Measure what is measurable, and make measurable what is not so. Galileo Galilei.

From Processes to ODEs

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento Centre for Computational and Systems Biology

Trento, 2006-05-22..26

www.luca.demon.co.uk/ArtificialBiochemistry.htm

From Processes to ODEs in Two Easy Steps

Example: Fast Transitions

Fast Transitions in Sequence

directive sample 0.1 1000

val r=1.0 val s=1.0

and A13() = !a13;A13()

run 1000 of A1()

A9(); A10(); A11(); A12(); A13()

new a2@s:chan new a3@s:chan new a4@s:chan

new a5@s:chan new a6@s:chan new a7@s:chan new a8@s:chan new a9@s:chan new a10@s:chan

new a11@s:chan new a12@s:chan new a13@s:chan let A1() = do delay@r;A2() or ?a2; A2()

and A2() = do !a2;A2() or delay@r;A3() or ?a3; A3()

and A3() = do !a3;A3() or delay@r;A4() or ?a4; A4()

and A4() = do !a4;A4() or delay@r;A5() or ?a5; A5()

and A5() = do !a5;A5() or delay@r;A6() or ?a6; A6()

and A6() = do !a6;A6() or delay@r;A7() or ?a7; A7()

and A7() = do !a7;A7() or delay@r;A8() or ?a8; A8() and A8() = do !a8;A8() or delay@r;A9() or ?a9; A9()

and A9() = do !a9;A9() or delay@r;A10() or ?a10; A10()

 $[B]^{\bullet} = r([A]-[B])+s[B]([A]-[C])$

Answer to Bell Exercise

Build a *small* network where one node has a distribution like B():

on Luca Cardelli

Exercise: Percentage Sensor

Assume there are 100 copies of AB and that all the rates are 1.0.

Show that at steady state: [A] = 100[C]/([C]+[D])

I.e., the A state computes the percentage of C in the total C+D for any amount of C and D. Note that [C] and [D] are unaffected and could be part of a larger network. directive sample 0.1 1000 directive plot A(); B()

val r=1.0 val s=1.0

new a@s:chan new b@s:chan let C() = !a;C() and D() = !b;D()

and A() = ?b;B() and B() = ?a;A()

run (300 of C() | 100 of D() | 100 of A())

Laws by ODEs

Choice Law by ODEs

Idle Delay Law by ODEs

Idle Interaction Law by ODEs

Asynchronous Interactive Markov Chains. Sec 4.1.2

 $\tau_{\lambda}; \mathsf{B} \mid \tau_{\mu}; \mathsf{D} = \tau_{\lambda}; (\mathsf{B} \mid \tau_{\mu}; \mathsf{D}) + \tau_{\mu}; (\tau_{\lambda}; \mathsf{B} \mid \mathsf{D})$

1000

branches sum up to exponential distributions

Asynchronous Interleaving Law by ODEs

[B] and [D] have equal time evolutions on the two sides provided that $[A_1]=[Y+A_2]$ and $[C_1]=[Y+C_2]$. This imposes the constraint, in particular, that $[A_1]_0 = [Y + A_2]_0$ and $[C_1]_0 = [Y + C_2]_0$ (at time zero). The initial conditions of the right hand system specify that $[A_2]_0 = [C_2]_0 = 0$ (since only Y is present). Therefore, we obtain that $[A_1]_0 = [C_1]_0 = [Y]_0$.

So, for example, if we run a stochastic simulation of the left hand side with 1000*A1 and 1000*C1, we obtain the same curves for B and D than a stochastic simulation of the right hand side with 1000*Y.

Equiconfluence Law by ODEs

• Derive the ODEs for the Repressilator.

Summary

- From Processes to ODEs
 - Now in two easy steps
 - Caveat: possibly wrong (in the chemistry-to-ODE bit) if stochastic effects are significant (need to use stochastic ODEs?).
- Process Laws by ODEs
 - ODE "semantics" can be used to show process equivalences
- Compositionality
 - Processes are naturally compositional
 - Parametric processes are even better: generate many wildly different ODEs from the same basic process "library" by parameter instantiation

Fast Push

999

directive sample 0,1 1000 directive plot A(); B(); C(); D(); E(); F()
val r=1.0 val s=1.0
new b@s:chan new c@s:chan new d@s:chan new e@s:chan new f@s:chan
let A() = do !b;A() or delay@r;B() or ?b; B() and B() = do !c;B() or delay@r;C() or ?c; C()
and C() = do !d;C() or delay@r;D() or ?d; D() and D() = do !e;D() or delay@r;E() or ?d; E() and E() = do !f;E() or delay@r;F() or ?e; F()

run 1000 of A()

and F() = ()

🐱 Luca Cardelli