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From Processes to ODEs
in Two Easy Steps



Example: Fast Transitions
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1200 AQ) |
1000 | 1200 ——— —— A() ——D()
directive sample 0.1 1000 wi Cf.e Xpo nential
directive plot A()
800 | 20 | cay@1.0
val r=1.0
600 val s=1.0 600 | *
new c@s:chan
let AQ) = do delay@r;B() or 2c; B() 400 r=1.0
400 and B() = IcB() -
run 1000 of A() 207 s=1.0
200 .
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Fast Transitions in Sequence

1200 A() B() C0O
directive sample 0.1 1000

1000 - directive plot A(); B(); €()

800 - val r=1.0
val s=1.0

600 -
new b@s:chan new c@s:chan
let A() = do delay@r;B() or ?b; B()

400 1 and B() = do 1b:B() or delay@r;C() or 2c; C()
and €() = lc;C()

200 -
run 1000 of A()
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[B] = r([A]-[B])*s[BI([A]-[C])
Cf.: Erlang signal degradation

O

No signal degradation? Why? e —

A9(); A10(); A11(); A12(); A13()

s1() s2() s3() s4() s5()

10(
. . s6 s7 s8 s9
- Al() A20) A3() A40) A5() A6() A7() val r=1.0 val s=1.0 Wou () () () ()
new a2@s:chan new a3@s:chan new a4@s:chan
A8 A%0 AL00 AlLO AL20 AL3) new a5@s:chan new a6@s:chan new a7@s:chan 8000 4
1000 ) new a8@s:chan new a9@s:chan new al0@s:chan directive sample 100.0 1000
A new al1@s:chan new a12@s:chan new a13@s:chan 7000 | jj&‘)‘;‘ﬁv(‘)"s‘:'()“s‘;()’i(;‘)“s‘;()
§ let A1() = do delay@r;A2() or 2a2; A2() new stop@1.0: chan()
800 ’ and A2() = do 1a2;A2() or delay@r;A3() or 2a3; A3() 6000 e 10 - deloy@10: 20
i and A3() = do 'a3;A3() or delay@r;A4() or 2a4; A4() ::: :ig:::zyvgig 38
and A4() = do la4:A4() or delay@r;A5() or 2a5; A5() 5000 - and 24() - deloy@10: 550
and A5() = do [a5;A5() or delay@r;A6() or 2a6; A6() o
600 - and A6() = do la6:A6() or delay@r;A7() or 2a7; A7() 4000 ::: :;gjjzgig zgg
and A7() = do 'a7;A7() or delay@r;A8() or 2a8; A8() and $9() = delay@1.0; 510()
and A8() = do la8;A8() or delay@r;A9() or 2a9; A9() 3000 4 \ ond $100 =7stop
400 - and A9() = do [a9:A9() or delay@r:A10() or 2a10; A10() N ran 10000 50
and A10() = do la10;A10() or delay@r; A11() or ?all; A11() 2000 “\
and A11() = do la11;A11() or delay@r;A12() or 2al2; A12() ‘ ":‘L‘
200 and A12() = do la12;A12() or delay@r;A13() or 2al3; A13() 1000 _ ’. ‘:'1r 1\
and A13() = 1a13;A13() )’,’o \\\\_
| 0 eSS ===
0 ; : : : ‘ : ’ . i run 1000 of A1()
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Answer to Bell Exercise

Build a sma// network where one node has a distribution like B():

10000

N .
5 L) o 8 .
[B] = [BI([AI-[C]) ol

0 0.0005 0.001 0.0015 0.002 0.0025

~

directive sample 0.0025 1000 (A = ?b(l); B

directive plot B(): A(): €() | 5
new b@1.0:chan new c@1.0:chan B - ‘b(l)'B D C(l)'c

let AQ) = 2b: B() \C = lcy),C Y

and B() = do 1b:B() or 2c; C() .

and €() = lc;C() A+B —-1B+B [A]. - '[A][B]

run (10000 of AQ)) | BQ) | €()) |B+C >!1C+C [B] = [A][B]-[B][C]

[C] = [B][C]




Exercise: Percentage Sensor

A

¢ ¢ &

Assume there are 100 copies of AB
and that all the rates are 1.0.

Show that at steady state:
[A]=100[C]/([C]+[D])

I.e., the A state computes the
percentage of C in the total C+D for
any amount of C and D.

Note that [C] and [D] are unaffected

and could be part of a larger network.

directive sample 0.1 1000
directive plot A(); B()

val r=1.0
val s=1.0

new a@s:chan new b@s:chan
let €() = la:C()
and D() = Ib;D()

and A() = ?b;B()
and B() = ?2a;A()

run (300 of C() | 100 of D() | 100 of A())
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Choice Law by ODEs

T
®'""c}}" @@
[A:tA;B(Jaru;B] [A:TMU,‘B]
} |
[A%AB] [Ae"*“B]
A—H B
| }

[A]* = -A[A] - H[A] _ [A]" = -(A+p)[A]
[B]* = A[A] + u[A] [B]* = (A+u)[A]




Idle Delay Law by ODEs

A=1.A®1.B = A=1.B
®'::'%I' ® :-®
[A ’CAA@’C“,'B] [A 7,.B ]
| |
= e )
} |

[A]" = -u[A] = [A]" = -u[A]
[B]" = W[A] [B]" = W[A]




Idle Interaction Law by ODEs

Ic
?2c

A=?cB
C=lcC
}

[A+C—»PB+C]

}

[A] = -r[A][C]
[B]* = r[A][C]
[C] =

directive sample 6.0 1000
directive plot A()

new c@1.0:chan
let AQ) = 2¢; B()
and B() = ()

and C() = Ic; €()

run (C() | 1000 of A())

0000000

A ?2C.A @ ?2¢.B
kC

A+C > A+C
A+C - B+C

[A] = -r[A][C]
[B]* = r[A][C]
[C]'=0

It may seem like A should
decrease half as fast,
but NO! Two ways to explain:

-State A is memoryless
of any past idling.
- Activity on c is double

directive sample 6.0 1000
directive plot A()

new c@1.0:chan

let A() = do ?c; B() or ?c; A()
and B() = ()

and C() = lc; €()

run (C() | 1000 of A())




In’re.rac’rive Markov Chains. Sec 4.1.2

Asynchronous Interleaving

el Hisolb ittt A ettt Golbtizh

[Arlo= A() — B() ——C() ——D() —
1000 1000 1000 directive sample 4.0 10000
@1 directive plot A(); B(); €(); DO
IIIIIII 800 |
let A() = delay@1.0; B()
C o= 600 dB() =
[Sol8 @2 and 80 = 0
EEEEEE® 007 let C() = delay@ZO, D()
200 o A and D() = ()
0 ‘ ‘ ‘ ‘ ‘ ‘ ‘ run 1000 of (AQ) | €0)
0 0.5 1 1.5 2 25 3 35 4

directive sample 4.0 10000
directive plot

?YA; B(): 2YC; DO: Y(); AO: €0)
new YA@1.0:chan new YC@1.0:chan

let AQ) = do delay@1.0; B() or ?vA
and B() = ()

let €() = do delay@2.0; D() or 2vc
and D() = ()

let Y() =
do delay@1.0; (B() | €()

or delay@2.0; (A() | D())
or ?YA or ?YC

run 1000 of Y()

Amazingly, the B's and the D's from the two
branches sum up to exponential distributions



Asynchronous Interleaving Law by ODEs

! Hel A . | Hietit {8 Want to show that B and D
T/\'B | TU’D M T/\’(B I TH’D) i Tu’(TA’B I D) on both sides have the
N - "same behavior” (equal
A1 =1,.B Y=1.B1C)®1.:(A, | D) quantities of B and D
€, =1,D C,=1,:D produced at all times)
A | C ) A,=1,B
Y
(A, "B ) (Y A B+C, ) (VI = -ALYIuIY] )
C, - D Y 4 A, + D [A,]° = UIYT-ALA,]
ArC C,—>*D  |=>|[B]" = ALYI*ALA,]
A, B [C,]° = ALY ]-uIC, ]
l Q’ J DI = ulYIC,] )
AT A [Y+A2] e / [Y+A2]_ [y] +[A2] ...................
[BI=AA] | —o  |[B]= AlY+A,] = -ALY LY LY -ALA, )
[C.]°=-ulC] | = [Y+C,T" = -u[Y+C,] = -A[YI-A[A,] :
(D] = uic,] (BT = uiy+C.] AL Dl decoys exponeialy

[B] and [D] have equal time evolutions on the two sides provided that [A;]=[Y+A,] and [C,]=[Y+C,].
This imposes the constraint, in particular, that [A;]p=[Y+A,], and [C,]o=[Y+C;], (at time zero).

The initial conditions of the right hand system specify that [A,],=[C,]o=0 (since only Y is present).
Therefore, we obtain that [A;]o=[C11o=[Y o.

So, for example, if we run a stochastic simulation of the left hand side with 1000*A1
and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of
the right hand side with 1000*Y.



Equiconfluence Law by ODEs

’CA,'B | ’CA;B = ’CZA;(B | ch;B) Want to show that B on both
sides has the “"same behavior"”

. Ta (equal quantities of B produced
. : Ton at all times)

e N
A:TAB _d> E:TZA;(B | G)
C = TA B T G = TA;B
A I C kE ) §|:3}°A7':°é'°;°é;é°/°2 .....................
(E _2A h "A[A'] + A[C']
g e E e S = A[E+6/2] + AE+6/2]
A ' B -9 c - := 2A[E] + AIG] = [BT'
C > B o \ J [A] = [E+6/2] = [E]+[6]/2
A+C .= _Z[AIE[]EP[(GZ]A/[ZE] -A[G])/2
[E]" = -2A[E] A I A :
[6]° = 2A[E] -A[G] SNEE2IE AL :
[B]* = 2A[E] + A[G]
[B] has equal time evolutions on the two sides
- e — _ ' provided that [A]=[E+6G/2] and [C]=[E+G/2].
[A]" = -A[A] [AT"= A[A, ] This imposes the constraint, in particular, that
[C]° = -A[C] =7 | [CT=-AC] [Al,=[E+6/2], and [C1,=[E+6/2], (at time zero).
[B]° = A[A] + A[C] [B]° = A[A'] + A[C'] The initial conditions of the right hand system

specify that [6/2],=0 (since only E is present).
Therefore, we obtain that [A]y=[Cly=[E],.



Exercise

e Derive the ODEs for the Repressilator.



Summary

e From Processes to ODEs
- Now in two easy steps

- Caveat: possibly wrong (in the chemistry-to-ODE bit) if stochastic
effects are significant (need to use stochastic ODEs?).

e Process Laws by ODEs

- ODE "semantics” can be used to show process equivalences
e Compositionality

- Processes are naturally compositional

- Parametric processes are even better: generate many wildly different
ODEs from the same basic process “library” by parameter instantiation
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Fast Push

directive sample 0.1 1000
directive plot A()

val r=1.0
val s=1.0

new c@s:chan

let A() = do lc; A() or delay@r;B()
or 2c; B()

and B() = ()

run 1000 of A()

Al

9494 B

i

D)
74992
5994
3946
194.3

: \_\\\
\\\*““MM_

0
0.00010087 0.053434 Faused
Simulation: Time = 6.849508 (940 points at 0.92678 simTime/fsysTime and halted)

directive sample 0.1 1000
directive plot A(): B(): €(): D(): EQ): FO

val r=1.0
val 5=1.0

new b@s:chan new c@s:chan

new d@s:chan new e@s:chan

new f@s:chan

let A() = do |b;A() or delay@r;B() or ?b; B()
and B() = do lc;B() or delay@r;C() or ?c; C()
and €() = do !d:C() or delay@r;D() or 2d; D()
and D() = do le;D() or delay@r;E() or ?d; E()
and E() = do If;E() or delay@r;F() or ?e; F()
and F() = ()

run 1000 of A()



