prime} ;!n ;!b(n) ; A_{B}(n) \\
B_{\text {free }} \quad=!b^{\prime} ; ? b(n) ; B_{A}(n) \\
B_{A}(n) \quad=? n ; B_{\text {free }} \\
D_{\text {free }} \quad=!d^{\prime} ; ? d(n) ; D_{A}(n) \\
D_{A}(n) \quad=? n ; D_{\text {free }}
\end{array} .
\end{aligned}
$$

Idea: reuse a private channel, instead of always creating new ones.
Needs a little handshake on d',b' channels to properly serialize the use of the private channel.
(Assumes that release rates of B and D are the same, or else assumes using different weighted actions on release)

This kind of technique is important, e.g., if one wants to have any chance of generating a finite CTMC.

Tर

Idea: reuse the private channels!

$$
\begin{aligned}
& \text { type } P=\operatorname{chan}(Q) \\
& \text { and } Q=\operatorname{chan}(P) \\
& \text { new pp@^pp:Qnew qq@^qq:P } \\
& A_{B}(p: P)=!p p(p) ; ? p(q) ; A_{D}(q) \\
& A_{D}(q: Q)=!q q(q) ; ? q(p) ; A_{B}(p) \\
& C_{D}(q: Q)=? p p(p) ;!p(q) ; C_{B}(p) \\
& C_{B}(p: P)=? q q(q) ;!q(p) ; C_{D}(q) \\
& B(p: P)=\ldots \\
& D(q: Q)=\ldots \\
& A_{B} \text { is connected to } B \text { by a private } p: P \\
& A_{D} \text { is connected to } D \text { by a private } q: Q \\
& C_{D} \text { is connected to } D \text { by a private } q: Q \\
& C_{B} \text { is connected to } B \text { by a private } \mathrm{p}: \mathrm{P} \\
& \mathrm{pp} \text { :chan }(P) \text { is a global channel used by } A_{B} \text { to } \\
& \text { find a } C_{D} \text { to swap private channels with; } A_{B} \\
& \text { begins by offering its } p \text { on } p p \text {, then receives } \\
& \text { its } q \text { on } p \text {. } \\
& q q: \text { chan(} Q \text {) is a global channel used by } A_{D} \text { to } \\
& \text { find a } C_{B} \text { to swap private channels with; } A_{D} \\
& \text { begins by offering its } q \text { on } q q \text {, then receives } \\
& \text { its } p \text { on } q \text {. } \\
& A_{B}(p) \quad\left|\quad C_{D}(q) \quad\right| B(p) \mid D(q) \\
& p p \rightarrow ? p(q) ; A_{D}(q)\left|!p(q) ; C_{B}(p)\right| B(p) \mid D(q) \quad \text { (A gives } p \text { to } C \text { over } p p \text {) } \\
& p \rightarrow A_{D}(q) \quad\left|\quad C_{B}(p) \quad\right| B(p) \mid D(q) \quad \text { (C gives } q \text { to } A \text { over } p \text {) }
\end{aligned}
$$

Swap Interaction and Molecule Identities

$!? c(n, x) \cdot P|?!c(y, m) \cdot Q \rightarrow P\{x<-m\}| Q\{y<-n\}$ | red=binders | First, define the notion of
 swap interaction. | |
| :--- | :--- | :--- |
| $\mid ? c(n, x) \cdot P=$ new $p(!c(n, p) ; ? p(x) ; P$ | $(p$ not in $P)$ | |
| $?!c(y, m) \cdot Q=? c(y, p) ;!p(m) ; Q$ | $(p$ not in $Q)$ | |

types: $n: N, m: M, p: \operatorname{chan}(M), c: c h a n(N, \operatorname{chan}(M))$

Here is a different programming style, which scales up better to complex interactions.

Each process is parameterized by its own molecule identity (its first parameter). The first thing that happens in an interaction is then typically a swap of identities over some public channel, by the above swap interaction.
After that, the identities are used as private channels for communication between the molecules; here is complexation/decomplexation rewritten in this style. (In this case, a is not actually used.)

$$
\begin{array}{l|l|l}
& A_{\text {free }}(a) & B_{\text {free }}(b) \\
a b \rightarrow & A_{\text {bound }}(a, b) & \mid B_{\text {bound }}(b, a) \\
b \rightarrow & A_{\text {free }}(a) & \mid B_{\text {free }}(b)
\end{array}
$$

AR

new $c d$ new $c b$

$A_{B}(a, b)=?!c d((c, d),(a, b)) ;!b(c) ; A_{D}(a, d)$
$A_{D}(a, d)=?!c b((c, b),(a, d)) ;!d(c) ; A_{B}(a, b)$
$C_{D}(c, d)=!? c d((c, d),(a, b)) ;!d(a) ; C_{B}(c, b)$
$C_{B}(c, b)=!? c b((c, b),(a, d)) ;!b(a) ; C_{D}(c, d)$
$B_{A}(b, a)=? b(c) ; B_{C}(b, c)$
$B_{C}(b, c)=? b(a) ; B_{A}(b, a)$
$D_{C}(d, c)=? d(a) ; D_{A}(d, a)$
$D_{A}(d, a)=? d(c) ; D_{C}(d, c)$
$A B()=$ new $a, b\left(A_{B}(a, b) \mid B_{A}(b, a)\right)$
$C D()=$ new $c, d\left(C_{D}(c, d) \mid D_{C}(d, c)\right)$
$A D()=$ new $a, d\left(A_{D}(a, d) \mid D_{A}(d, a)\right)$
$C B()=$ new $c, b\left(C_{B}(c, b) \mid B_{C}(b, c)\right)$
$(A B()\|C D()\| A D() \mid C B())$

N.B. it would be trivial to treat this as an $X+Y=Z+W$ reaction, but the idea here is that each of A, B, C, D is not an isolated molecule, but may be attached to other things, e.g. it may be part of a polymer; those connections, and the identities of A, B, C, D should be preserved by the recombination.

Best idea: use molecule identities. (Try instead generalizing the Swap example by reusing connections: it's hard, and it seems to lead to recursive channels!)
$A_{B}(a, b)$ means "I am a connected to b " where a, b are molecule identities.
An A in state $A B$ looks for a $C D$ complex by communicating with a C in state $C D$ over a public channel cd. Note "?!cd((c,d),(a,b))"; it means that A_{B} and C_{D} start the recombination protocol by swapping their identities and all the other identities they know. Then ! $b(c)$ means that B_{A}, through its molecule identity b, is told to disconnect (from A) and to reconnect to c.
B and D have a more passive role; they are just being told how to reconnect over their molecule identities.
a:chan; c:chan; b:chan(chan); d:chan(chan) recomb intitiation rates are attached to $c d, c b$ recomb dissociation rates are attached to b,d

Polymerization

$$
\sum A>A>\sum A>A
$$

new $c @ \mu$ new stop@1.0

$$
\begin{aligned}
& A_{\text {free }}= \\
& \left.!c\left({ }^{v} r h t_{\wedge}\right) ; A_{\text {bht }}(r h t)\right)+ \\
& \text { ?c(lft); } A_{\text {blt }}(\mathrm{lft}) \\
& \left.\left.\begin{array}{l}
A_{\text {blt }}(I f t)= \\
\quad!c\left({ }^{(}\right. \text {ht }
\end{array}\right) ; A_{\text {bound }}(I f t, r h t)\right) \\
& A_{\text {bht }}(r h t)= \\
& \text { ?c(Ift); } A_{\text {bound }}(\mathrm{Ift}, \mathrm{rht})
\end{aligned}
$$

$A_{\text {bound }}(\mathrm{Ift}, \mathrm{rht})=$?stop

Bidirectional
Polymerization

Communicating Automata
Bound output ! $c\left({ }^{v} r\right)$ and input $? c(1)$ on automate transitions to model complexation

Polymerization is iterated complexation.

Monomer Automaton $I c\left({ }^{v} r\right)$
Bound left

Bidirectional Polymerization

Circular Polymer Lengths

Scanning and counting the size of the circular polymers (by a cheap trick).
Polymer formation is complete within 10t; then a different polymer is scanned every $100 t$.

directive sample 1000.0 directive plot Abound(); ?count

type Link = chan(chan)

type Barb = chan
val lam $=1000.0$ (* set high for better counting *)
val $m u=1.0$
new c@mu:chan(Link)
new enter@lam:chan(Barb)
new count@lam:Barb
let Afree () $=$
(new rht@lam:Link run
do !c(rht); Abrht(rht)
or ?c(lft); Ablft(lft))
and $\mathrm{Ablft}(\mid f t:$ Link $)=$
(new rht@lam:Link run
! $\mathrm{c}(\mathrm{rht})$) Abound($(\mathrm{f} \dagger$, rht $)$)
and Abrht(rht:Link) $=$
?c(lft); Abound(lft,rht)
and Abound(lft:Link, rht:Link) =
do ?enter(barb): (?barb |!rht(barb))
or ?|ft(barb): (?barb | ! rht(barb))
(* each Abound waits for a barb, exhibits it, and passes it to the right so we can plot number of Abound in a ring *)
let clock(t:float, tick:chan) = (* sends a tick every \dagger time *) (val $+i=t / 1000.0$ val $d=1.0 /+i$
let $\operatorname{step}(n: i n t)=$
if $n<=0$ then !tick; clock(t,tick) else delay@d; step($n-1$)
run step(1000))

new tick:chan

let Scan() = ?tick; lenter(count); Scan()
run 100 of Afree()
run (clock(100.0, tick) | Scan())
$100 \times A_{\text {free, }}$ initially.
The height of each rising step is the size of a separate circular polymer.
(Unbiased sample of nine consecutive runs.)

new c@ μ new stop@1.0
Init =
! c(${ }^{v}{ }^{\prime} h t_{\wedge}$); ?stop
$A_{\text {free }}=$
?c(Ift); $A_{\text {blft }}(\mathrm{Ift})$
$A_{\text {blft }}(\mathrm{lft})=$
!c(${ }^{\vee} r h t_{\wedge}$); $A_{\text {bound }}($ lft,rht)
$A_{\text {bound }}(\mathrm{ff}, \mathrm{rht})=$?stop

new c@
$A_{\text {free }}=$
$\left.!c\left({ }^{V} \mid f t_{\lambda}\right) ; A_{b \mid f t}(\mid f t)\right)+$
?c(rht); $A_{\text {brht }}(r h t)$
$A_{\text {blft }}(I f t)=$
!Ift; $A_{\text {free }}+$
?c(rht); $A_{\text {bound }}(I f t, r h t)$
$A_{\text {brht }}(r h t)=$
?rht; $A_{\text {free }}$
$A_{\text {bound }}(I f t, r h t)=$
! lft ; $A_{\text {brht }}(r h t)$

Monomer Automaton

Exercise: Zipper

Complex Complexity

Complexes: The Chemical Way

A, B, C
domains

domain reactions
$A \leftrightharpoons A_{p}$
$B \leftrightharpoons B_{p}$
$C \leftrightharpoons C_{p}$

Stoichiometric Matrix

N	v_{1}	v_{2}	V_{3}	V_{4}	V_{5}	v_{6}	v_{7}	v_{8}	v_{9}	v_{10}	v_{11}	v_{12}	v_{13}	V_{14}	V_{15}	v_{16}	V_{17}	V_{18}	V_{19}	v_{20}	v_{21}	v_{22}	v_{23}	v_{24}
$A B C$																								
ApBC																								
ABpC																								
$A B C p$									1															
ApBpC																								
$A p B C p$																								
$A B p C p$																								
ApBpCp																								

Complexes: The Process Way

System description is linear in the number of basic components.
(Its "run-time" behavior or analysis potentially blows-up just as in the previous case.)

Summary

- Complexation
- Requires the "full power" of π-calculus.
- Or possibly an "interesting" finite subset of it (cf. history-dependent automata).
- Polymerization
- Automata that stick together.
- Easily done in π-calculus, but beyond standard automata theory.
- Compositionality
- Complexation leads to exponential blowup of state space (and of chemical and ODE based descriptions).

> Q?

