From Processes to ODEs

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Trento, 2006-05-22.. 26
www.luca.demon.co.uk/ArtificialBiochemistry.htm

From Processes to ODEs in Two Easy Steps

Example: Fast Transitions

Fast Transitions in Sequence

directive sample 0.11000 directive plot $A() ; B() ; C()$
val $r=1.0$
val $s=1.0$
new b@s:chan new c@s:chan let $A()=$ do delay@r: $B()$ or ? $b ; B()$ and $B()=$ do !b;B() or delay@r;C() or ?c; $C()$ and $C()=!c ; C()$
run 1000 of $A()$

Cf.: Erlang signal degradation

No signal degradation? Why?

directive sample 0.11000
directive plot $A 1(0): A 2() ; A 3() ; A 4() ; A 5(): A 6() ; A 7() ; A 8():$
val $r=1.0 \mathrm{val} s=1.0$
new ar@s:chan new a3@s:chan new a4@s:chan new a5@s:chan new ab@s:chan new a7@s:chan new a8@s:chan new a9@s:chan new a10@s:chan new a11@s:chan new a12@s:chan new a1s
let A1() = do delay@r:A2() or 3 a2: A2)
and $A 2()=$ do laz: $A 2($) or delay@r: $A 3()$ or ?a3: $A 3()$ and $A 2()=$ do a az; $A 2$ 2 or delay@r; $A 3()$ or ?a3; $A 3()$
and $A 3()=$ do $193: A 3($) or delay@r:A4() or ?a4; A4() and $A 3()=d o l a 3: A 3$ or delay@r:A4) or ?a4; A44)
and $A 4()=$ do $a 4 ; A 4()$ or delay@r:A5() or ?a5: $A 5()$ and $A 5()=$ do la5:A5() or delay@r:A6() or ?a6: $A 6()$ and $A 6()=$ do lab:A6() or delay@r: $A 7()$ or ?a7: $A 7()$ and $A 7()=$ do la7:A7() or delay $@ r: A 8()$ or $3 a 8: A 8()$ and $A 8()=$ do la8: $A 8($) or delay@r:A9 () or ?a9; $A 9()$ and $A 9()=$ do la9:A9() or delay@r: $A 10($) or ?a10; $A 10()$ and $A 10()=$ do $1910: A 10()$ or delay $@ r: A 11()$ or ?a11; $A 11()$ and A12 $)$ = do la12;A12() or delay@:A13) or ?a13; A13() and $A 13()=$! 133 :A13()
run 1000 of A1()

Answer to Bell Exercise

Build a sma/l network where one node has a distribution like $B()$:

Exercise: Percentage Sensor

Assume there are 100 copies of $A B$ and that all the rates are 1.0.

Show that at steady state:
$[A]=100[C] /([C]+[D])$
I.e., the A state computes the percentage of C in the total $C+D$ for any amount of C and D. Note that [C] and [D] are unaffected and could be part of a larger network.

```
val r=1.0
val s=1.0
```

new a@s:chan new b@s:chan
let $C()=!a ; C()$
and $D()=!b ; D()$

```
and }A()=?b;B(
```

and $B()=? a ; A()$
run $(300$ of $C() \mid 100$ of $D() \mid 100$ of $A())$

Laws by ODEs

Choice Law by ODEs

Idle Delay Law by ODEs

Idle Interaction Law by ODEs

Asynchronous Interleaving

$$
\tau_{\lambda} ; B \mid \tau_{\mu} ; D=\tau_{\mu} ;\left(B \mid \tau_{\mu} ; D\right)+\tau_{\mu} ;\left(\tau_{\kappa} ; B \mid D\right)
$$


```
directive sample 4.010000
directive plot A(); B();C();D()
let }A()=\mathrm{ delay@1.0; }B(
and B()=()
let C()= delay@2.0; D()
and D()=()
run 1000 of (A()|C())
```


directive sample 4.010000
directive plot
?YA; $B() ;$? $C=D() ; Y() ; A() ; C()$ new YA@1.0:chan new YC@1.0:chan
let $A()=$ do delay@1.0; $B()$ or ?Y A
and $B()=()$
let $C()=$ do delay@2.0; $D()$ or ?YC
and $D()=()$
let $Y()=$
do delay@1.0; $(B() \mid C())$
or delay@2.0; $(A() \mid D())$
or ?YA or ?YC
Amazingly, the B's and the D's from the two run 1000 of $Y()$ branches sum up to exponential distributions

Asynchronous Interleaving Law by ODEs

Want to show that B and D on both sides have the "same behavior" (equal quantities of B and D produced at all times)
$[B]$ and $[D]$ have equal time evolutions on the two sides provided that $\left[A_{1}\right]=\left[Y+A_{2}\right]$ and $\left[C_{1}\right]=\left[Y+C_{2}\right]$.
This imposes the constraint, in particular, that $\left[A_{1}\right]_{0}=\left[Y+A_{2}\right]_{0}$ and $\left[C_{1}\right]_{0}=\left[Y+C_{2}\right]_{0}$ (at time zero).
The initial conditions of the right hand system specify that $\left[A_{2}\right]_{0}=\left[C_{2}\right]_{0}=0$ (since only Y is present).
Therefore, we obtain that $\left[A_{1}\right]_{0}=\left[C_{1}\right]_{0}=[Y]_{0}$.
So, for example, if we run a stochastic simulation of the left hand side with 1000*A1 and $1000 * C 1$, we obtain the same curves for B and D than a stochastic simulation of the right hand side with 1000*y.

Equiconfluence Law by ODEs

Want to show that B on both sides has the "same behavior" (equal quantities of B produced at all times)
$[B]$ has equal time evolutions on the two sides provided that $[A]=[E+G / 2]$ and $[C]=[E+G / 2]$. This imposes the constraint, in particular, that $[A]_{0}=[E+G / 2]_{0}$ and $[C]_{0}=[E+G / 2]_{0}$ (at time zero). The initial conditions of the right hand system specify that $[G / 2]_{0}=0$ (since only E is present). Therefore, we obtain that $[A]_{0}=[C]_{0}=[E]_{0}$.

Exercise

- Derive the ODEs for the Repressilator.

Summary

- From Processes to ODEs
- Now in two easy steps
- Caveat: possibly wrong (in the chemistry-to-ODE bit) if stochastic effects are significant (need to use stochastic ODEs?).
- Process Laws by ODEs
- ODE "semantics" can be used to show process equivalences
- Compositionality
- Processes are naturally compositional
- Parametric processes are even better: generate many wildly different ODEs from the same basic process "library" by parameter instantiation

> Q?

Appendix

Fast Push

directive sample 0.11000 directive plot $A()$
val $r=1.0$ val $s=1.0$
new c@s:chan
let $A()=\operatorname{do}$!c; $A()$ or delay@r: $B()$ or ?c; $B()$
and $B()=()$
run 1000 of $A()$
directive sample 0.11000 directive plot $A() ; B() ; C() ; D() ; E() ; F()$
val $r=1.0$
val $s=1.0$
new b@s:chan new c@s:chan new d@s:chan new e@s:chan
new f@s:chan
let $A()=\operatorname{do}!b ; A()$ or delay@r; $B()$ or ? $b ; B()$ and $B()=$ do ! $c ; B()$ or delay@r; $C()$ or ? $c ; C()$ and $C()=$ do !d;C() or delay@r:D() or ?d; $D()$ and $D()=$ do $!e ; D()$ or delay@r; $E()$ or ?d; $E()$ and $E()=$ do ! $f ; E()$ or delay@r:F() or ?e; $F()$ and $F()=()$
run 1000 of $A()$

