Chemistry and Processes

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Trento, 2006-05-22.. 26
www.luca.demon.co.uk/ArtificialBiochemistry.htm

From Chemistry to ODEs

Chemical Reactions

$$
\begin{array}{lllll}
A & \rightarrow^{r} B_{1}+\ldots+B_{n} & \text { Degradation } & {[A]^{0}=-r[A]} & \text { Exponential Decay } \\
A_{1}+A_{2} \rightarrow r B_{1}+\ldots+B_{n} & \text { Asymmetric Collision } & {\left[A_{i}\right]^{0}=-r\left[A_{1}\right]\left[A_{2}\right]} & \text { Mass Action Law } \\
A+A & \rightarrow^{r} B_{1}+\ldots+B_{n} & \text { Symmetric Collision } & {[A]^{\circ}=-r[A]([A]-1)} & \text { Mass Action Law } \\
& & \text { (assuming } A \neq B_{i} \neq A_{j} \text { for all } i, j \text {) }
\end{array}
$$

No other reactions!

Jourval of Chemical physics volume 113, NUMBER 1	Chapter IV: Chemical Kinetics	THE COLLISION THEORY OF
The chemical Langevin equation	[David A. Reckhow , CEE 572 Course] reactions may be either elementary or non-	REACTION RATES www.chemguide.co.uk
Daniel T. Gillespie ${ }^{\text {a) }}$ Research Department, Code 4T4100D, Naval Air Warfare Center, China Lake, California 93555	elementary. Elementary reactions are those reactions that occur exactly as they are written, without any intermediate steps. These reactions almost always	The chances of all this happening if your reaction needed a collision involving more than 2 particles are remote. All three (or
Genuinely trimolecular reactions do not physically occur in dilute fluids with any appreciable frequency. Apparently	involve just one or two reactants. ... Non-elementary reactions involve a series of two or more elementary	more) particles would have to arrive at exactly the same point in space at the same
trimolecular reactions in a fluid are usually the combined result of two bimolecular reactions and one monomolecular reaction, and involve an additional short-lived species.	reactions. Many complex environmental reactions are non-elementary. In general, reactions with an overall reaction order greater than two, or reactions with some non-integer reaction order are non-elementary.	time, with everything lined up exactly right, and having enough energy to react. That's not likely to happen very often!

Trimolecular reactions:

$$
A+B+C \rightarrow^{r} D
$$

the measured " r " is an (imperfect) aggregate of e.g.:

$$
A+B^{r 2} \leftrightarrow r^{r 1} A B
$$

$$
A B+C \rightarrow \rightarrow_{0}^{r 3} D
$$

Enzymatic reactions:

$$
S \xrightarrow{E} P
$$

the " r " is given by Michaelis-Menten: (approximated steady-state) laws:
$E+S^{r 2} \leftrightarrow r^{r 1} E S$
ES. \rightarrow r3 P+. E

From Reactions to ODE's

$$
\begin{aligned}
& v_{1}: A+B \rightarrow k_{1} C+C \\
& v_{2}: A+C \rightarrow k_{2} D \\
& v_{3}: C \rightarrow k_{3} E+F \\
& v_{4}: F+F \rightarrow k_{4} B \\
& \begin{array}{c}
\text { Quantity } \\
\text { changes }
\end{array} \\
& \begin{array}{c}
\text { Stoichiometric } \\
\text { matrix }
\end{array} \\
& {[X]^{\bullet}=\mathbf{N} \cdot I}
\end{aligned}
$$

$[A]^{0}=-I_{1}-I_{2}$
$[B]^{\circ}=-l_{1}+l_{4}$
$[C]^{\circ}=2 I_{1}-I_{2}-I_{3}$
[D] ${ }^{0}=I_{2}$
$[\mathrm{E}]^{0}=\mathrm{I}_{3}$
$[\mathrm{F}]^{\circ}=\mathrm{I}_{3}-2 \mathrm{I}_{4}$

Write the coefficients by columns

	reactions				
$\begin{aligned} & \text { n } \\ & . \frac{\alpha}{u} \\ & \text { ù } \\ & \text { n } \end{aligned}$	N	v_{1}	v_{2}	v_{3}	V_{4}
	A	-1	-1		
	B	-1			1
	C	2	-1	-1	
	D		1		
	E			1	
	F			1	-2
	X				

Read the concentration changes from the rows
E.g. $[\mathbf{A}]^{\circ}=$
$-k_{1}[A][B]-k_{2}[A][C]$

Set a rate law for each reaction (Degradation/Asymmetric/Symmetric)

1	
I_{1}	$\mathrm{k}_{1}[\mathbf{A}][\mathrm{B}]$
I_{2}	$\mathrm{k}_{2}[\mathbf{A}][\mathrm{C}]$
I_{3}	$\mathrm{k}_{3}[\mathbf{C}]$
I_{4}	$\mathrm{k}_{4}[\mathrm{~F}]([\mathrm{F}]-1) / 2$

X : chemical species
[-]: quantity of molecules
I: rate laws
k: kinetic parameters
N : stoichiometric matrix

Rate Law of Symmetric Reactions

The proper rate law I_{4} of the symmetric reaction is $k_{4}[F]([F]-1) / 2$ because that is the number of possible collisions between [F] particles.

But the v_{4} contribution to $[F]^{\cdot}$ is
$-k_{4}[F]([F]-1)$ because $2 F$ are consumed in that reaction!

$$
\begin{aligned}
& {[A]^{\bullet}=-I_{1}-I_{2}} \\
& {[B]^{\bullet}=-I_{1}+I_{4}} \\
& {[C]^{\bullet}=2 I_{1}-I_{2}-I_{3}} \\
& {[D]^{\bullet}=I_{2}} \\
& {[E]^{\bullet}=I_{3}} \\
& {[F]^{\circ}=I_{3}-2 I_{4}}
\end{aligned}
$$

$$
[A]^{\cdot}=-k_{1}[A][B]-k_{2}[A][C]
$$

$$
[B]^{\circ}=-k_{1}[A][B]+k_{4}[F]([F]-1) / 2
$$

$$
[C]^{\bullet}=2 \mathrm{k}_{1}[A][B]-\mathrm{k}_{2}[A][C]-\mathrm{k}_{3}[C]
$$

$$
[D]^{\circ}=k_{2}[A][C]
$$

$$
[E]^{\circ}=k_{3}[C]
$$

$$
[F]^{0}=\mathrm{k}_{3}[C]-\mathrm{k}_{4}[\mathrm{~F}]([\mathrm{F}]-1)
$$

That's why we said earlier that
$A+A \rightarrow^{r} B_{1}+\ldots+B_{n}$ gives $[A]^{\circ}=-r[A]([A]-1) \quad(2 A$ consumed $)$
Instead, e.g.:
$A+A \rightarrow \rightarrow^{r} A+B \quad$ gives $[A]^{\circ}=-r[A]([A]-1) / 2$ (1 A consumed)

From Chemistry to Processes

Chemical Ground Form (CGF)

$E::=X_{1}=M_{1}, \ldots, X_{n}=M_{n} \quad$ Definitions ($n \geq 0$)
$M::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n} \quad$ Molecules $\quad(n \geq 0)$
$\mathrm{P}::=\mathrm{X}_{1}|\ldots| \mathrm{X}_{\mathrm{n}}$
$\pi::=\tau_{r} ? n_{(r)}!n_{(r)}$
CGF :: = E, P
Solutions ($n \geq 0$)
Interactions (delay, input, output)
Definitions with Initial Conditions
(To translate chemistry back to processes we need a bit more than simple automata: we may have "+" on the right of \rightarrow, that is we may need "|" after π.)

```
\(\oplus\) is stochastic choice (vs. + for chemical reactions)
0 is the null solution ( \(P|0=0| P=P\) )
    and null molecule \((M \oplus 0=0 \oplus M=M)\left(\tau_{0} ; P=0\right)\)
\(X_{i}\) are distinct in \(E\)
    Each name \(n\) is assigned a fixed rate \(r: n_{(r)}\)
```


Coding of Degradation Reactions ($A \rightarrow{ }^{r} A^{\prime}$)

Particles
Rate Law
Processes
$[A]=1$

$$
\begin{aligned}
{[A]^{\bullet} } & =-r[A] \\
& =-r
\end{aligned}
$$

1 degradation at rate r
$[A]=2$

2 degradations at rate r
$[A]^{\bullet}=-r[A]$
$=-2 r$
(constant half-life!)

$$
\begin{aligned}
& A=\tau_{r} ; A^{\prime} \\
& A=\tau_{r} ; A^{\prime}
\end{aligned}
$$

2 delays at rate r
(sampled from exponential distribution)
(or rather, the CGF:

$$
A=\tau_{r} ; A^{\prime}
$$

$$
A \mid A
$$

)

Coding of Asymmetric Reactions ($A+B \rightarrow{ }^{r} A^{\prime}+B^{\prime}$)

Particles
$[A]=1$
$[B]=1$

1 (productive) collision between 1+1 particles, at rate r

Rate Law
$\begin{aligned} {[A]^{\circ} } & =-r[A][B] \\ & =-r\end{aligned}$

$$
=-r
$$

$$
B=!v_{(r)} ; B^{\prime}
$$

1 interactions between $1+1$ processes at rate r
[A]=2
$[B]=2$

4 (productive) collisions
between $2+2$ particles, at rate r
$[A]^{\circ}=-r[A][B]$
$=-4 r$

4 interactions between $2+2$ processes at rate r

Coding of Symmetric Reactions ($A+A \rightarrow A^{r}+A^{\prime \prime}$)

Particles
Rate Law

$$
\begin{aligned}
{[A]^{\circ} } & =-r[A]([A]-1) \\
& =0
\end{aligned}
$$

$[A]=2$

1 collision between 2 particles at rater
$[A]^{0}=-r[A]([A]-1)$
$=-2 r$
(remember: 2 A are removed per collision assuming $A^{\prime}, A^{\prime \prime} \neq A$)

$$
A=? v_{(r / 2)} ; A^{\prime} \oplus!v_{(r / 2)} ; A^{\prime \prime}
$$

0 interactions between 1 process

$$
A=? v_{(r / 2)} ; A^{\prime} \oplus!v_{(r / 2)} ; A^{\prime \prime}
$$

2 interactions between 2 processes at rate $\mathrm{r} / 2$

3 collisions at rate r

$$
\begin{aligned}
{[A]^{\bullet} } & =-r[A]([A]-1) \\
& =-6 r
\end{aligned}
$$

3 collisions between 3 particles at rate r

6 interactions between 3 processes at rate r/2

Symmetric Reactions: SPiM vs Matlab

$$
[x 1]^{\circ}=-r[x 1]([x 1]-1) \Leftrightarrow v @ r / 2
$$

Chemical Reactions to CGF

$$
\begin{aligned}
& \mathrm{v}_{1}: A+B \rightarrow \mathrm{k}_{1} C+C \\
& \mathrm{v}_{2}: A+C \rightarrow \mathrm{k}_{2} D \\
& \mathrm{v}_{3}: C \rightarrow \mathrm{k}_{3} E+F \\
& \mathrm{v}_{4}: F+F \rightarrow \mathrm{k}_{4} B
\end{aligned}
$$

Interaction Matrix

	channels and rates (1 per reaction)					Half-rate for symmetric reactions
	-	$\mathrm{v}_{1(\mathrm{~K} 1)}$	$\mathrm{v}_{2(\mathrm{k} 2)}$	$v_{3(k 3)}$	$\mathrm{v}_{4(\mathrm{k} 4 / 2)}$	
	A	$?:(C \mid C)$?;D			
๓.	B	! 0				
- ${ }^{\text {O }}$ -	C		!:0	τ;(E\|F)		
.	D					
$\frac{4}{0} 0$	E					
	F				$\begin{aligned} & ? ; B \\ & !; 0 \end{aligned}$	

Read out the resulting CGF by rows:

$$
\begin{aligned}
& A=? v_{1(k) 1)} ;(C \mid C) \oplus ? v_{2(k 2)} ; D \\
& B=!v_{1(k))} ; 0 \\
& C=!v_{2(k 2)} ; 0 \oplus \tau_{k 3} ;(E \mid F) \\
& D=0 \\
& E=0 \\
& F=? v_{4(k 4 / 2)} ; B \oplus!v_{4(k 4 / 2)} ; 0
\end{aligned}
$$

That CGF in SPiM

$$
\begin{aligned}
& A=? v_{1(k 1)} ;(C \mid C) \oplus ? v_{2(k 2))} ; D \\
& B=!v_{1(k 1)} ; 0 \\
& C=!v_{2(k 2)} ; 0 \oplus \tau_{k 3} ;(\mathrm{E} \mid \mathrm{F}) \\
& D=0 \\
& E=0 \\
& F=? v_{4(k 4 / 2)} ; B \oplus!v_{4(k 4 / 2) ;}: 0
\end{aligned}
$$

directive sample 10.0
 directive plot $A() ; B() ; C() ; D() ; E() ; F()$

val $k 1=0.001$ new v1@k1:chan
val $k 2=0.001$ new v2@k1:chan
val $k 3=1.0$
val $k 4=0.001$ new v4@k4/2.0:chan
let $A()=\operatorname{do}$? $\mathrm{v} 1 ;(C() \mid C())$ or ? $\mathrm{v} 2 ; D()$
and $B()=$! $v 1$
and $C()=$ do !v2 or delay@k3; $(E() \mid F())$
and $D()=()$
and $E()=()$
and $F()=$ do $? v 4 ; B()$ or ! $v 4$
run 300 of $(A()|B()| C()|D()| E() \mid F())$

... in other words

From chemical reactions C to a $C G F \operatorname{Pi}(C)$:

$$
\begin{aligned}
\operatorname{Pi}(C)=\{(X= & \oplus\left(\left(v_{i}: X \rightarrow^{k} P\right) \in C\right) \text { of }\left(\tau_{k} ; P\right) \\
& \oplus\left(\left(v_{i}: X+Y \rightarrow^{k} P\right) \in C \text { and } Y \neq X\right) \text { of }\left(? v_{i(k i)} ; P\right) \\
& \oplus\left(\left(v_{i}: Y+X \rightarrow^{k} P\right) \in C \text { and } Y \neq X\right) \text { of }\left(!v_{i(k i)} ; 0\right) \\
& \left.\oplus\left(\left(v_{i}: X+X \rightarrow^{k} P\right) \in C\right) \text { of }\left(? v_{i(k i / 2)}: P \oplus!v_{i(k i / 2)} ; 0\right)\right) \\
& \text { s.t. } X \text { is a species in } C\}
\end{aligned}
$$

From Processes Directly to ODEs (hard)

"Micromodels": Continuous Time Markov Chains

- The underlying semantics of stochastic π-calculus (and stochastic interacting automata). Well established in many ways.
- Automata with rates on transitions.
- "The" correct semantics for chemistry, executable.
- Gillespie stochastic simulation algorithm
- Good description of "individual" behavior
- But does not give a good sense of "collective" properties.
- Yes one can do simulation.
- Yes one can do program analysis.
- Yes one can do modelchecking.
- But somewhat lacking in "predictive power".

"Macromodels": Ordinary Differential Equations

- Micromodels have lots of advantages
- Compositional, compact, mechanistic, etc.
- But they always ask:
- "Yes, but how does you automata model relate to the 75 ODE models in the literature?"
- From processes/automata to ODEs directly:
- In principle: just write down the Rate Equation:

The speed of interaction is proportional to the number of possible interactions.

- Determine the set of all possible states S of each process.
- Determine the rates of the transitions between such states.
- Let [S] be the "number of processes in state S " as a function of time.
- Define for each state S:
$[S]^{\bullet}=($ rate of change of the number of processes in state S)
Cumulative rate of transitions from any state S^{\prime} to state S, times [S^{\prime}], minus cumulative rate of transitions from S to any state $S^{\prime \prime}$, times [S].

The rate of change of a quantity is the cumulative result of the (always changing) speed of the interactions that produce it and consume it. It is a global and dynamic property.

- Intuitive (rate = inflow minus outflow), but often clumsy to write down precisely.
- But why go directly from processes to ODE?

- If we first convert processes to chemical reactions, then we can convert to ODEs by standard means!

From Processes to Chemistry

Automata to Chemistry (by hand)

Automata to Chemistry

$$
\begin{array}{ll}
A+A & \begin{array}{l}
A+B \rightarrow B+B \\
B+A \rightarrow A+A
\end{array} \\
? a+B_{d} \rightarrow B+B_{d} \\
B+A_{d} \rightarrow A+A_{d}
\end{array}
$$

Doping
!a
! b

(B)

Doping

(Lack of) Compositionality

! b

6 reactions
$A+B \rightarrow A_{1}+B$
$A_{1}+B \rightarrow A_{2}+B$
$A_{2}+B \rightarrow B+B$
$B+A \rightarrow B_{1}+A$
$B_{1}+A \rightarrow B_{2}+A$
$B_{2}+A \rightarrow A+A$

6 reactions
$A+C \rightarrow A_{1}+C$
$A_{1}+C \rightarrow C+C$
$C+B \rightarrow C_{1}+B$
$C_{1}+B \rightarrow B+B$
$B+A \rightarrow B_{1}+A$
$B_{1}+A \rightarrow A+A$
+2 states
Doping
!a
! b
(Ad
(B)
+3 states
Doping
!a
!b
!c
(B)
+6 reactions??

$$
\begin{aligned}
& A+B_{d} \rightarrow A_{1}+B_{d} \\
& A_{1}+B_{d} \rightarrow A_{2}+B_{d} \\
& A_{2}+B_{d} \rightarrow B+B_{d} \\
& B+A_{d} \rightarrow B_{1}+A_{d} \\
& B_{1}+A_{d} \rightarrow B_{2}+A_{d} \\
& B_{2}+A_{d} \rightarrow A+A_{d}
\end{aligned}
$$

+6 reactions??
$A+C_{d} \rightarrow A_{1}+C_{d}$
$A_{1}+C_{d} \rightarrow C+C_{d}$
$C+B_{d} \rightarrow C_{1}+B_{d}$
$C_{1}+B_{d} \rightarrow B+B_{d}$
$B+A_{d} \rightarrow B_{1}+A_{d}$
$B_{1}+A_{d} \rightarrow A+A_{d}$

Single Automata Models are n^{2} More Compact

Chemistry

$$
\begin{aligned}
& \mathrm{S}_{0}+\mathrm{S}_{0} \rightarrow \mathrm{~S}_{0}+\mathrm{S}_{1} \\
& \mathrm{~S}_{0}+\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}+\mathrm{S}_{2} \\
& \mathrm{~S}_{0}+\mathrm{S}_{2} \rightarrow \mathrm{~S}_{0}+\mathrm{S}_{0} \\
& \mathrm{~S}_{1}+\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}+\mathrm{S}_{1} \\
& \mathrm{~S}_{1}+\mathrm{S}_{1} \rightarrow \mathrm{~S}_{1}+\mathrm{S}_{2} \\
& \mathrm{~S}_{1}+\mathrm{S}_{2} \rightarrow \mathrm{~S}_{1}+\mathrm{S}_{0} \\
& \mathrm{~S}_{2}+\mathrm{S}_{0} \rightarrow \mathrm{~S}_{2}+\mathrm{S}_{1} \\
& \mathrm{~S}_{2}+\mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}+\mathrm{S}_{2} \\
& \mathrm{~S}_{2}+\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2}+\mathrm{S}_{0}
\end{aligned}
$$

$$
S_{0}+S_{0} \rightarrow S_{0}+S_{1} \quad S_{2}+S_{0} \rightarrow S_{2}+S_{1}
$$

$$
S_{0}+S_{1} \rightarrow S_{0}+S_{2} \quad S_{2}+S_{1} \rightarrow S_{2}+S_{2}
$$

$$
\mathrm{S}_{0}+\mathrm{S}_{2} \rightarrow \mathrm{~S}_{0}+\mathrm{S}_{3} \quad \mathrm{~S}_{2}+\mathrm{S}_{2} \rightarrow \mathrm{~S}_{2}+\mathrm{S}_{3}
$$

$$
S_{0}+S_{3} \rightarrow S_{0}+S_{0} \quad S_{2}+S_{3} \rightarrow S_{2}+S_{0}
$$

$$
S_{1}+S_{0} \rightarrow S_{1}+S_{1} \quad S_{3}+S_{0} \rightarrow S_{3}+S_{1}
$$

$$
S_{1}+S_{1} \rightarrow S_{1}+S_{2} \quad S_{3}+S_{1} \rightarrow S_{3}+S_{2}
$$

$$
S_{1}+S_{2} \rightarrow S_{1}+S_{3} \quad S_{3}+S_{2} \rightarrow S_{3}+S_{3}
$$

$$
S_{1}+S_{3} \rightarrow S_{1}+S_{0} \quad S_{3}+S_{3} \rightarrow S_{3}+S_{0}
$$

3 states
(2*3 transitions) $=$
3^{2} reactions

4 states
(2*4 transitions)

42 reactions

Process Normal Forms to Chemistry

Chemical Parametric Form (CPF)

$$
\begin{array}{ll}
E & ::=X_{1}\left(p_{1}\right)=M_{1}, \ldots, X_{n}\left(p_{n}\right)=M_{n} \\
M & ::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n} \\
P & ::=X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right) \\
\pi & ::=\tau_{r} \quad ? n(p) \quad!n(p) \\
C P F & ::=E, P
\end{array}
$$

Definitions $\quad(n \geq 0)$
Molecules $\quad(n \geq 0)$
Solutions
$(n \geq 0)$
Interactions
with initial conditions
\oplus is stochastic choice (vs. + for chemical reactions)
0 is the null solution ($\mathrm{P}|0=0| \mathrm{P}=\mathrm{P}$) and null molecule $(M \oplus 0=0 \oplus M=M)\left(\tau_{0} ; P=0\right)$
X_{i} are distinct in E, p are vectors of names
p are vectors of distinct names when in binding position Each free name n in E is assigned a fixed rate r :
written either $n_{(r)}$, or $\rho_{\text {CPF }}(n)=r$.

Random example

$$
\begin{aligned}
& P(a, b)=? a(c) ;(P(c, b) \mid Q(c)) \\
& Q(a)=!a(a) ; 0 \\
& P\left(x_{(r)}, Y_{(s)}\right) \mid Q\left(x_{(r)}\right)
\end{aligned}
$$

Repressilator

```
Neg(a,b) = ?a; Inh(a,b) \oplus \tau < ; (Tr(b)| Neg(a,b))
    Inh(a,b)= 㖕; Neg(a,b)
```



```
    Neg(x,y)| Neg(y,z)|Neg(z,x)
```


CPF to Chemistry: the CGF Case

CGF = The CPF subset with no communication, no parametric definitions.

$$
\begin{array}{ll}
E::=X_{1}=M_{1}, \ldots, X_{n}=M_{n} & \text { Definitions } \\
M:(n \geq 0) \\
M:=\pi_{1} \cdot P P_{1} \oplus \ldots \oplus \pi_{n}: P_{n} & \text { Molecules } \quad(n \geq 0) \\
P::=X_{1}|\ldots| X_{n} & \text { Solutions } \quad(n \geq 0) \\
\pi::=\tau_{n} ? n_{(r)}!n_{(r)} & \text { Interactions (delay, input, output) } \\
C G F::=E, P & \text { Definitions with Initial Conditions }
\end{array}
$$

Each X in E is seen as a separate species.
Chemical reactions for $E: \quad$ (N.B.: $\{\ldots\}^{m}$ is a multiset, and P is P with all the \mid changed to +)

$$
\begin{aligned}
C h_{G}(E) & :=\left\{(X \rightarrow r P) \text { s.t. }\left(X \equiv \tau_{r} ; P \oplus \ldots\right) \in E\right\}^{m} \\
& \cup^{m}\left\{(X+Y \rightarrow r P+Q) \text { s.t. } X \neq Y,\left\langle\left(X \equiv ? n_{(r)} ; P \oplus \ldots\right)\left(Y \equiv!n_{(r)} ; Q \oplus \ldots\right)\right\rangle \in E^{2}\right\} m \\
& \left.\cup^{m}\left\{\left(X+X \rightarrow r^{2 r} P+Q\right) \text { s.t. }\left(X \equiv ? n_{(r)} ; P \oplus \ldots \equiv!n_{(r)} ; Q \oplus \ldots\right)\right\rangle \in E\right\}^{m}
\end{aligned}
$$

Initial conditions for P :
$\mathrm{Ch}_{G}(P):=P$

(Note on computing the multisets)

A multiset $M \in$ Multiset(S), where S is a set with equality, is a total function $S \rightarrow N a t$, which may also be written as a finite enumeration with repetitions: $\{\text {... }\}^{m}$.

Multiset binary union is the function $\cup^{m}\left(M, M^{\prime}\right)=\backslash s . M(s)+M^{\prime}(s)$. Multiset big union over a finite index set S is written: $\cup^{m} i \in S$ of M_{i}.

- The shorthand: $\left\{\left(X \rightarrow^{r} P\right) \text { s.t. }\left(X \equiv \tau_{r} ; P \oplus \ldots\right) \in E\right\}^{m}$ means: "for each $\left(X=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n}\right) \in E$ and for each i such that $\pi_{i}=\tau_{r}$, return a copy of $\left(X \rightarrow P_{i}\right)$ ".
i.e., it is defined as the following finite union of singleton multisets:

$$
\cup m\left\{\left(X=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n^{\prime}}: P_{n}\right) \in E\right\} \quad \text { of }\left(\cup m\left\{i \text { s.t. } \pi_{i}=\tau_{r}\right\} \quad \text { of }\left\{\left(X \rightarrow^{r} P_{i}\right)\right\}^{m}\right)
$$

- The shorthand: $\left\{(X+Y \rightarrow r P+Q)\right.$ s.t. $\left.X \neq Y,\left\langle\left(X \equiv ? n_{(r)} ; P \oplus \ldots\right),\left(Y \equiv!n_{(r)} ; Q \oplus \ldots\right)\right\rangle \in E^{2}\right\} m$
means: "for each ordered pair $\left(X=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n}\right),\left(Y=\sigma_{1} ; Q_{1} \oplus \ldots \oplus \sigma_{n} ; Q_{n}\right)$ from E^{2} with $X \neq Y$, for each $n_{(r)}$, for each i such that $\pi_{i}=? n_{(r)}$, and for each j such that $\sigma_{j}=!n_{(r)}$, return a copy of the reaction $\left(X+Y \rightarrow r P_{i}+Q_{j}\right)$ "
i.e., it is defined as the following finite union of singleton multisets:

$$
\begin{aligned}
& \cup^{m}\left\langle\left(X=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n}\right),\left(Y=\rho_{1} ; Q_{1} \oplus \ldots \oplus \rho_{m} ; Q_{m}\right)\right\rangle \in E^{2} \text { with } X \neq Y \\
& \text { of }\left(\cup m\left\{\langle i, j\rangle \text { s.t. } \pi_{i}=? n_{(r)}, \rho_{j}=!n_{(r)}\right\} \quad \text { of }\left\{\left(X+Y \rightarrow P_{i}+Q_{j}\right)\right\}^{m}\right)
\end{aligned}
$$

- The shorthand: $\left\{(X+X \rightarrow 2 r P+Q)\right.$ s.t. $\left.\left.\left(X \equiv ? n_{(r)} ; P \oplus \ldots \equiv!n_{(r)} ; Q \oplus \ldots\right)\right\rangle \in E\right\}^{m}$
means: "for each $\left(X=\pi_{1} ; P_{1} \oplus \ldots, \ldots \pi_{n} ; P_{n}\right)$ in E, for each $n_{(r)}$, for each i such that $\pi_{i}=? n_{(r)}$, and for each j such that $\pi_{\mathrm{j}}=!n_{(r)}$, return a copy of the reaction $\left(X+X \rightarrow{ }^{2 r} P_{i}+P_{j}\right)$ "

Example

$\mathrm{Ch}_{6}(\mathrm{E}, \mathrm{P})$:
$\begin{array}{ll}\mathrm{Na}+\mathrm{Cl} \rightarrow \rightarrow^{\mathrm{p}(\mathrm{i})} & \mathrm{Na}^{+}+\mathrm{Cl}^{-} \\ \mathrm{Na}^{+}+\mathrm{Cl}^{-} \rightarrow \rightarrow^{\mathrm{p}(\mathrm{d})} & \mathrm{Na}+\mathrm{Cl}^{2}\end{array}$
$\mathrm{Na}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{p}(\mathrm{d}) \quad \mathrm{Na}+\mathrm{Cl}$
$\mathrm{Na}+\mathrm{Na}+\mathrm{Cl}+\mathrm{Cl}$
$\rho_{\mathrm{E}}\left(\mathrm{n}_{(\mathrm{r})}\right)=r$

$$
\begin{aligned}
C h_{G}(E): & : \ldots \\
& \cup^{m}\left\{(X+Y \rightarrow r P+Q) \text { s.t. } X \neq Y,\left\langle\left(X \equiv ? n_{(r)} ; P \oplus \ldots\right),\left(Y \equiv!n_{(r)} ; Q \oplus \ldots\right)\right\rangle \in E^{2}\right\} m
\end{aligned}
$$

Subtler Examples

These are not finite state systems, but finite species systems are ok!

Unbounded state, but only 1 species. No problem!

Multisets:
The same interaction can occur multiple times and must be taken into account:

Symmetric reactions:

$$
\begin{array}{ll}
\mathrm{E}: & C(E): \\
X=!a ; 0 \oplus ? a ; Y & X+X \rightarrow \rightarrow^{2 p(a)} Y
\end{array}
$$

The rate of a was pre-halved and must be restored.

CPF to Chemistry: Handling Parameters

Consider first the CPF subset with no communication (pure ?n, !n).
Grounding (replace parameters with constants)

$$
\begin{aligned}
& E::=X_{1}\left(p_{1}\right)=M_{1}, \ldots, X_{n}\left(p_{n}\right)=M_{n} \\
& M::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n}: \cdot P_{n} \\
& P::=X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right) \\
& \pi::=\tau_{r} ? n \text { ?n }
\end{aligned}
$$

where X / p is a name in bijection with $\langle X, p\rangle$ (each X / p is seen as a separate species)
$/\left(\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n}\right)=_{\text {def }} \pi_{1} ; /\left(P_{1}\right) \oplus \ldots \oplus \pi_{n} ; /\left(P_{n}\right)$
$/\left(X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right)\right)={ }_{\text {def }} X_{1} / p_{1}|\ldots| X_{n} / p_{n}$

Let N be the set of free names occurring in E (names not bound by definitions).
E_{G} is the Parametric Explosion of E (still a finite species system) computed by replacing parameters with all combinations of free names in E
$E_{G}:=\left\{(X / q=/(M\{p \leftarrow q\}))\right.$ s.t. $(X(p)=M) \in E$ and $\left.q \in N^{\# p}\right\}$
$P_{G}:=/ P \quad$ (simply ground the given initial conditions once)
E_{G} is a CGF! To obtain the chemical reactions $C_{p}(E)$, just compute $C_{G}\left(E_{G}\right)$
$C h_{P}(E)=C h_{G}\left(E_{G}\right)$

Example

E, P (with free names x, y):

$$
\begin{aligned}
& Q / x=!x ; 0 \\
& Q / y=!y ; 0 \\
& P / x, y=? x ;(P / x, y \mid Q / x) \\
& P / y, x=? y ;(P / y, x \mid Q / y) \\
& P / x, x=? x ;(P / x, x \mid Q / x) \\
& P / y, y=? y ;(P / y, y \mid Q / y) \\
& P / x, y \mid Q / x
\end{aligned}
$$

C :

$$
\begin{aligned}
& Q / x+P / x, y \rightarrow p(x) P / x, y+Q / x \\
& Q / x+P / x, x \rightarrow p(x) P / x, x+Q / x \\
& Q / y+P / y, x \rightarrow p(y) P / y, x+Q / y \\
& Q / y+P / y, y \rightarrow p(y) P / y, y+Q / y \\
& P / x, y+Q / x
\end{aligned}
$$

Chemical Reactions
Reduced C
(from initial conditions)

$$
\begin{aligned}
& Q / x+P / x, y \rightarrow p(x) P / x, y+Q / x \\
& P / x, y+Q / x
\end{aligned}
$$

Note that E_{G} is not necessarily the "full" explosion (there may not be enough free variables in E, P to generate it). In particular, if E, P is closed (no free variables), then E_{G} contains only the parameterless definitions, which must then be closed and hence unrelated to any parametric definitions. One can add initial conditions $X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right)$ where X_{i} are all the definitions in E and $p_{1} \ldots p_{n}$ are made of distinct (free) variables. Then E_{G} becomes the most general set of chemical reactions from E, out of any possible initial conditions.

Iterative Algorithm

The chemical reactions for E, computed directly from the parametric explosion E_{G} are highly redundant because they include all the parameter permutation symmetries. The following iterative algorithm, for the parametric case, computes a subset of E_{G} from the initial conditions of E, P. It produces a (usually) much smaller although not necessarily minimal set C.

Here:

C is the incrementally built set of chemical reactions
E_{c} (a CGF!) is the incrementally built set of grounded definitions from the original E.
initialization

$$
E_{c}:=\{(X / q=/(M\{p \leftarrow q\})) \text { s.t. } X(q) \text { occurs in } P \text { and }(X(p)=M) \in E\} \quad \text { (from initial conditions } P \text {) }
$$

iteration

$$
\begin{aligned}
& C:=C h_{G}\left(E_{C}\right) \\
& E_{c}:=E_{c} \cup\{(X / q=/(M\{p \leftarrow q\})) \text { s.t. } X / q \text { occurs in } C \text { and }(X(p)=M) \in E\}
\end{aligned}
$$

termination
if $E_{C}^{\prime}=E_{C}$ then stop and return $\left(C_{1} /(P)\right)$ else $E_{C}:=E_{C}^{\prime}$ and iterate.
The algorithm terminates because E_{c} never shrinks and is always a subset of E_{G}, which is finite.

Example: $\operatorname{Neg}(x, x)$

```
\(E=\)
    \(\operatorname{Neg}(a, b)=? a ; \operatorname{Inh}(a, b) \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr}(b) \mid \operatorname{Neg}(a, b))\)
    \(\operatorname{Inh}(a, b)=\tau_{\eta} ; \operatorname{Neg}(a, b)\)
    \(\operatorname{Tr}(b)=!b ; \operatorname{Tr}(b) \oplus \tau_{\delta^{\prime}} 0\)
    \(\operatorname{Neg}(x, x)\)
----- initialization -----
\(E_{c}:=\left\{\right.\) Neg \(\left./ x, x=? x ; \operatorname{Inh} / x, x \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr} / x \mid \operatorname{Neg} / x, x)\right\}\)
----- iteration 1 -----
\(C:=\left\{\right.\) Neg/x, \(x \rightarrow^{\varepsilon} \operatorname{Tr} / x+\) Neg/x, \(\left.x\right\}\)
\(E_{c}:=\left\{\right.\) Neg \(/ x, x=? x ; \operatorname{Inh} / x, x \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr} / x \mid \operatorname{Neg} / x, x)\)
        \(\left.\operatorname{Tr} / \mathrm{x}=!\mathrm{x} ; \mathrm{Tr} / \mathrm{x} \oplus \tau_{\delta^{\prime}} 0\right\}\)
----- iteration 2 -----
\(C:=\left\{\right.\) Neg \(/ x, x \rightarrow \rightarrow^{\varepsilon} \operatorname{Tr} / x+\) Neg \(/ x, x\)
    \(\operatorname{Tr} / x \rightarrow{ }^{\delta} 0\)
    \(\operatorname{Tr} / x+\operatorname{Neg} / x, x \rightarrow p(x) \operatorname{Tr} / x+\operatorname{Inh} / x, x\}\)
\(E_{c}:=\left\{\mathrm{Neg} / \mathrm{x}, \mathrm{x}=? \mathrm{P} ; \operatorname{Inh} / \mathrm{x}, \mathrm{x} \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr} / \mathrm{x} \mid \mathrm{Neg} / \mathrm{x}, \mathrm{x})\right.\)
    \(\operatorname{Tr} / x=!x ; \operatorname{Tr} / x \oplus \tau_{s^{\prime}} ; 0\)
    \(\left.\operatorname{Inh} / x, x=\tau_{n} ; \operatorname{Neg} / x, x\right\}\)
```

----- iteration 3 -----
$C:=\left\{\right.$ Neg $/ x, x \rightarrow^{\varepsilon} \operatorname{Tr} / x+$ Neg $/ x, x$
$\mathrm{Tr} / \mathrm{x} \rightarrow \mathrm{T}^{\delta} 0$
$\operatorname{Tr} / x+\operatorname{Neg} / x, x \rightarrow p(x) \operatorname{Tr} / x+\operatorname{Inh} / x, x$
Inh/ $x, x \rightarrow \eta$ Neg/ $x, x\}$
$E_{c}:=$ no change
----- termination -----

```
Neg/x,x->\mp@code{Tr}/x+Neg/x,x
Tr/x -> }
Tr/x + Neg/x,x ->p(x) Tr/x + Inh/x,x
```



```
Neg/x,x
```


Example: $\operatorname{Tr}(x) \mid \operatorname{Neg}(x, y)$

```
\(E=\)
    \(\operatorname{Neg}(a, b)=? a ; \operatorname{Inh}(a, b) \oplus \tau_{\varepsilon^{\prime}}(\operatorname{Tr}(b) \mid \operatorname{Neg}(a, b))\)
    \(\operatorname{Inh}(a, b)=\tau_{\eta} ; \operatorname{Neg}(a, b)\)
    \(\operatorname{Tr}(\mathrm{b})=!\mathrm{b} ; \operatorname{Tr}(\mathrm{b}) \oplus \tau_{\delta^{\prime}} 0\)
    \(\operatorname{Tr}(x) \mid \operatorname{Neg}(x, y)\)
----- initialization -----
\(E^{c}:=\left\{\operatorname{Tr} / x=!x ; \operatorname{Tr} / x \oplus \tau_{\delta} ; 0\right.\)
    Neg/x,y = ?x; Inh/x,y \(\left.\oplus \tau_{\varepsilon^{\prime}}(T r / y \mid N e g / x, y)\right\}\)
----- iteration 1 -----
\(C:=\left\{\mathrm{Tr} / \mathrm{x} \rightarrow^{\delta} 0\right.\)
    Neg/x,y \(\rightarrow^{\varepsilon} \operatorname{Tr} / y+\mathrm{Neg} / x, y\)
    \(\operatorname{Tr} / x+\) Neg \(/ x, y \rightarrow p(x) \operatorname{Tr} / x+\operatorname{Inh} / x, y\}\)
\(E^{c}:=\left\{\operatorname{Tr} / x=!x ; \operatorname{Tr} / x \oplus \tau_{\delta} ; 0\right.\)
    Neg/x,y = ?x; Inh/x,y \(\oplus \tau_{\varepsilon^{\prime}}(\) Tr/y \(\mid\) Neg/x,y)
    \(\operatorname{Tr} / \mathrm{y}=\mathrm{l} \mathrm{y} ; \mathrm{Tr} / \mathrm{y} \oplus \tau_{\delta^{\prime}} 0\)
    \(\operatorname{Inh} / x, y=\tau_{\eta} ;\) Neg/x,y \}
```

----- iteration 2 -----
$C:=\left\{\operatorname{Tr} / x \rightarrow^{\delta} 0\right.$
Neg/x,y $\rightarrow^{\varepsilon}$ Tr/y + Neg/x,y
$\mathrm{Tr} / x+\mathrm{Neg} / x, y \rightarrow{ }^{p(x)} \operatorname{Tr} / x+\operatorname{Inh} / x, y$
$\operatorname{Tr} / \mathrm{y} \rightarrow{ }^{\delta} 0$
Inh/x,y $\rightarrow{ }^{n}$ Neg/x,y\}
$E^{c}:=$ no change
----- termination -----

```
\(\mathrm{Tr} / \mathrm{x} \rightarrow{ }^{\delta} 0\)
Neg/x,y \(\rightarrow^{\varepsilon}\) Tr/y + Neg/x,y
Tr/x + Neg/x,y \(\rightarrow{ }^{p(x)} \operatorname{Tr} / x+\operatorname{Inh} / x, y\)
\(\operatorname{Tr} / y \rightarrow{ }^{\delta} 0\)
    \(\operatorname{Inh} / x, y \rightarrow \eta\) Neg/x,y
    \(\mathrm{Tr} / \mathrm{x}+\mathrm{Neg} / \mathrm{x}, \mathrm{y}\)
```


CPF to Chemistry: Handling Communication

Grounding (replace parameters with constants)
just one main change: now also convert each input parameter into a ground choice of all possible inputs
N is the set of free names in E, P
\#p is the length of p

$$
\begin{aligned}
& E::=X_{1}\left(p_{1}\right)=M_{1}, \ldots, X_{n}\left(p_{n}\right)=M_{n} \\
& M::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n} \\
& P::=X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right) \\
& \pi::=\tau_{r} ? n(p) \ln (p)
\end{aligned}
$$

n / p is a name in bijection with $\langle n, p\rangle$
X / p is a name in bijection with $\langle X, p\rangle$
(each X / p is seen as a separate species)
$/_{N}\left(\tau_{r} ; P\right)=\tau_{r} ; /_{N}(P)$
$/ N\left(n_{(r)}(p) ; P\right)=!n / P(r) ; /_{N}(P)$
$/ N_{N}\left(? n_{(r)}(p) ; P\right)=\oplus(q \in N \# p)$ of $? n / q_{(r)} ; / N_{N}(P\{p \leftarrow q\})$
$/_{N}\left(\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n}\right)=/_{N}\left(\pi_{1} ; P_{1}\right) \oplus \ldots \oplus /_{N}\left(\pi_{n} ; P_{n}\right)$
$/_{N}\left(X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right)\right)=X_{1} / p_{1}|\ldots| X_{n} / p_{n}$
E_{G} is again the Parametric Explosion of E

$$
\begin{aligned}
& E_{G}:=\left\{\left(X / q=/_{N}(M\{p \leftarrow q\})\right) \text { s.t. }(X(p)=M) \in E \text { and } q \in N \# p\right\} \\
& P_{G}:=/{ }_{N}(P) \quad \text { (simply ground the given initial conditions once) } \\
& C h(E)=C h_{G}\left(E_{G}\right) \quad E_{G} \text { is a again a CGF! }
\end{aligned}
$$

Example

E (with free names x, y):

$$
\begin{aligned}
& \begin{array}{l}
P(a, b)=? a(c) ;(P(c, b) \mid Q(c)) \\
Q(a)=!a(a) ; 0 \\
P(x, y) \mid Q(x)
\end{array} \\
& E_{G}:
\end{aligned}
$$

Reduced C
(from initial conditions)

$$
\begin{aligned}
& Q / x+P / x, y \rightarrow p(x) P / x, y+Q / x \\
& P / x, y+Q / x
\end{aligned}
$$

Example

E (with free names x, y):

$$
\begin{aligned}
& P(a, b)=? a(c) ;(P(c, b) \mid Q(c, c)) \\
& Q(a, b)=!a(a) ; 0 \oplus!b(b) ; 0 \\
& P(x, y) \mid Q(x, y)
\end{aligned}
$$

$E_{G}:$

$$
\begin{aligned}
& Q / x, y=!x / x ; 0 \oplus!y / y ; 0 \\
& Q / y, x=!y / y ; 0 \oplus!x / x ; 0 \\
& Q / x, x=!x / x ; 0 \oplus!x / x ; 0 \\
& Q / y, y=!y / y ; 0 \oplus!y / y ; 0 \\
& P / x, y= ? x / x ;(P / x, y \mid Q / x, x) \oplus \\
& ? x / y ;(P / y, y \mid Q / y, y) \\
& P / y, x= ? y / x ;(P / x, x \mid Q / x, x) \oplus \\
& ? y / y ;(P / y, x \mid Q / y, y) \\
& P / x, x= ? x / x ;(P / x, x \mid Q / x, x) \oplus \\
& ? x / y ;(P / y, x \mid Q / y, y) \\
& P / y, y= ? y / x ;(P / x, y \mid Q / x, x) \oplus \\
& ? y / y ;(P / y, y \mid Q / y, y) \\
& P / x, y \mid Q / x
\end{aligned}
$$

C :

$$
\begin{aligned}
& Q / x, y+P / x, y \rightarrow p(x) P / x, y+Q / x, x \\
& Q / x, y+P / x, x \rightarrow p(x) P / x, x+Q / x, x \\
& Q / x, y+P / y, x \rightarrow p(y) \quad P / y, x+Q / y, y \\
& Q / x, y+P / y, y \rightarrow p(y) \quad P / y, y+Q / y, y \\
& Q / y, x+P / y, x \rightarrow p(y) \quad P / y, x+Q / y, y \\
& Q / y, x+P / y, y \rightarrow p(y) \quad P / y, y+Q / y, y \\
& Q / y, x+P / x, y \rightarrow p(x) P / x, y+Q / x, x \\
& Q / y, x+P / x, x \rightarrow p(x) P / x, x+Q / x, x \\
& Q / x, x+P / x, y \rightarrow{ }^{2 p(x) P / x, y+Q / x, x} \\
& Q / x, x+P / x, x \rightarrow 2 p(x) P / x, x+Q / x, x \\
& Q / y, y+P / y, x \rightarrow \rightarrow^{2 \rho(y) P / y, x+Q / y, y} \\
& Q / y, y+P / y, y \rightarrow{ }^{2 \rho(y) P / y, y+Q / y, y} \\
& P / x, y+Q / x, y
\end{aligned}
$$

reduced C (from initial conditions)

$$
\begin{aligned}
& Q / x, y+P / x, y \rightarrow \rightarrow^{p(x)} P / x, y+Q / x, x \\
& Q / x, x+P / x, y \rightarrow \rightarrow^{2 p(x) P / x, y+Q / x, x} \\
& P / x, y+Q / x, y
\end{aligned}
$$

Exponential Explosion via Communication

Parametric form (size 3).

green $=$ free names with associated rates

Exponentially larger ground form (size 8).

$$
\begin{aligned}
& X / t_{1}, f_{1}=!t_{1} / f_{1} ; X / f_{1}, t_{1} \\
& X / f_{1}, t_{1}=!f_{1} / t_{1} ; X / t_{1}, f_{1} \\
& X / t_{2}, f_{2}=!t_{2} / f_{2} ; X / f_{2}, t_{2} \\
& X / f_{2}, t_{2}=!f_{2} / t_{2} ; X / t_{2}, f_{2} \\
& X / t_{3}, f_{3}=!t_{3} / f_{3} ; X / f_{3}, t_{3} \\
& X / f_{3}, t_{3}=!f_{3} / t_{3} ; X / t_{3}, f_{3}
\end{aligned}
$$

$$
A / t_{1}, t_{2}, t_{3}=
$$

$$
? t_{1} / f_{1} ; A / f_{1}, t_{2}, t_{3} \oplus
$$

$$
? t_{2} / f_{2}, A / t_{1}, f_{2}, t_{3} \oplus
$$

$$
? t_{3} / f_{3} ; A / t_{1}, t_{2}, f_{3}
$$

$$
\mathrm{A} / \mathrm{f}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}=
$$

$$
? f_{1} / t_{1} ; A / t_{1}, t_{2}, t_{3} \oplus
$$

$$
? t_{2} / f_{2} ; A / t_{1}, f_{2}, t_{3} \oplus
$$

$$
? t_{3} / f_{3} ; A / t_{1}, t_{2}, f_{3}
$$

...etc for the other bit flips

$$
A / t_{1}, t_{2}, t_{3}
$$

$$
X / t_{1}, f_{1}\left|X / t_{2}, f_{2}\right| X / t_{3}, f_{3}
$$

We have not fully expanded the input summations in $A(\ldots)$: only enough for the channels that are actually used: e.g., there would never be a communication on channel t_{1} / f_{2}.

CPF Iterative Algorithm

The same as before, just using the new grounding $/ N$ (based on the set N of free names of E, P, for expanding inputs).
initialization

$$
N=f n(E, P)
$$

$$
E_{C}:=\left\{\left(X / q=/_{N}(M\{p \leftarrow q\})\right) \text { s.t. } X(q) \text { occurs in } P \text { and }(X(p)=M) \in E\right\} \quad \text { (initial conditions) }
$$

iteration

$$
C:=\quad h_{G}\left(E_{C}\right)
$$

$$
E_{c}^{\prime}:=E_{c} \cup\left\{\left(X / q=/_{N}(M\{p \leftarrow q\})\right) \text { s.t. } X / q \text { occurs in } C \text { and }(X(p)=M) \in E\right\}
$$

termination
if $E_{C}^{\prime}=E_{C}$ then stop and return $\left(C, /_{N}(P)\right)$ else $E_{C}:=E_{C}$ and iterate.

A General π-calculus Normal Form

$$
\begin{array}{ll}
\mathrm{E} & ::=X_{1}\left(\mathbf{p}_{1}\right)=\left(v \mathbf{q}_{1}\right) M_{1}, \ldots, X_{n}\left(p_{n}\right)=\left(v q_{n}\right) M_{n} \\
M & ::=\pi_{1} ; P_{1} \oplus \ldots \oplus \pi_{n} ; P_{n} \\
P & ::=X_{1}\left(p_{1}\right)|\ldots| X_{n}\left(p_{n}\right) \\
\pi & ::=\tau_{r} \quad ? n(p) \ln (p) \\
N F & ::=E, P
\end{array}
$$

Definitions $\quad(n \geq 0)$

Molecules $\quad(n \geq 0)$
Solutions $\quad(n \geq 0)$
Interactions
with initial conditions

Any π-calculus process can be written in this normal form.
But not all of those can be translated to chemical reactions, because we need to restrict to a finite number of species.

Example (complexation):

$$
\begin{aligned}
& P(a)=\left(v n_{(d)}\right)!a(n) ; P^{\prime}(a, n) \\
& P^{\prime}(a, n)=!n ; P(a) \\
& Q(a)=? a(n) ; Q^{\prime}(a, n) \\
& Q^{\prime}(a, n)=? n ; Q(a) \\
& P\left(x_{(c)}\right) \mid Q\left(x_{(c)}\right)
\end{aligned}
$$

Example (enzymatic reaction):

$$
\begin{aligned}
& E(a)=\left(v n_{(d)}, m_{(p)}\right)!a(n, m) ; E^{\prime}(a, n, m) \\
& E^{\prime}(a, n, m)=!n ; E(a) \oplus!m ; E(a) \\
& S(a)=? a(n, m) ; S^{\prime}(a, n, m) \\
& S^{\prime}(a, n, m)=? n ; S(a) \oplus ? m ; P() \\
& P()=\tau_{0} ; 0 \\
& E\left(x_{(c)}\right)\left|S\left(x_{(c)}\right)\right| S\left(x_{(c)}\right)
\end{aligned}
$$

Summary

- From Chemistry to ODEs
- Via the stoichiometric matrix
- From Chemistry to Processes
- Via the interaction matrix
- From Processes to Chemistry
- Ground processes: by analysis of normal form interactions
- Parametric processes: by parametric explosion
- Compositionality
- Processes are compositional in components (you just "add components") and chemistry is compositional in reactions (you just "add reactions"). But:
- Adding reactions has a linear effect on the number of components (adding one reaction adds one or two more process actions).
- Adding components has a quadratic effect on the number of reactions (adding one species may add one reaction for each species).
- ODEs grow quadratically along with the chemical reactions (stoichiometric matrix has one column per reaction).
- Parameterization is available only on processes.

> Q?

