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Continuous Time Markov Chains

A continuous-time Markov chain (CTMC) is a "
pair M=(S,R) where S is a countable set of ”
states, and R:SxS—Real,q is the rate matrixd), 3
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The exit rate E(s) = X(s'e S) R(s,s') denotes
that the probability of taking a transition

E(s1)=6

S . . ) If R(s,s')>0 for more than one state E(s2)=9
from s within ¥ time units equals l-e E(S)T- s', then there is a race between the E(s3)=1

(The time between state changes is a random outgoing transitions of s. E(s4) = 0

variable with a memoryless distribution.)

The embedded discrete-time Markov chain. P | sl |2 |3 |
(N.B. when we do this, we loose information on holding time in each state) <1 o 73 | 23 | o
The p‘robabili‘ry.P(s,s') of moving from s o s’ = o s o 1251 -
ina smgle s‘rep IS: s3 |o 0 0 1
if E(s)>0 then P(s,s")=R(s,s')/E(s) e J1o Jo ]9o |1

if E(s)=0 then P(s,s5)=1 and P(s,5")=0 for s#s'.

P(s,s") equals the probability that the delay of
going from s to s' “finishes before" the delay
of any other outgoing transition from s.

Model checking continuous-time Markov chains
by transient analysis

CHRISTEL BATER®, BOUDEWLN HAVERKORT?,

(1) The more standard generator matrix has -E(s) on HoLoER HERMANNS® AND JOOST-PIETER K ATOENS*

the diagonal, which requires forbidding self-loops.



CTMC Modeling Formalism

o CTMCs

Finite State Machines with rates on transitions.

All durations are exponentially distributed (memoryless)

Well studied class of stochastic processes

Efficient analysis algorithms for stationary and transient analysis

e We consider only:
- Modeling formalisms that map to CTMC's
- But there are still quite a few of those:

e High level formalisms mapping to CTMCs

- Stochastic Petri Nets [Molloy]
Markovian Queuing Networks [Muppala & Triverdi]
Stochastic Automata Networks [Plateau]
Probabilistic I/0O Automata [Wu et al.]
Stochastic Process Algebras [Herzog et al.] [Hillston]

Holger Hermanns
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P E P A Labeled Transition
Semantics

A Compositional Approach to Performance Modelling

P o= {&’?‘}'P | P+Q | P Efj@ | P"'IL | A http://www.dcs.ed.ac.uk/pepa/book.pdf

Jane Hillston

¢ Definition 3.3.1 The apparent rate of action of type v in a component P, denoted r&(PJE i it
o is the sum of the rates of all activities of type o in Act(P). of o)
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(ordinary) w-calculus

Syntax

m u= x(y) receivey alongx
F(y) send y along x

Pu=0|3,mPlle=y| P|P|P|(newz)P|!P

Structural congruence

Renaming of bound variables

z(y).P = =x(z).({z/y} P) ifz¢ FN(P)
(newy).P = (newz).({z/y}P) ifz¢g FN(P)
Structural congruence laws
PlQ = QP commutativity of parallel composition
(PIQ)R = P|Q|R) associativity of parallel composition
P+@Q = Q+P commutativity of summation
(P+Q)+R = P+ (Q+R) associativity of summation
(new z)0 = 0 restriction of inert processes

(new z)(new ). . 5. .(new dlnewm) L. .............. polyadic restriction
o((new 2)P)|Q) (new z)(P|Q) ifx g FN(Q) . scope extrusion
.'.........!?..’i’..mr 0000000000000 000000000000° licati

Reaction rules
é («o +F2)QD|( -+ 2(y).P) = Q|P{z/y} communication {CGMM]§

P P

PlQ— PQ reaction under parallel composition (PAR)

. (new g;]jj; : f:ew:n]P’ reaction under restriction (RES) :

Q=PP— P P =

0= O structural congruence (STRUCT)

Reduction Semantics
(with structural congruence)

\

> Syntax

J
-~

J \

Chemical
Mixing

> Reactions




Stochastic m-calculus Loz

Stochastic extension of m-calculus.

- Associate a single parameter r (rate) in (O, Stochastic m-Calculus
infinity] to each activity a.

- The rate and the associated exponential CORRADO PRIAMI
distribution describes the stochastic behavior of Dipartimento di Informatica, Universitd di Pisa, Corso Ttalia, 40, I-56125 Pisa, ftaly
The ClCTlVITy Email: priami@diunipi.at

THE COMPUTER JOURNAL, VoLr. 38, No.7, 1995

a.P is replaced by a@rP

Exponential distribution

. 12, . . {xw,r) . P{y_fi} i’ P’ =\
- Guarantees the memoryless property: the fime at  Act: (ur).P“2 P jnot input Ein: (2(u), )P = Plufy] lde: = Q@) = F
which a change of state occurs is independent of , )
| | Ly — P PP
the time at which the last change of state Pare: —E @) n @ =0 Sumo: —— Res: — 1 o gn®)
occurred. PIQ % plQ P+ p (v2)P — (vz) P’
- I.e.we do not have to remember past states b p bt p G
transitions (e.g. in the implementation). Pon i g g MO IAQ =0 S Open s — TV

- Conversely, if we dowant to remember past
transitions, we can do it by programming.

p G pr g PEvre o

Ccrma .

R I 1-. e ee ‘}:‘9.(“"‘inr|ll"“.W.‘R.(P'Ei'(i":""i’"'4‘: P’clq,c @wé o000 o0o000,
ace resolution . o N e PYEIRT S RS B
- Races are resolved in a probabilistic competitive sCloseos o s RER@ @ vy o oo .

; vec . . PIQ = ()(P'1Q) :
way: all the activities that are enabled in a state
compete and the fastest one (stochastically) TABLE 2. Early proved transition system of 5.

succeeds. [Gillespie]



The (Biochemical) St ermsr

This paper was motivated by the need to
model "chemical” interaction laws and
mixed choice. But it supports mixed choice,
b only over a distinguished set of channels
with exactly 1 mixed choice per summation
(homodimerization).

Application of a stochastic name-passing calculus
to representation and simulation of molecular processes

Corrado Priami **. Aviv Regev "¢, Ehud Shapiro *¢, William Silverman

Information Processing Letters 80 (2001) 25-31

C. Priami et al. / Information Processing Letters 80 (2001) 25-31

< Ing (0) = A
s IS i) P :
Table 1 L (Z}“ ri) ) :
Reduction semantics of the biochemical stochastic m-calculus . ) ) T
CEmnE S e s st e s e S e SR R —— :|[(m,rs)|zEiﬂsbj(m)zlﬂ,:
11 . :
( + (x(z), r). Q:I|({x{1} PP ) L, QIP(z/y), xéM o D (PP =Ing(Py) +Ing(P2), s
2o (v2)P) = lfm-(P) 1f:<75,1;., :
_ . 0 otherw ise.,.

(” r+ (®(z),r)-Q + (x(y), 1) P)| Oty 15 similarly defined. by 1eplac1119 any occurrence

A /2r2-2-1) of In with Owt and the condition sbj(m;) = x with

({I{E}J\}.Q-I—{.x{}“}..r}.P—I—---)L Q|P{z/¥}. x€H, sbj(m;) =X. AU

A usual reaction is implemented by the three parame-

X Iprgery r_
P > P ro=ro +Inx(Q), ters rp. rg and ri. where rp represents the basal rate,
X, Fper ] , r{ =r1 + Outy(Q) and rp and r; denote the quantities of interacting mole-
1 1 i h L .

PlQ > P |Q cules, and are computed compositionally via /n, and
A Out, while deducing transitions. The first axiom in Ta-
) X PR o X PR ble 1 corresponds to usual reactions, with two differ-
: pIEOL i g=p P20 P p=( P -

. . ent molecules. The second one corresponds to homo-
:. (vx)P x,_}rb o (vx)P' .: 0 —:.x,rb ol o' dimerization reactions.




Diefinition 2.1 (Process Expressions)

StoPi

Reduction Semantics
(with structural congruence)

" In the following let ¢ = S be a configuration, Ch,

The set of action prefixes w are defined by ISTRUCT) PP fP=Qand P'=Q'
£
T = z(y) receive jf along @ PP
- — PA _

| AT, send ¥ along . [PAR] PIQ 5 P'|Q
where § denotes a tuple (y1,...,4,) of channel [RES] PSP ifz#y
names called a channel vector. The set of process newy:r) P S (newy:vr) P
F,..XPI"ESH]’GHS]’H mﬂstﬂp]"-fﬂ:f:l.dl.lﬂisdﬂ'ﬁﬂﬂdh}"thﬂ ..................%‘_’}.ﬁ........'..........
following syntax with the syntactic categories pro- o [STOCH] 7
EE.RHEE(PJ,gUﬂI‘dEdSI!mS fM}HﬂdpﬂJf‘E‘.‘i?dH‘Jﬂrﬂ- :-ooooooooo f?omoo ooo_:: IFP.J.:.I}.............
tions (D): . [REACT]

the channels contained in the environments in the
confipuration ¢ and assume that s and 5" are sum-
mations in 5. Furthermore let

|slen = H{Erf:-P} EA|s=(Ae)relz)= .-_-hH
and

lslg = |{{f,f,P]I Ed|s=(Ae)nelr)= .:hH

((x(§H)-P + M)|(F(2).Q + N)) = ({Z/#}P|Q}) ¢ Then the apparent rate of a reaction on a channel

.--oc--oc-ooc-oo--oo--oo--oo--oc.-oc--oc-.1nau{mﬁguratlﬂn1=i [']_Fﬁnfﬂ']_aﬂ

Dz=D;D | AR Y P

Pu= P|P | new (z1:11,...
| M| A@@) |0

Mu=mP|M+M

I iTa) P

where () is the nil process (or empty sum} which
cannot do any transitions and A(F) is an invoca-
tion of the process with identifier A with actual
parameters I.

Definition 2.2 (Structural Congruence}

Two processes P oand @ in the StoPi-caleulus are
structurally congruent, written P = ¢}, if we can
transform one into the other by using the following
equations (in either direction):

1. P={Z/FIP ify; ¢ fn(P) for 1 < i < |§).
{ee-conversion )
2 M+N=N+M, (M+N)+L=M+(N+L)
3. Plo= P, P|Q = Q|P, P|(Q|R) = (PIQ}|R
4. new £0 =0, new T P = new §z P
new F(P|Q) = Plnew & Q) if z; ¢ fn(F)
far 1 < i < |7,

5. A® Y P Ay = g5 P

Figure 1: Semantics of the StoPi-caleulus.

Definition 3.1 (Process Normal Form)
For a process in the StoPi-calculus we define the
normal form as

(3)

new [IJ'] s W :rn}{F'll"'l-ﬁi}

where each F; is either 5, m Py or A(F).

iT1yeen

The StoPi-calculus and Simulator
- a stochastic m-caleulus and the implementation of a simulator

Steffen Ulsp Knudsen
steffendcs.auc.dk

Anders Bloch
bloch@cs.auc.dk

Bjern Haagensen
bhécs.auc.dk

Michael Korshak Hayer
fallendics.auc.dk

Aalborg University, Department of Computer Science
Fredrik Bajers Vej TE, DK-9220 Aalborg (st

30th May 2003 (unpublished)
http://www.cs.auc.dk/~bh/files/dat4project.ps.gz

Deﬂnltlnn 3.4 (Apparent Rates) °
The apparfml: rate of a reaction between guarded ° .
sums s and &' in a configuration ¢ on channel ch € ¢
C'h., where & receives input on ch and s’ r:-utput.'i
on ch, is defined as:

ifs# 5

atherwise,

. + H—
r(s,5',ch) = { a‘h" |slen - |s'| 25

.°oooooooooooooooooooooooooooooooooo[ﬁ.

The apparent rate of channel ch in & configuration
¢ is the sum of the apparent rates of a reactions on

" ¢h on all possible guarded sums:

renlc) = Z r{s, 5, ch). (7

58 ES

Note that the expression (7) can explicitly be cal-
culated as

renle) =che | 3 Islen- D I8'lx (8)

FES sES
PrTs

This is the most detailed analysis of a stochastic pi calculus (with mixed choice) yet.
However, the apparent rate is defined on the underlying abstract machine after

translation, not on the pi calculus itself.



P,Q = vxP Restriction (1) E:= 0 Null (5)
| P| Q@ Parallel (2) | 7P+ X  Action (6)
| X Summesation  (3) Ti= x{n) Qutput (1)
| !m.P  Replication (4} | x(m) Input,z # m (8)
Definition 1. Syntax of SPi
— b oy
Q.Z.P.ﬁ?‘p..Z.Q.....Q‘...‘cb..'... {g}
. PP = wmP L P (10)
"‘ﬁ‘_"",:ﬂ’ . ...Q..'..}-_’ré... [11}
P+ X | 2(m).Q+ X " P Qunsmy (12)

Definition 2. Reduction in SPi

Plo=p (13)
PlQ=Q|P (14
Pl@QIR)y=(P|Q) R (15
ImP=m(P|Im.F) (16)
vr0=0 (17)
vevy P =vyve P (18)

T.P+n'. P+ X =P +m. P+ X (19)

Y=X'= rP+X =7 P+X'(20)
rem{P)=ve (P|Q)=P |ved (21)

P=F=vzP=vxP
P=P=P|Q=P|Q
P=F =1rP=

(22)
(23)

B (24)

P=P'= g P+¥ =n.P' +X (25

Definition 3. Structural congruence in SPi

V.U z=wvaV  Restriction (26) A,Bu= | Empty 28)
A List (27) 1 XA Summation (29)
Definition 7. Syntar of SPiM

ngfmP) = P:vzV)2px(P:V) (30)
0:4224 (31)
(P|Q):A2P:Q:A (32)
rgfm(PA) = (vyP):A2vr(Pyy A (33)
mP:A&2 7 (P|lm.P):A (34)
(mP4+X): A& (m P+ XA (35)

Definition 8. Construction in SPiM
(P12P: (36)

Definition 9. Encoding SPi te SPiM

SPiM

Reduction Semantics
(with structural congruence)

Vv o= oV D eV (37)
= Next(A)
A > (z(m).P+ X):A" = A™¥p Q4" 38)
AAT = (). Q@+ ) A"
Definition 10. Reduction in SPiM
A@xy:: A" ¥ Aad! (39)
FeAs- (o' P+ XA (nP+E) A= (P PP 4a P+ XA (40)

Definition 11. Selection in SPiM

Again, the
apparent rate is
defined on the
underlying

abstract machine.

Bio-CONCUR 2004 Preliminary Version

A Correct Abstract Machine for the Stochastic

Pi-calculus

Andrew Phillips?

Luca Cardelli ?

The next reaction channel = and the reaction delay v are calculated using
the algorithm described in Definition 12, The algorithm is based on the Gillespie
algorithm [6], which uses a notion of channel activity in order to stochastically
select the next reaction channel. A similar notion of channel activity is defined
for the SPi-Machine, where Act.(A) denotes the activity of channel r in list A.
The activity corresponds to the number of possible combinations of inputs and

outputs on channel r in A, and is defined by:
00 0000000000000 0000000000000000,

. Actz(A) = (Ing(A) + Outy(A))

— Mix(A) .

where In,,

(A) and Out,[A) are the number of unguarded énputs and outputs on

channel = in A, respectively, and Mix, (A) = the sum of In.(X;) x Out.(X;) for
each summation ¥; in A. The formula takes into account the fact that an input
and an cutput in the same summation cannot interact, by subtracting Mix_(A)
from the product of the number of inputs and outputs on =, Once the values ¢
and 7 have been calculated, the machine increments the reaction time by delay 7
and randomly chooses one of the available reactions on = with equal probability,
using the selection operator. This is achieved by randomly choosing a number
n € [1.In,(A)] and selecting the nth input in A, followed by randomly selecting
an output from the remaining list in a similar fashion.



St - A modern version i

PQu:= pzP Restriction E:=X{m)=F Definition, fn(F) C m . . . .
| P|Q  Parallel | E,E, Union A Graphical Representation for Biological
| M Choice |0 Empty Processes in the Stochastic pi-calculus
[ Instance
L — ?
i z(m) fnput Andrew Phillips!, Luca Cardelli', and Giuseppe Castagna®
Mi=aP4+M Action | lz(n) Cutput
| o Null | Delay
lz(n).P+M == p 1
:.............................................: - ?Il::ln:lp+hrf E} P{“J.lm] 2
:. [ ) .‘?{.I.“.Pig .=. :-i!.fe.{.z.j .>f .{EI}I.I:..P.}. ::q.(?:-l.tl.‘{.€:l ._. E‘IEI.X.IE..F‘.}E .: 0 00000000 OGNOGFNOGNOSEOSNOSNOSINOIPS :Ir!;..f,.-': i‘.i.- .%’ .-F: o000 3

PP Qe = Pl S P

ngm(@Q) PP 0o = P|1Q Z (P |Q)

(1)

(2)

(3)

(4)

(5)
L I s s ©)
riy PP o yp ™ p (7)
r¢mia)Ubnja) PP = wxP % opx P (8)
M 2P = xPiM =2 P (9)

bofa) nfn(Q)=0 PP = P|Q 2 P'|Q (10)
X(m)=P Ppm —P = Xn) = P 11



St - My favorite version

[APhillips]

le(n). P+ M

7. P4+ M
Te(m).QQ+ N

T
—

T
—

P
P | Q{ﬂ;'m}

. p . p

—_—
—

A P

R(z,P)

—

!
T P

9+£x P 2. P

= vrP
p%pP = P|Q
o=pP-“P=0 = 0@

Reduction in S, where # ::=x

PQ = ve P Restriction E:= X(m)=F Definition, fn(P) C m
| P|Q Parallel | Ei.E, Union
| M Choice | @ Empty
| X(n) Instance
Tou= Tx(m) Tnput
M= 7P+ M Action | lz(n) Output
| 0 Null | Ty Delay
Definition 1.1. Syntax of S7
PO = P (102)
PlQ = Q|P (103)
PI(QIR) = (PIQIR (104)
m.Pi+mePo+M = mPa+m.P+M (105)
vel0 = 0 (106)
vevyP = vyveP (107)
r¢gm(P) = wvz(P|Q) = PlvzQ (108)
Xm &P = X(n) = Profmy (109)

Definition 1.2. Structural Congruence in St

&

g

—

&

—

vr P;
P'|Q
Q!

In. (vx P)
r#y = In.(vyP)
In.(P|Q)

Xm)=P = In.(X(n))
In,(7m.P + M)

In.(0)

In, (?x(m))
In.(7y(m))
In,.(ty(n))

In(7,)

1m)
rFYy = (m)

Mix, (vx P)

r#y = Mix,.(vyP)
Mix, (P | Q)

Xim)=P = Mix,(X(n))
)

Mize, (M

(x, P) is the apparent rate of z 1

L1 1 [ 3

[ = 13

L | [

Reduction Semantics
(with structural congruence)

0 R(x, P) = rate(x) x

(In.(P) = Out . (P) —

0 (110)
In.(P) (111)
In, (P)+ In.(Q) (112)
In, (P jmy) (113)
Tng () + In, (M) (114)
0 (115)
1 (116)
0 (117)
0 (118)
0 (119)
0 (120)
Mix, (P) (121)
Mix, (P) + Mix, (Q) (122)
Mixz (P fm)) (123)
In. (M) % Out, (M) (124)

Mix, (P)) ® (125)

®o00000000000000000000000000000
Definition 1.3. Apparent Rate in Sw. The definition of Out, (P) is similar to that of In,(P).

Proposition 1.4. YPP St AP =@ = R(z,P) =

R(z,Q)



BioAmbients

e An extension of Sto-n-calculus

- Dynamic membranes: operations for
merging, splitting, interacting through
membrane channels.

- Implemented by Aviv Regev.

e An adaptation of Ambient Calculus

- A process language for dynamic
containers (mobile agents, distributed
locations, etc.)

BioAmbients: An abstraction for biological
compartments

Aviv Regev®* Ekaterina M. Panina® William Silverman ¢

Luca Cardelli? Ehud Shapiro©

Processes can communicate
across membranes

Membranes are processes;
they can move in and out of
other membranes



St to CTMCs

e Theorem [Hillston, Priami]

- Let P be a finite contro/ Sn process.
Then the set of derivative processes from P defines a finite CTMC.



Gillespie

1. For all € fa(A) calculate ar = Actz(A) * rate(x)

2. Store non-zero values of ax in a list (2p.ap), where g 2 1...0M.
3. Calculate ao = Y0 aw

4.

(Generate two random numbers 1y nz £ [0, 1] and caleulate 7, such that:

T={(1/ap) In(1/nq)

p—1 e
E dp < Nado < E dp
=1 =1

5. Next(A) =z, and Delay(A) =7.

Definition 12. Calewlating Next(A) and Delay(A) according to Gillespie [6].

2340

Exact Stochastic Simulation of Coupled Chemical Reactions

A Correct Abstract Machine for the Stochastic
Danlel T. Gillespie® Pi-calculus

Research Department, Naval Weapons Center, China Lake, California 93555 (Received May 12, 1977)

Publication costs assisted by the Naval Weapons Center Andrew Phillips' Luca Cardelli?

The Journal of Physical Chemistry, Vol. 81, No. 25, 1977

that's Area 51!



One State of the Simulation

(Frangois and Hakim example)

Tge eACst "~‘

6 po?ible 2 possible
reactions . reactions
on AB . onh bA
ev iE, “‘
AB ‘: A bA@O 19
. “0 v. D(Unb)
S R BCsT
generr'ee mems 'P B
’C@
geneBbound 3
1 possible ----------------
reactions

onh each t




Summary

e Stochastic process calculi:

The modular representation of
concurrent stochastic processes.

Cut down to CTMCs (Continuous
Time Markov Chains). Then,
standard analysis techniques are
applicable.

Can be given friendly automata-like
scalable graphical syntax
[A.Phillips].

Is directly executable (via
Gillespie).

Are analyzable [Hillston]
[Hermanns].

. =i s = remove | i)
degrads () unbind()

unbkinds=
tailes
binds«unkind, send, removes gend (tail)
EENOE . degrade ()

b * aemeade () b CEED) |
» remove ()

dimw unbind, unbind ()

e Ct | bind iunbind, send , remowve)

'/T dagrads()

protein A()

protein TF()
: P }*\ L
{Protein & protein R<s /;Q!;.n_Tqu

translat=() translate() !Protein TF

degrads® ()

|
bl

degrads" {)

rona Al ma_TFi}

()

transcrilk=’ () transcribe’ ()
Q rna_Re + ddEeggrraaddE,:':_;- gj rna TF«=
\ + transcriks«x tranacribe ()
taili) ! + transcribe <= tail i}
) + translate<s
(@ )

157

¥

Figure 2. Regulating Gene Expression by Positive Feedback [9)

E 500 | E 70
2 aoo 3
& & 5 mlh‘““l
Q 300 9 %,
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Time (=) Time (5]

Figure 3. Protein A molecules v.s. time in presence (left) and absence (right) of TF

A _Phillips, L.Cardelli. BioConcur'04.







