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From Chemistry to ODEs
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Chemical Reactions

A →r B1 + … + Bn
A1 + A2 →r B1 + … + Bn
A + A →r B1 + … + Bn

Degradation [A]• = -r[A]

Asymmetric Collision [Ai]• = -r[A1][A2]

Symmetric Collision [A]• = -r[A]([A]-1)

No other reactions!

Trimolecular reactions:

A + B + C →r D

the measured “r” is an (imperfect)
aggregate of e.g.:

A + B r2↔r1 AB

AB + C →r3 D

Exponential Decay 

Mass Action Law

Mass Action Law

Chapter IV: Chemical Kinetics    

[David A. Reckhow , CEE 572 Course]

...  reactions may be either elementary or non-

elementary. Elementary reactions are those reactions 

that occur exactly as they are written, without any 

intermediate steps. These reactions almost always 

involve just one or two reactants. ... Non-elementary 

reactions involve a series of two or more elementary 

reactions. Many complex environmental reactions are 

non-elementary. In general, reactions with an overall 

reaction order greater than two, or reactions with 

some non-integer reaction order are non-elementary. 

THE COLLISION THEORY OF 

REACTION RATES

www.chemguide.co.uk

The chances of all this happening if your 

reaction needed a collision involving more 

than 2 particles are remote. All three (or 

more) particles would have to arrive at 

exactly the same point in space at the same 

time, with everything lined up exactly right, 

and having enough energy to react. That's 

not likely to happen very often!

(assuming A≠Bi≠Aj for all i,j) 

Enzymatic reactions:

S   E  r P

the “r” is given by Michaelis-Menten 
(approximated steady-state) laws:

E + S r2↔r1 ES

ES →r3 P + E
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[X]• = N⋅⋅⋅⋅l

From Reactions to ODE’s

-21F

1E

1D

-1-12C

1-1B

-1-1A
v4v3v2v1N

[A]• = -l1 - l2
[B]• = -l1 + l4
[C]• = 2l1 - l2 - l3
[D]• = l2
[E]• = l3
[F]• = l3 - 2l4

Write the coefficients 
by columns

Read the concentration 
changes from the rows

X: chemical species

[-]: quantity of molecules

l: rate laws

k: kinetic parameters

N: stoichiometric matrix

X

reactions

sp
ec
ie
s

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

k4[F]([F]-1)/2l4

k3[C]l3

k2[A][C]l2

k1[A][B]l1

l

Quantity 
changes

Stoichiometric
matrix

Rate laws

Set a rate law for each reaction 
(Degradation/Asymmetric/Symmetric)

E.g. [A]• = 
-k1[A][B] - k2[A][C]

Stoichiometric 
Matrix

A

B C

D

EF

C
k1

k2

k4
k3
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That’s why we said earlier that

A + A →r B1 + … + Bn      gives [A]• = -r[A]([A]-1) (2 A consumed)

Instead, e.g.:

A + A →r A + B gives [A]• = -r[A]([A]-1)/2 (1 A consumed)

Rate Law of Symmetric Reactions

[A]• = -l1 - l2
[B]• = -l1 + l4
[C]• = 2l1 - l2 - l3
[D]• = l2
[E]• = l3
[F]• = l3 - 2l4

[A]• = -k1[A][B] - k2[A][C]

[B]• = -k1[A][B] + k4[F]([F]-1)/2

[C]• = 2k1[A][B] - k2[A][C] - k3[C]

[D]• = k2[A][C]

[E]• = k3[C]

[F]• = k3[C] - k4[F]([F]-1)

k4[F]([F]-1)/2l4

k3[C]l3

k2[A][C]l2

k1[A][B]l1

lThe proper rate law l4 of the 
symmetric reaction is k4[F]([F]-1)/2, 
because that is the number of possible 
collisions between [F] particles. 

But the v4 contribution to [F]• is 
Dk4[F]([F]-1) because 2 F are consumed 
in that reaction!

Compare with the contribution of v4 to 
[B]•, which is k4[F]([F]-1)/2.
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From Chemistry 
to Processes
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Chemical Ground Form (CGF)

E ::= X1=M1, …, Xn=Mn Definitions (n≥0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n≥0) 

P ::= X1 | … | Xn Solutions (n≥0) 

π ::= τr ?n(r) !n(r) Interactions (delay, input, output) 

CGF ::= E,P Definitions with Initial Conditions

A

B

!a

?a ?b

!b

A = !a;A ⊕ ?b;B

B = !b;B ⊕ ?a;A

A|A|B|B

Ex: interacting automata 
(which are CGFs using “|” only in initial conditions):

Initial 
conditions: 
2A and 2B

Automaton in state A

Automaton in state B

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 
and null molecule (M⊕0 = 0⊕M = M) (τ0;P = 0)  

Xi are distinct in E
Each name n is assigned a fixed rate r: n(r)

(To translate chemistry back to 
processes we need a bit more than simple 
automata: we may have “+” on the right 
of →, that is we may need “|” after π.)
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Coding of Degradation Reactions (A→→→→rA’)

A = τr;A’A

1 degradation at rate r
1 delay at rate r 

(sampled from exponential distribution)

[A]• = -r[A]

= -r

A

2 degradations at rate r

[A]• = -r[A]

= -2r
A

A = τr;A’

2 delays at rate r 
(sampled from exponential distribution)

A = τr;A’

(constant half-life!)

ProcessesParticles Rate Law

[A]=1

[A]=2

r

r

r

(or rather, the CGF:

A = τr;A’

A | A

)
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Coding of Asymmetric Reactions (A+B→→→→rA’+B’)

A = ?v(r);A’

B = !v(r);B’B B

4 (productive) collisions 

between 2+2 particles, at rate r

4 interactions between 2+2 processes

at rate r

[A]• = -r[A][B] 

= -4r

A = ?v(r);A’

B = !v(r);B’

A B

1 (productive) collision 
between 1+1 particles, at rate r 1 interactions between 1+1 processes

at rate r

[A]• = -r[A][B] 

= -r

A = ?v(r);A’

B = !v(r);B’

A A

Particles Rate Law

[A]=1 
[B]=1

[A]=2 
[B]=2

Processes

r

r r

r r
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Coding of Symmetric Reactions (A+A→→→→rA’+A”)

A = ?v(r/2);A’ ⊕ !v(r/2);A”

A = ?v(r/2);A’ ⊕ !v(r/2);A”

A A

A = ?v(r/2);A’ ⊕ !v(r/2);A”

A = ?v(r/2);A’ ⊕ !v(r/2);A”

A A

A

1 collision between 2 particles

at rate r

3 collisions between 3 particles

at rate r

2 interactions between 2 processes

at rate r/2

6 interactions between 3 processes

at rate r/2

A = ?v(r/2);A’ ⊕ !v(r/2);A”

0 interactions between 1 process

A

0 collisions between 1 particle

[A]• = -r[A]([A]-1) 

= 0

[A]• = -r[A]([A]-1) 

= -2r

[A]• = -r[A]([A]-1) 

= -6r

Particles Rate Law

A = ?v(r/2);A’ ⊕ !v(r/2);A”

[A]=1

[A]=2

[A]=3

(remember: 2A are 
removed per collision

assuming A’,A”≠A)

3 collisions at rate r

Processes

r

r

rr
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0 0.002 0.004 0.006 0.008 0.01 0.012

A2() A1() A3()

Symmetric Reactions: SPiM vs Matlab

[x1]• = -[x1]([x1]-1)
[x2]• = -[x2]([x2]-1)/2

[x3]• = -[x3]([x3]-1)*2

v@0.25
v@0.5
v@1.0

directive sample 0.01 1000

directive plot A2(); A1(); A3() 

new v1@0.5:chan

new v2@0.25:chan

new v3@1.0:chan

let A1() = do ?v1;() or !v1;()

let A2() = do ?v2;() or !v2;()

let A3() = do ?v3;() or !v3;()

run 1000 of (A1() | A2() | A3())

A = ?v;() ⊕ !v;()

[x1]• = -r[x1]([x1]-1) v@r/2⇔

Matlab
continuous_sys_generator

SPiM
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Chemical Reactions to CGF

v1: A+B →k1 C+C

v2: A+C →k2 D

v3: C →k3 E+F

v4: F+F →k4 B

?;B

!;0

F

E

D

τ;(E|F)!;0C

!;0B

?;D?;(C|C)A

v4(k4/2)v3(k3)v2(k2)v1(k1)

channels and rates 
(1 per reaction)

d
ef
in
it
io
ns

(1
 p
er
 s
pe
ci
es
)

Interaction
Matrix

Fill the matrix by columns:

Degradation reaction vi: X →ki Pi
add τ;Pi to <X,vii>. 

Asymmetric reaction vi: X+Y →ki Pi
add ?;Pi to <X,vi> and !;0 to <Y,vi>

Symmetric reaction vi: X+X →ki Pi
add ?;Pi and !;0 to <X,vi>

Half-rate for 
symmetric 
reactions

Read out the resulting CGF by rows:

A = ?v1(k1);(C|C)  ⊕ ?v2(k2);D 

B = !v1(k1);0

C = !v2(k2);0  ⊕ τk3;(E|F)

D = 0 

E = 0 

F = ?v4(k4/2);B  ⊕ !v4(k4/2);0 

A

B C

D

EF

C
k1

k2

k4
k3
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That CGF in SPiM

A =  ?v1(k1);(C|C)  ⊕ ?v2(k2);D 

B =  !v1(k1);0

C =  !v2(k2);0  ⊕ τk3;(E|F)

D =  0 

E =  0 

F =  ?v4(k4/2);B  ⊕ !v4(k4/2);0 

directive sample 10.0

directive plot A(); B(); C(); D(); E(); F()

val k1 = 0.001  new v1@k1:chan

val k2 = 0.001  new v2@k1:chan

val k3 = 1.0

val k4 = 0.001  new v4@k4/2.0:chan

let A() = do ?v1;(C()|C()) or ?v2;D()

and B() = !v1

and C() = do !v2 or delay@k3;(E()|F()) 

and D() = ()

and E() = ()

and F() = do ?v4;B() or !v4

run 300 of (A()|B()|C()|D()|E()|F())

A

B C

D

EF

C
k1

k2

k4
k3
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... in other words

Pi(C)  = {(X = ⊕((vi: X →k P)∈C) of (τk;P) ⊕

⊕((vi: X+Y →k P)∈C and Y≠X) of (?vi(ki);P) ⊕

⊕((vi: Y+X →k P)∈C and Y≠X) of (!vi(ki);0) ⊕

⊕((vi: X+X →k P)∈C) of (?vi(ki/2);P ⊕ !vi(ki/2);0) )

s.t. X is a species in C} 

From chemical reactions C to a CGF Pi(C):
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From Processes
Directly to ODEs (hard)
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“Micromodels”: Continuous Time Markov Chains

● The underlying semantics of stochastic π-calculus (and stochastic 
interacting automata). Well established in many ways.
– Automata with rates on transitions.

● “The” correct semantics for chemistry, executable.
– Gillespie stochastic simulation algorithm

● Good description of “individual” behavior

● But does not give a good sense of “collective” properties.
– Yes one can do simulation.

– Yes one can do program analysis.

– Yes one can do modelchecking.

– But somewhat lacking in “predictive power”.
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● Micromodels have lots of advantages
– Compositional, compact, mechanistic, etc.

● But they always ask:
– “Yes, but how does you automata model relate to the 75 ODE 
models in the literature?”

● From processes/automata to ODEs directly:
– In principle: just write down the Rate Equation:

- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the “number of processes in state S” as a function of time. 
- Define for each state S:

[S]• =   (rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S’ to state S, times [S’], 
minus cumulative rate of transitions from S to any state S”, times [S].

- Intuitive (rate = inflow minus outflow), but often clumsy to write 
down precisely.

● But why go directly from processes to ODE?
– If we first convert processes to chemical reactions, 
then we can convert to ODEs by standard means!

“Macromodels”: Ordinary Differential Equations

!

The speed of interaction is 
proportional to the number 
of possible interactions.

The rate of change of a 
quantity is the cumulative 
result of the (always 
changing) speed of the 
interactions that produce it 
and consume it. It is a global
and dynamic property.
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From Processes 
to Chemistry
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Automata to Chemistry (by hand)
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A

B

!a

?a ?b

!b

Automata to Chemistry

A+B → B+B

B+A → A+A

?a
!a

A

!b

!c

B

C

?c ?b
A+C → C+C

C+B → B+B

B+A → A+A

Ad Bd

!a !b

Doping

A+Bd → B+Bd
B+Ad → A+Ad

Ad Bd

!a !b

Doping

Cd

!c

A+Cd → C+Cd
C+Bd → B+Bd
B+Ad → A+Ad
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A B

C

?c
?c

!a !b

!c

?a

?b

?a

?b

A

B

?a
?a

?b
?b

!a

!b

?a ?b

(Lack of) Compositionality

A+B → A1+B

A1+B → A2+B

A2+B → B+B

B+A → B1+A

B1+A → B2+A

B2+A → A+A

A+C → A1+C

A1+C → C+C

C+B → C1+B

C1+B → B+B

B+A → B1+A

B1+A → A+A

Ad Bd

!a !b

Doping

Ad Bd

!a !b

Doping

Cd

!c

A+Bd → A1+Bd
A1+Bd → A2+Bd
A2+Bd → B+Bd
B+Ad → B1+Ad

B1+Ad → B2+Ad

B2+Ad → A+Ad

A+Cd → A1+Cd
A1+Cd → C+Cd
C+Bd → C1+Bd
C1+Bd → B+Bd
B+Ad → B1+Ad

B1+Ad → A+Ad

6 states 6 reactions +2 states +6 reactions ??

6 states 6 reactions +3 states +6 reactions ??

A1

A2B1

B2
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!a

!a

!a

!a

!a

!a

!a

!a

!a

!a

!a

!a

!a

!a

Single Automata Models are n2 More Compact

S0+S0 → S0+S1

S0+S1 → S0+S2

S0+S2 → S0+S0

S1+S0 → S1+S1

S1+S1 → S1+S2

S1+S2 → S1+S0

S2+S0 → S2+S1

S2+S1 → S2+S2

S2+S2 → S2+S0

S0

S2

?a

S1

?a

?a

S0

S2

?a

S1

?a

?a

S0

S2

?a

S1

?a?a

S3

?a

S0

S2

?a

S1

?a?a

S3

?a

S0+S0 → S0+S1

S0+S1 → S0+S2

S0+S2 → S0+S3

S0+S3 → S0+S0

S1+S0 → S1+S1

S1+S1 → S1+S2

S1+S2 → S1+S3

S1+S3 → S1+S0

Automaton Chemistry

S2+S0 → S2+S1

S2+S1 → S2+S2

S2+S2 → S2+S3

S2+S3 → S2+S0

S3+S0 → S3+S1

S3+S1 → S3+S2

S3+S2 → S3+S3

S3+S3 → S3+S0

3 states
(2*3 transitions)

=

32 reactions

4 states
(2*4 transitions)

=

42 reactions

A copy of the automaton 
to illustrate interactions 
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Process Normal Forms to Chemistry
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Chemical Parametric Form (CPF)

E ::= X1(p1)=M1, …, Xn(pn)=Mn Definitions (n ≥ 0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n ≥ 0)

P ::= X1(p1) | … | Xn(pn)      Solutions (n ≥ 0)

π ::= τr ?n(p)   !n(p)              Interactions

CPF::= E,P with initial conditions

Random example

P(a,b) = ?a(c); (P(c,b) | Q(c))

Q(a) = !a(a); 0

P(x(r),y(s)) | Q(x(r))

CPF is NF without name generation.

CPF is CGF plus parameters.

⊕ is stochastic choice (vs. + for chemical reactions)
0 is the null solution (P|0 = 0|P = P) 
and null molecule (M⊕0 = 0⊕M = M) (τ0;P = 0)  

Xi are distinct in E, p are vectors of names
p are vectors of distinct names when in binding position
Each free name n in E is assigned a fixed rate r: 

written either n(r), or ρCPF(n)=r.

Repressilator

Neg(a,b) = ?a; Inh(a,b) ⊕ τε; (Tr(b) | Neg(a,b))

Inh(a,b) = τη; Neg(a,b)

Tr(b) = !b; Tr(b) ⊕ τδ; 0

Neg(x,y) | Neg(y,z) | Neg(z,x)
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CPF to Chemistry: the CGF Case

CGF = The CPF subset with no communication, no parametric definitions.

Chemical reactions for E: (N.B.: {…}m is a multiset, and P is P with all the | changed to +)

Each X in E is seen as a separate species.

ChG(E) := {(X →r P) s.t. (X ≡ τr;P ⊕ …) ∈ E}m

∪m {(X + Y →r P + Q) s.t. X≠Y, 〈(X ≡ ?n(r);P ⊕ …),(Y ≡ !n(r);Q ⊕ …)〉 ∈ E2}m

∪m {(X + X →2r P + Q) s.t. (X ≡ ?n(r);P ⊕ … ≡ !n(r);Q ⊕ …)〉 ∈ E}m

E ::= X1=M1, …, Xn=Mn Definitions (n≥0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n≥0) 

P ::= X1 | … | Xn Solutions (n≥0) 

π ::= τr ?n(r) !n(r) Interactions (delay, input, output) 

CGF ::= E,P Definitions with Initial Conditions

Initial conditions for P:

ChG(P) := P
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(Note on computing the multisets)
A multiset M ∈ Multiset(S), where S is a set with equality, is a total function S→Nat, which may also be 
written as a finite enumeration with repetitions: {…}m.

Multiset binary union is the function ∪m(M,M’) = \s. M(s)+M’(s). 
Multiset big union over a finite index set S is written:  ∪m i∈S of Mi. 

- The shorthand:   {(X →r P) s.t. (X ≡ τr;P ⊕ …) ∈ E}m

means: “for each (X=π1;P1⊕…⊕πn;Pn)∈E and for each i such that πi=τr, return a copy of (X →
r Pi)“.

i.e., it is defined as the following finite union of singleton multisets:  

∪m{(X=π1;P1⊕…⊕πn;Pn)∈E} of (∪m{i s.t. πi=τr}     of {(X →
r Pi)}

m)

- The shorthand:   {(X + Y →r P + Q) s.t. X≠Y, 〈(X ≡ ?n(r);P ⊕ …),(Y ≡ !n(r);Q ⊕ …)〉 ∈ E2}m

means: “for each ordered pair (X=π1;P1⊕…⊕πn;Pn),(Y=σ1;Q1⊕…⊕σn;Qn) from E
2 with X≠Y, for each n(r), for 

each i such that πi=?n(r), and for each j such that σj=!n(r), return a copy of the reaction (X + Y →
r Pi + Qj)”

i.e., it is defined as the following finite union of singleton multisets:  

∪m 〈(X=π1;P1⊕…⊕πn;Pn), (Y=ρ1;Q1⊕…⊕ρm;Qm)〉∈E
2 with X≠Y 

of (∪m{<i,j> s.t. πi=?n(r), ρj=!n(r)}     of {(X + Y →
r Pi + Qj)}

m)

- The shorthand:   {(X + X →2r P + Q) s.t. (X ≡ ?n(r);P ⊕ … ≡ !n(r);Q ⊕ …)〉 ∈ E}m

means: “for each (X=π1;P1⊕…⊕πn;Pn) in E, for each n(r), for each i such that πi=?n(r), and for each j such 
that πj=!n(r), return a copy of the reaction (X + X →

2r Pi + Pj)”
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Example

E,P:

Na = ?i; Na+

Cl = !i; Cl-

Na+ = ?d; Na

Cl- = !d; Cl

Na | Na | Cl | Cl

ChG(E,P):

Na + Cl →ρ(i) Na+ + Cl-

Na+ + Cl- →ρ(d) Na + Cl

Na + Na + Cl + Cl

ρE(n(r)) = r

Na

Na+

?d ?i

Cl

Cl-

!d !i

ChG(E) := ...

∪m {(X + Y →r P + Q) s.t. X≠Y, 〈(X ≡ ?n(r);P ⊕ …),(Y ≡ !n(r);Q ⊕ …)〉 ∈ E2}m

∪m ...
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Subtler Examples

E:

A = ?n;B ⊕ ?n;B

C = !n;D

C(E):

A + C →ρ(n) B + D

A + C →ρ(n) B + D

That is:

A + C →2ρ(n) B + D

E:

X = !a;0 ⊕ ?a;Y

C(E):

X + X  →2ρ(a) Y

The rate of a was pre-halved and must be restored.

Multisets:

The same interaction can occur multiple times and must be taken into account:

Symmetric reactions:

These are not finite state systems, but finite species systems are ok!

E:

X = τr;(X | X)

C(E):

X  →r X + X
Unbounded state, 
but only 1 species.
No problem!
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CPF to Chemistry: Handling Parameters
Consider first the CPF subset with no communication (pure ?n, !n).

E ::= X1(p1)=M1, …, Xn(pn)=Mn

M ::= π1;P1 ⊕ … ⊕ πn;Pn
P ::= X1(p1) | … | Xn(pn) 

π ::= τr ?n   !n

EG is a CGF! To obtain the chemical reactions ChP(E), just compute ChG(EG)

EG := {(X/q = /(M{p←q})) s.t. (X(p) = M) ∈ E and q ∈ N#p}

PG := /P                  (simply ground the given initial conditions once)

/(π1;P1 ⊕ … ⊕ πn;Pn) =def π1;/(P1) ⊕ … ⊕ πn;/(Pn)

/(X1(p1) | … | Xn(pn)) =def X1/p1 | … | Xn/pn

Grounding (replace parameters with constants)
where X/p is a name in bijection with <X,p> 
(each X/p is seen as a separate species)

Let N be the set of free names occurring in E (names not bound by definitions).

EG is the Parametric Explosion of E (still a finite species system) 
computed by replacing parameters with all combinations of free names in E

ChP(E) = ChG(EG)
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Example

EG,PG: 

Q/x = !x; 0
Q/y = !y; 0
P/x,y = ?x; (P/x,y | Q/x)
P/y,x = ?y; (P/y,x | Q/y)
P/x,x = ?x; (P/x,x | Q/x)
P/y,y = ?y; (P/y,y | Q/y)
P/x,y | Q/x

C:
Q/x + P/x,y →ρ(x) P/x,y + Q/x
Q/x + P/x,x →ρ(x) P/x,x + Q/x
Q/y + P/y,x →ρ(y) P/y,x + Q/y
Q/y + P/y,y →ρ(y) P/y,y + Q/y
P/x,y + Q/x

Q/x + P/x,y →ρ(x) P/x,y + Q/x
P/x,y + Q/x

Note that  EG is not necessarily the “full” explosion (there may not be enough free variables in E,P to 
generate it). In particular, if E,P is closed (no free variables), then EG contains only the parameterless 
definitions, which must then be closed and hence unrelated to any parametric definitions. One can add 
initial conditions X1(p1) | … | Xn(pn) where Xi are all the definitions in E and p1 … pn are made of distinct 
(free) variables. Then EG becomes the most general set of chemical reactions from E, out of any possible 
initial conditions. 

E,P (with free names x,y):

P(a,b) = ?a; (P(a,b) | Q(a))

Q(a) = !a; 0

P(x,y) | Q(x)

Parametric Explosion

Reduced C
(from initial conditions)

Chemical Reactions
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Iterative Algorithm

The algorithm terminates because EC never shrinks and is always a subset of EG, which is finite.

The chemical reactions for E, computed directly from the parametric explosion EG are highly redundant because they include 
all the parameter permutation symmetries. The following iterative algorithm, for the parametric case, computes a subset of 
EG from the initial conditions of E,P. It produces a (usually) much smaller although not necessarily minimal set C.

Here: 

C is the incrementally built set of chemical reactions

Ec (a CGF!) is the incrementally built set of grounded definitions from the original E.

initialization

EC :={(X/q = /(M{p←q})) s.t. X(q) occurs in P and (X(p) = M)∈E}    (from initial conditions P)

iteration

C := ChG(EC)

EC’ := EC ∪ {(X/q = /(M{p←q})) s.t. X/q occurs in C and (X(p) = M)∈E}

termination

if EC’ = EC then stop and return (C,/(P)) else EC := EC’ and iterate.
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Example: Neg(x,x)
E =

Neg(a,b) = ?a; Inh(a,b) ⊕ τε; (Tr(b) | Neg(a,b))

Inh(a,b) = τη; Neg(a,b)

Tr(b) = !b; Tr(b) ⊕ τδ; 0

Neg(x,x)

----- initialization -----

Ec:= {Neg/x,x = ?x; Inh/x,x ⊕ τε; (Tr/x | Neg/x,x)}

----- iteration 1 -----

C := {Neg/x,x →ε Tr/x + Neg/x,x }

Ec:= {Neg/x,x = ?x; Inh/x,x ⊕ τε; (Tr/x | Neg/x,x)

Tr/x = !x; Tr/x ⊕ τδ; 0}

----- iteration 2 -----

C := { Neg/x,x →ε Tr/x + Neg/x,x 

Tr/x →δ 0

Tr/x + Neg/x,x →ρ(x) Tr/x + Inh/x,x }

Ec:= {Neg/x,x = ?x; Inh/x,x ⊕ τε; (Tr/x | Neg/x,x)

Tr/x = !x; Tr/x ⊕ τδ; 0

Inh/x,x = τη; Neg/x,x}

----- iteration 3 -----

C := { Neg/x,x →ε Tr/x + Neg/x,x 

Tr/x →δ 0

Tr/x + Neg/x,x →ρ(x) Tr/x + Inh/x,x 

Inh/x,x →η Neg/x,x}

Ec:=  no change

----- termination -----

Neg/x,x →ε Tr/x + Neg/x,x 

Tr/x →δ 0

Tr/x + Neg/x,x →ρ(x) Tr/x + Inh/x,x 

Inh/x,x →η Neg/x,x

Neg/x,x
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Example: Tr(x) | Neg(x,y)
E =

Neg(a,b) = ?a; Inh(a,b) ⊕ τε; (Tr(b) | Neg(a,b))

Inh(a,b) = τη; Neg(a,b)

Tr(b) = !b; Tr(b) ⊕ τδ; 0

Tr(x) | Neg(x,y)

----- initialization -----

Ec:= {Tr/x = !x; Tr/x ⊕ τδ; 0

Neg/x,y = ?x; Inh/x,y ⊕ τε; (Tr/y | Neg/x,y) }

----- iteration 1 -----

C := { Tr/x →δ 0

Neg/x,y →ε Tr/y + Neg/x,y

Tr/x + Neg/x,y →ρ(x) Tr/x + Inh/x,y }

Ec:= {Tr/x = !x; Tr/x ⊕ τδ; 0

Neg/x,y = ?x; Inh/x,y ⊕ τε; (Tr/y | Neg/x,y)

Tr/y = !y; Tr/y ⊕ τδ; 0

Inh/x,y = τη; Neg/x,y }

----- iteration 2 -----

C := { Tr/x →δ 0

Neg/x,y →ε Tr/y + Neg/x,y

Tr/x + Neg/x,y →ρ(x) Tr/x + Inh/x,y 

Tr/y →δ 0

Inh/x,y →η Neg/x,y}

Ec:=  no change

----- termination -----

Tr/x →δ 0

Neg/x,y →ε Tr/y + Neg/x,y

Tr/x + Neg/x,y →ρ(x) Tr/x + Inh/x,y 

Tr/y →δ 0

Inh/x,y →η Neg/x,y

Tr/x + Neg/x,y
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CPF to Chemistry: Handling Communication

/N(τr;P) = τr; /N(P)

/N(!n(r)(p);P) = !n/p(r); /N(P)

/N(?n(r)(p);P) = ⊕(q∈N#p) of ?n/q(r); /N(P{p←q})

/N(π1;P1 ⊕ … ⊕ πn;Pn) = /N(π1;P1) ⊕ … ⊕ /N(πn;Pn)

/N(X1(p1) | … | Xn(pn)) = X1/p1 | … | Xn/pn

EG is a again a CGF!Ch(E) = ChG(EG)

E ::= X1(p1)=M1, …, Xn(pn)=Mn

M ::= π1;P1 ⊕ … ⊕ πn;Pn
P ::= X1(p1) | … | Xn(pn) 

π ::= τr ?n(p) !n(p)

Grounding (replace parameters with constants)
just one main change: now also convert each input parameter 
into a ground choice of all possible inputs

N is the set of free names in E,P 

#p is the length of p
n/p is a name in bijection with <n,p>

X/p is a name in bijection with <X,p> 

(each X/p is seen as a separate species)

EG := {(X/q = /N(M{p←q})) s.t. (X(p) = M) ∈ E and q ∈ N#p}

PG := /N(P)                  (simply ground the given initial conditions once)

EG is again the Parametric Explosion of E
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Example
E (with free names x,y):

P(a,b) = ?a(c); (P(c,b) | Q(c))

Q(a) = !a(a); 0

P(x,y) | Q(x)

EG: 
Q/x = !x/x; 0

Q/y = !y/y; 0
P/x,y = ?x/x; (P/x,y | Q/x) ⊕

?x/y; (P/y,y | Q/y)
P/y,x = ?y/x; (P/x,x | Q/x) ⊕

?y/y; (P/y,x | Q/y)
P/x,x = ?x/x; (P/x,x | Q/x) ⊕

?x/y; (P/y,x | Q/y)
P/y,y = ?y/x; (P/x,y | Q/x) ⊕

?y/y; (P/y,y | Q/y)
P/x,y | Q/x

C:
Q/x + P/x,y →ρ(x) P/x,y + Q/x
Q/x + P/x,x →ρ(x) P/x,x + Q/x
Q/y + P/y,x →ρ(y) P/y,x + Q/y
Q/y + P/y,y →ρ(y) P/y,y + Q/y
P/x,y + Q/x

Q/x + P/x,y →ρ(x) P/x,y + Q/x
P/x,y + Q/x

Parametric Explosion

Reduced C
(from initial conditions)

Chemical Reactions
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Example
E (with free names x,y):

P(a,b) = ?a(c); (P(c,b) | Q(c,c))

Q(a,b) = !a(a); 0 ⊕ !b(b); 0

P(x,y) | Q(x,y)

EG: 

Q/x,y= !x/x; 0 ⊕ !y/y; 0

Q/y,x = !y/y; 0 ⊕ !x/x; 0

Q/x,x= !x/x; 0 ⊕ !x/x; 0

Q/y,y = !y/y; 0 ⊕ !y/y; 0

P/x,y = ?x/x; (P/x,y | Q/x,x) ⊕
?x/y; (P/y,y | Q/y,y)

P/y,x = ?y/x; (P/x,x | Q/x,x) ⊕
?y/y; (P/y,x | Q/y,y)

P/x,x = ?x/x; (P/x,x | Q/x,x) ⊕
?x/y; (P/y,x | Q/y,y)

P/y,y = ?y/x; (P/x,y | Q/x,x) ⊕
?y/y; (P/y,y | Q/y,y)

P/x,y | Q/x

C:
Q/x,y + P/x,y →ρ(x) P/x,y + Q/x,x
Q/x,y + P/x,x →ρ(x) P/x,x + Q/x,x
Q/x,y + P/y,x →ρ(y) P/y,x + Q/y,y
Q/x,y + P/y,y →ρ(y) P/y,y + Q/y,y

Q/y,x + P/y,x →ρ(y) P/y,x + Q/y,y
Q/y,x + P/y,y →ρ(y) P/y,y + Q/y,y
Q/y,x + P/x,y →ρ(x) P/x,y + Q/x,x
Q/y,x + P/x,x →ρ(x) P/x,x + Q/x,x

Q/x,x + P/x,y →2ρ(x) P/x,y + Q/x,x
Q/x,x + P/x,x →2ρ(x) P/x,x + Q/x,x

Q/y,y + P/y,x →2ρ(y) P/y,x + Q/y,y
Q/y,y + P/y,y →2ρ(y) P/y,y + Q/y,y
P/x,y + Q/x,y

reduced C (from initial conditions)
Q/x,y + P/x,y →ρ(x) P/x,y + Q/x,x
Q/x,x + P/x,y →2ρ(x) P/x,y + Q/x,x
P/x,y + Q/x,y
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Exponential Explosion via Communication

X(t,f) = !t(f);X(f,t)

A(x1,x2,x3) = 
?x1(y);A(y,x2,x3) ⊕
?x2(y);A(x1,y,x3) ⊕
?x3(y);A(x1,x2,y)

A(t1,t2,t3) | 
X(t1,f1) | X(t2,f2) | X(t3,f3)
green = free names with associated rates

X/t1,f1 = !t1/f1; X/f1,t1
X/f1,t1 = !f1/t1; X/t1,f1

X/t2,f2 = !t2/f2; X/f2,t2
X/f2,t2 = !f2/t2; X/t2,f2

X/t3,f3 = !t3/f3; X/f3,t3
X/f3,t3 = !f3/t3; X/t3,f3

A/t1,t2,t3 = 
?t1/f1;A/f1,t2,t3 ⊕
?t2/f2;A/t1,f2,t3 ⊕
?t3/f3;A/t1,t2,f3

A/f1,t2,t3 = 
?f1/t1;A/t1,t2,t3 ⊕
?t2/f2;A/t1,f2,t3 ⊕
?t3/f3;A/t1,t2,f3

...etc for the other bit flips

A/t1,t2,t3 | 
X/t1,f1 | X/t2,f2 | X/t3,f3

We have not fully expanded the input summations in A(...): only enough for the channels 
that are actually used: e.g., there would never be a communication on channel t1/f2.

Parametric form (size 3). Exponentially larger ground form (size 8).
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CPF Iterative Algorithm
The same as before, just using the new grounding /N 
(based on the set N of free names of E,P, for expanding inputs).

initialization

N = fn(E,P)

EC :={(X/q = /N(M{p←q})) s.t. X(q) occurs in P and (X(p) = M)∈E}          (initial conditions)

iteration

C := ChG(EC)

EC’ := EC ∪ {(X/q = /N(M{p←q})) s.t. X/q occurs in C and (X(p) = M)∈E}

termination

if EC’ = EC then stop and return (C,/N(P)) else EC := EC’ and iterate.
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A General ππππ-calculus Normal Form

E ::= X1(p1)=(νq1)M1, …, Xn(pn)=(νqn)Mn Definitions (n ≥ 0)

M ::= π1;P1 ⊕ … ⊕ πn;Pn Molecules (n ≥ 0)

P ::= X1(p1) | … | Xn(pn)      Solutions (n ≥ 0)

π ::= τr ?n(p)   !n(p)              Interactions

NF ::= E,P with initial conditions

Example (complexation):

P(a) = (νn(d)) !a(n); P’(a,n)

P’(a,n) = !n; P(a)

Q(a) = ?a(n); Q’(a,n)

Q’(a,n) = ?n; Q(a)

P(x(c)) | Q(x(c))

Any π-calculus process can be written in this normal form.

But not all of those can be translated to chemical reactions, 
because we need to restrict to a finite number of species.

Example (enzymatic reaction):

E(a) = (νn(d),m(p)) !a(n,m); E’(a,n,m)

E’(a,n,m) = !n; E(a) ⊕ !m; E(a)

S(a) = ?a(n,m); S’(a,n,m)

S’(a,n,m) = ?n; S(a) ⊕ ?m; P()

P() = τ0; 0

E(x(c)) | S(x(c)) | S(x(c))
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Summary

● From Chemistry to ODEs
– Via the stoichiometric matrix

● From Chemistry to Processes
– Via the interaction matrix

● From Processes to Chemistry
– Ground processes: by analysis of normal form interactions

– Parametric processes: by parametric explosion

● Compositionality
– Processes are compositional in components (you just “add components”) and 
chemistry is compositional in reactions (you just “add reactions”). But:
●Adding reactions has a linear effect on the number of components (adding one 
reaction adds one or two more process actions).

●Adding components has a quadratic effect on the number of reactions (adding 
one species may add one reaction for each species).

●ODEs grow quadratically along with the chemical reactions (stoichiometric 
matrix has one column per reaction).

– Parameterization is available only on processes.
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Q?


