Stochastic Communicating
 Automata

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Trento, 2006-05-22.. 26
www.luca.demon.co.uk/ArtificialBiochemistry.htm

Communicating Automata

Interacting Automata

Communicating automata: a graphical FSA-like notation for "finite state restriction-free π calculus processes". Interacting automata do no \dagger even exchange values on communication.
The stochastic version has rates on communications, and delays.

"Finite state" means: no composition or restriction inside recursion. Analyzable by standard Markovian techniques, by first computing the "product automaton" to obtain the underlying finite Markov transition system. [Buchholz]

Interacting Automata Transition Rules

Delay Automata

Delay

$$
A=@ \wedge ; B
$$


```
directive sample 3.0
directive plot B1();B2();B3();B4(); B5(); B6();
    A1(); A2(); A3(); A4(); A5();A6()
let \(A 1()=\) delay@1.0; \(B 1()\) and \(B 1()=()\) let \(A 2()=\) delay@2.0; \(B 2()\) and \(B 2()=()\) let \(A 3()=\) delay@3.0; \(B 3()\) and \(B 3()=()\) let \(A 4()=\) delay@4.0; B4() and B4() = () let \(A 5()=\) delay@5.0; \(B 5()\) and \(B 5()=()\) let \(A 6()=\) delay@6.0; B6() and B6() = () run 100 of (A1() \(|A 2()| A 3()|A 4()| A 5() \mid A 6())\)
```


Choice

$$
@_{\Lambda} ; C+@ \mu ; C=@(\lambda+\mu) ; C
$$

The only extra law of Strong
Markovian Bisimulation (Lumpability)
directive sample 4.010000
directive plot $A() ; B()$
let $A()=$ do delay@1.0 or delay@1.0
and $B()=$ delay@2.0
run 1000 of $(A() \mid B())$
ancose

This is the min of two random variables (i.e. a duration which is the min of two durations). In the case of exponential distributions, the min is another exponential distribution.

Decay by two or more processes

A quantity may decay via two or more different processes simultaneously.
These processes may have different probabilities of occurring, and thus will occur at different rates with different half-lives. For instance, in the case of two simultaneous decay processes, the decay of the quantity N is given by:

$$
N(t)=N_{0} e^{-\lambda_{1} t} e^{-\lambda_{2} t}=N_{0} e^{-\left(\lambda_{1}+\lambda_{2}\right) t}
$$

Exponential distributions are closed under choice.

Hence we can sum the rates

Join

@ $; B \mid @ \mu ; B \neq @(\Lambda+\mu) ; B$

directive sample 4.010000
directive plot $A() ; B() ; C() ; ? A C$
new AC@1.0: chan
let $A()=\operatorname{dodelay} @ 1.0 ; B()$ or $3 A C$
and $C()=$ do delay $@ 1.0 ; B()$ or $3 A C$
and $B()=()$
run 1000 of $(A) \mid C())$
Hmm, so what is this B distribution? (wait until later)
directive sample 4.010000
directive plot $B() ; D()$
let $D()=$ delay@2.0; $B()$
and $B()=()$
run 2000 of $D()$

Idle Loops

directive sample 6.01000
directive plot $A() ; B 1() ; B 2() ; C()$
let $A()=$ delay@1.0; ()
let B 1()$=$ do delay@1.0; B1() or delay@1.0; ()
let B2() = do delay@2.0; B2() or delay@1.0; ()
let $C()=$ do delay@1.0; () or delay@1.0; ()
run 2000 of $(A()|B 1()| B 2() \mid C())$

Sequence

@^; @н; C = ??

This is the sum of two random variables (i.e. a duration which is the sum of two durations). In the case of exponential distributions, the (discrete) sum B is an Erlang distribution.

On the other hand, this means that networks of exponential distributions can express more (much more) than just exponential distributions. (Can densely approximate any probability distribution.)

Exponential distributions are not closed under sequence.

Unbounded Concurrency

$$
A \cong B \Rightarrow A|C \xlongequal{\varrho} \stackrel{\wedge}{\wedge} B| C
$$


```
directive sample 4.010000 directive plot \(A() ; B()\)
let \(A()=\) delay@1.0; \(B()\) and \(B()=()\)
run 1000 of \(A()\)
```

directive sample 4.010000 directive plot $A() ; B() ; C() ; D()$
let $A()=$ delay@1.0; $B()$ and $B()=()$
let $C()=$ delay@2.0; $D()$ and $D()=()$
run 1000 of $(A() \mid C())$

No side effect on A or B.
(E.g. they don't get "slower" because something else is running!)

Asynchronous Interleaving

$$
\left.@_{\wedge} ; B\left|@ \mu ; D=@ \wedge ;\left(B \mid @_{\mu} ; D\right)+@_{\mu ;(@ \prime B}\right| D\right)
$$


```
directive sample 4.0 10000
directive plot A();B();C();D()
let A()=delay@1.0; B()
and }B()=(
let C() = delay@2.0; D()
and D()=()
run 1000 of (A()|C())
```


N.B. just to talk about this law, we need to exceed the automata framework and move to process algebra in order to have states that split

Amazingly, the B's and the D's from the two branches sum up to exponential distributions
directive sample 4.010000
directive plot
? YA; $B() ; ? Y C ; D() ; Y() ; A() ; C()$ new YA@1.0:chan new YC@1.0:chan
let $A()=$ do delay@1.0; $B()$ or ?Y A
and $B()=()$
let $C()=$ do delay@2.0; $D()$ or ?YC
and $D()=()$
let $Y()=$
do delay@1.0; $(B() \mid C())$
or delay@2.0; $(A() \mid D())$
or ?YA or ?YC
run 1000 of $Y()$

Join Again

directive sample 4.010000
directive plot $A() ; B() ; C() ; ? A C$
new AC@1.0: chan
let $A()=$ do delay@1.0; $B()$ or ? $A C$ and $C()=$ do delay@1.0; $B()$ or ? $A C$ and $B()=()$
run 1000 of $(A() \mid C())$

directive sample 4.010000
 directive plot $B() ; D() ; E()$

let $E()=$ delay@2.0; $(B() \mid D())$
and $D()=$ delay@1.0; $B()$
and $B()=()$
run 1000 of $E()$

That only works if the two delays are equal; in general, by Interleaving:
@^;B | @ $; \mathrm{B}=@_{\wedge} ;\left(B \mid @_{\mu} ; B\right)+@_{\mu}\left(@_{\Lambda} ; B \mid B\right)$

Loops

Interacting Automata

From Delay to Interaction

Delay

Interaction

"..."." : transitions that have a rate

Examples

directive sample 0.051000
directive plot $A() ; B() ; C)$
new $a @ 1.0:$ chan
let $A()=? a ; B()$
and $B()=()$
and $C()=!a ; C()$
run $(1000$ of $A() \mid 100$ of $C())$

directive sample 0.051000
directive plot $A(): B()$
new $a @ 1.0$: chan
let $A()=$
do !a; $A()$ or delay@1.0; $B()$
and $B()=$?a; $C()$
and $C()=()$
run $(1000$ of $A() \mid 1000$ of $B())$

B's turn into C's much faster than A's turn into B's.
Now we will spend time understanding why that happens and what it means.

Live
Simulation: Time $=8.370126$ (2011 points at 2.1007 simTime/sy

Paused
Simulation: Time $=8.370126$ (2011 points at 2.1007 simTime/sysTime a

The Rate of What?

- In chemistry:
- Each reaction involves 2 molecules, and each reaction has a rate. Rates belongs to reactions. Molecules do not have rates.
- In process algebras:
- Should rates belong to:
- each individual action? only outputs? delays only?

Rates belong
to channels
not to actions!

- The rate of a synchronization of two actions should be the:
- max? product? undefined if different? infinite (except for delays)?
- All that has been tried.
- We go back to chemistry
- Rates belong to channels. (This is called the "biochemical" stochastic π-calculus by Priami-Regev-Shapiro-Silverman)
- Issues:
- Multiple activities on the same channel (concentrations of
 molecules involved in a reaction: mass action law of chemistry).
- Choices between different channels (molecules involved in multiple reactions: still standard chemistry).
- In biochemistry, rates of homodimerization (a molecule can interact with a copy of itself, but not with itself).

Chemical Reaction Rates

http://en.wikipedia.org/wiki/Reaction_rate
The reaction rate for a reactant or product in a particular reaction is defined as the amount (in moles or mass units) per unit time per unit volume that is formed or removed.

Reaction rate is often expressed in the units mol/Ls (where 1 mole is a dimensionless

Number
Number of Particles $6.02 \times 1 \sigma^{\prime \prime}$ Item"
(Avogadro's it) (Avogadro's if) constant equal to the Avogadro number).

Concentration is $\mathrm{mol} / \underline{L}$, hence rate is concentration/s.

One also often sees $\mu \mathrm{M}$ (one millionth of a mole per liter). That's a concentration, not a mole number.

The Concentration of What?

If P is a process (state), then:
$[P]$ is the function that at time t gives the quantity of P
N.B.; Avogadro's number ($\sim 6.022 \times 10^{23}$) relates concentration to quantity of molecules. Hence we usually identify concentration=quantity. Remember, though that increasing quantity then means increasing concentration, not volume, of solution.

This notion of $[P]$ assumes some way of counting P 's, i.e. some way of telling when two P are equal, i.e. a congruence relation on processes.

A simpler option (and what is actually done in SPiM) is never to count "processes" but rather to count "offers of communication" that processes are performing, i.e. active actions (a.k.a. "barbs"). If b is a barb ("?c" or "!c") then:
[b] is the function that at time t gives the quantity of b
If we see P as an automaton, this is very easy to arrange: add a barb to the "current" state of the automaton corresponding to P (e.g. a unique? P that nobody ever uses). Then we set [P] = [?_P].

We can use barbs to count processes.

Concentrations belong to actions not to processes!

The Rate of Change of Concentrations

Derivative is an operator that maps continuous functions to continuous functions. It is defined [Newton] as the higher-order function:

```
derivative: (R->R)->(R->R) = \lambdaf. \lambdax. lim(h->0). (f(x+h)-f(x))/h
f* stands for derivative(f) (f}[\mathrm{ [Newton], f' [Lagrange])
```

A differential equation

$$
[P]^{\circ}=\ldots
$$

represents the rate of change of the number (a.ka. concentration) of P's over time.

In general we may have a system of differential equations among concentrations:

$$
\begin{aligned}
& {[A]^{\circ}=\ldots[A] \ldots[B] \ldots[C] \ldots} \\
& {[B]^{\circ}=\ldots[A] \ldots[B] \ldots[C] \ldots} \\
& {[C]^{\circ}=\ldots[A] \ldots[B] \ldots[C] \ldots}
\end{aligned}
$$

which may be hard to solve symbolically, in which case we will have to solve it numerically (for some specific values of initial concentrations).

The Law of Mass Interaction

The speed of interaction ${ }^{\dagger}$ is proportional to the number of possible interactions.

Decay

Exponential

 Decay law Rate of change proportional to number of possible decays.Mass interaction

${ }^{\dagger}$ speed of interaction (formally definable)
= number of interactions over time
not proportional to the number of interacting processes! $[P]$ is the number of processes P (this is informal; it is only meaningful for a set of processes offering a given action, but a set of such processes can be counted and plotted)

Chemical Law of Mass Action
http://en.wikipedia.org/wiki/Chemical_kinetics The speed of a chemical reaction is proportional to the activity of the reacting substances.
Activity = concentration, for well-
stirred aqueous medium
Concentration = number of moles per
liter of solution
Mole $=6.022141 \times 10^{23}$ particles
It's not an opinion, it's the Law!

Activity and Speed

stochastic algebras disagree!

The speed of interaction is proportional to the number of possible interactions.

c activity: 1 speed: \wedge
= The activity (= "concentration") on a channel is the number of possible interactions on that channel.

The speed of interaction on a channel, is the activity multiplied by the base rate of the channel.
directive sample 0.0110000 directive plot $A 1$ (): $A 2() ; A 3()$
new c1@1.0:chan
new c2@1.0:chan new c3@1.0:chan
let $A 1()=? c 1$
and $B 1()=!c 1$
let A 2()$=$ do ?c2 or ?c2 and $B 2()=!c 2$
let A 3()$=$ do ?c3 or ?c3 and $B 3()=$ do !c3 or !c3
run 1000 of (A1() | B1()
$|A 2()| B 2()|A 3()| B 3())$

The mass interaction law [Buchholz] [Priami-Regev-Shapiro-Silverman] is compatible with chemistry [Gillespie] and incompatible with any other stochastic algebra in the literature! (including [Priami]; see [Hermanns])

$$
\text { c activity: } 4
$$

$$
\text { speed: } 4 \wedge
$$

Other algebras assign rates to actions, not channels, with speed laws:

```
\[
2 \Lambda^{*} 2 \Lambda=4 \Lambda^{2}
\]
\[
\max (2 \Lambda, 2 \lambda)=2 \Lambda[\text { Goetz }]
\]
\[
\min (2 \Lambda, 2 \Lambda)=2 \Lambda[\text { Priami }]
\]
```

$$
1 /(1 /(2 \Lambda)+1 /(2 \Lambda))=\Lambda[P E P A]
$$

$$
2 \Lambda^{*} 1=2 \lambda \text { (passive inputs) }
$$

The Strength of Populations

At size $2 N$, on a shared channel, μ is N times stronger than A : interaction easily wins over delay.

$\lambda-\mu$ fight!

directive sample 0.011000
directive plot $B()$
$\mathrm{val} \mathrm{lam}=1000.0$
$\mathrm{val} \mathrm{mu}=1.0$
new a@mu:chan
let $A()=!a ; A()$
and $B()=? a ; C()$
and $C()=$ delay@lam; $B()$
run 1000 of $(A() \mid B())$

Mixed Interaction

The Law of Mixed Interaction
 for processes offering both ?a and !a actions

The speed of interaction is proportional to the number of possible interactions.
But a process cannot interact with itself.

Mixed interaction

directive sample 0.110000
directive plot $A() ; B()$
new a@1.0:chan
let $A()=$ do ?a or !a
let $B()=$ delay@1.0
run 1000 of $(A() \mid B())$

In CCS-style process algebras, not even [Priami-Regev-ShapiroSilverman] or BioSPI have this law in full generality. It was first worked out by [Block et al (unpub)], and only SPIM implements it.

Possible Interactions

The speed of interaction is proportional to the number of possible interactions. (And a process cannot interact with itself.) Assume each process P is in restricted-sum-normal-form. For each channel x :
$\operatorname{In}(x, P)=$ Num of active $? x$ in P
$\operatorname{Out}(x, P)=$ Num of active ! x in P
$\operatorname{Mix}(x, P)=\operatorname{In}(x, P) * \operatorname{Out}(x, P)$
\#interactions that cannot happen
in a given summation P
$\operatorname{In}(x)=\operatorname{Sum} P$ of $\operatorname{In}(x, P)$
$\operatorname{Out}(x)=$ Sum P of $\operatorname{Out}(x, P)$
$\operatorname{Mix}(x)=$ Sum P of $\operatorname{Mix}(x, P)$
total \#interactions that cannot happen
The global Activity on channel x :

$$
\operatorname{Act}(x)=\left(\operatorname{In}(x)^{\star} \operatorname{Out}(x)\right)-\operatorname{Mix}(x)
$$

total cross product of inputs and outputs minus total \#interactions that cannot happen
The global speed of interaction on a channel x :

$$
\operatorname{speed}(x)=\operatorname{Act}(x)^{\star} \operatorname{rate}(x)
$$

This is the SPiM Activity computation.

Symmetric Reactions by Mixed Choice

Consider a reaction

$$
A+B \rightarrow r C
$$

which has mass action kinetics:

$$
\begin{aligned}
& {[C]^{0}=r[A][B]} \\
& {[A]^{0}=[B]^{\circ}=-r[A][B]}
\end{aligned}
$$

because $[A][B]$ is the number of possible collisions.
For $[A]=1$ and $[B]=1$ we have speed
$r * 1 * 1=r$
i.e. two single molecules interact at speed r, as expected.

Consider now a symmetric reaction

$$
A+A \rightarrow^{r} C
$$

which has mass action kinetics:

$$
\begin{aligned}
& {[C]^{\circ}=r[A]([A]-1) \frac{1}{2}} \\
& {[A]^{0}=-2 r[A]([A]-1) \frac{1}{2}=-r[A]([A]-1)}
\end{aligned}
$$

because $[A]([A]-1) \frac{1}{2}$ is the number of possible collisions (symmetric interactions) in [A] molecules!
For $[A]=1$ we have speed

$$
r * 1 * 0 * \frac{1}{2}=0
$$

since a single molecule does not collide.
For $[A]=2$ we have speed

$$
r * 2 * 1 * \frac{1}{2}=r
$$

so two single molecules collide at rate r, as before. For $[A]=3$ we have speed $=3$, since 3 molecules have 3 possible collisions. Etc. For $[A]=n$ we have as reaction rate (i.e. as C production rate):
$r^{\star} n^{*}(n-1)^{\star} \frac{1}{2}$

If we model symmetric reactions with mixed choice at rate r, we get the wrong answer:

$(P \mid P \rightarrow C)$

```
In}(x,P)=1,\quad\operatorname{Out}(x,P)=
Mix(x,P)=\operatorname{In}(x,P)*\operatorname{Out}(x,P)=1
```

For n such processes:
$\operatorname{In}(x)=\operatorname{Sum} P$ of $\operatorname{In}(x, P)=n * 1=n$
$\operatorname{Out}(x)=\operatorname{Sum} P$ of $\operatorname{Out}(x, P)=n \star 1=n$
$\operatorname{Mix}(x)=\operatorname{Sum} P$ of $\operatorname{Mix}(x, P)=n * 1=n$
The global Activity on channel x :
$\operatorname{Act}(x)=\left(\operatorname{In}(x)^{*} \operatorname{Out}(x)\right)-\operatorname{Mix}(x)=n^{2}-n=n^{*}(n-1)$
The global speed on channel x :
$\operatorname{speed}(x)=\operatorname{rate}(x)^{*} \operatorname{Act}(x)=$ $r^{*} n^{*}(n-1)$
While 1 process has speed $=0$, as expected, 2 processes have speed $=r * 2$, not r.
We are off by a factor of 2 .
The rate of a channel modeling a symmetric reaction must be halved. [Shapiro 2001]

Weighted Actions

Weighted Actions [buchholz]

Activity $=w$
(similarly for ? ${ }^{w} c$)
Can generalize w to a real number, and to input-bound variables.

In general, we can allow real numbers as weights, and use them in the activity computation:

$$
\begin{aligned}
& \text { In }(x, P)=\text { Sum of weights of active } ? x \text { in } P \\
& \text { Out }(x, P)=\text { Sum of weights of active }!x \text { in } P
\end{aligned}
$$

Exercise: Find a weight w such that the following automata interact at the same apparent rate. I.e., instead of "fixing" the rate of symmetric reaction, fix the way they are modeled.

Speed of Symmetric Reactions

Here is a mixed choice interaction representing a symmetric reaction, where the rate has been halved. The B reaction is about as fast as the A reaction, but it uses only half the number of processes.


```
            missing }\frac{1}{2}\mathrm{ factor
            2*B consumed in each reaction}\begin{array}{l}{\mathrm{ because computed }}\\{\mathrm{ by the wrongmixed}}
            artificially halved rate choice model
[B\mp@subsup{]}{}{*}=-2*(1.0*\frac{1}{2}\mp@subsup{)}{}{*}[B\mp@subsup{]}{}{*}([B]-1)
    = -1.0*[B]*([B]-1)
```

```
directive sample 0.0110000
```

directive plot $A 1() ; A 2() ; B() ; ? a 1 a 2$
new ala2@1.0:chan
new a@1.0:chan
new b@0.5:chan
let $A 1()=$ do ?a or ?a1a2
and $A 2()=$ do !a or ?ala2
let $B()=d o$?b or !b
run 1000 of (A1() | A2())
run 1000 of $B()$
Symmetric reactions use
half the materials of
binary reactions and are
only infinitesimally slower

Cf.: homodimerization

 (symmetric complexation) is pervasive in biochemistry.
Summary

- Delay Automata
- Governed by the exponential decay law
- Interacting Automata
- Governed by the mass action law
- Be careful about symmetric interactions
- The Law of Mass Interaction
- The speed of interaction is proportional to the number of possible interactions
- Summarizes all of the above
Q?

Exercise Solution

Symmetric Reactions with Weighted Actions

The rate of a channel modeling a symmetric reaction must be halved.

$\operatorname{In}(x, P)=$ Num of active $? x$ in $P=1$
Out $(x, P)=$ Num of active ! x in $P=1$
$\operatorname{Mix}(x, P)=\operatorname{In}(x, P) * \operatorname{Out}(x, P)=1$
For n such processes:
$\operatorname{In}(x)=\operatorname{Sum} P$ of $\operatorname{In}(x, P)=n * 1=n$
$\operatorname{Out}(x)=\operatorname{Sum} P$ of $\operatorname{Out}(x, P)=n * 1=n$
$\operatorname{Mix}(x)=\operatorname{Sum} P$ of $\operatorname{Mix}(x, P)=n * 1=n$
The global Activity on channel x :
$\operatorname{Act}(x)=\left(\operatorname{In}(x)^{*} \operatorname{Out}(x)\right)-\operatorname{Mix}(x)=n^{2}-n$
$=n^{\star}(n-1)$
The global speed on channel x :
$\operatorname{speed}(x)=\operatorname{rate}(x)^{\star} \operatorname{Act}(x)$
$=\frac{1}{2}{ }^{\star} r^{\star} n^{\star}(n-1)$

Or else we can use the right mixed choice model, via weighted actions!

$\operatorname{In}(x, P)=$ Sum of weights of active $? x$ in $P=\sqrt{ } \frac{1}{2}$
Out $(x, P)=$ Sum of weights of active ! x in $P=\sqrt{ } \frac{1}{2}$
$\operatorname{Mix}(x, P)=\operatorname{In}(x, P) * \operatorname{Out}(x, P)=\frac{1}{2}$
For n such processes:
$\operatorname{In}(x)=\operatorname{Sum} P$ of $\operatorname{In}(x, P)=n * \sqrt{ } \frac{1}{2}$
$\operatorname{Out}(x)=\operatorname{Sum} P$ of $\operatorname{Out}(x, P)=n * \sqrt{\frac{1}{2}}$
$\operatorname{Mix}(x)=$ Sum P of $\operatorname{Mix}(x, P)=n \star \frac{1}{2}$
The global Activity on channel x :
$\operatorname{Act}(x)=(\operatorname{In}(x) \star \operatorname{Out}(x))-\operatorname{Mix}(x)=$
$\left(n * \sqrt{\frac{1}{2}}\right) \star\left(n * \sqrt{\frac{1}{2}}\right)-\left(n^{*} \frac{1}{2}\right)=\left(n^{\left.2 * \frac{1}{2}\right)-\left(n * \frac{1}{2}\right)=\left(n^{2}-n\right) * \frac{1}{2}}\right.$
$=n^{\star}(n-1)^{\star \frac{1}{2}}$
The global speed on channel x :
$\operatorname{speed}(x)=\operatorname{rate}(x)^{\star} \operatorname{Act}(x)$
$=r^{\star} n^{\star}(n-1)^{\star} \frac{1}{2}$
The correct rate for a symmetric reaction.

Appendix Interleaving NOT

Interleaving NOT

You cannot "run parallel actions by executing their first step in either order" !

$$
\text { @ } ; B \mid @_{\mu ; D} \neq @_{\Lambda ;} @_{\mu ;}(B \mid D)+@_{\mu ;} @_{\wedge}(B \mid D)
$$


```
directive sample 4.010000
directive plot A(); B();C();D()
let A() = delay@1.0; B()
and }B()=(
let C()=delay@2.0; D()
and }D()=(
run 1000 of (A()|C())
```

directive sample 4.010000
directive plot $A C() ; A D() ; B C() ; B() ; D()$
let $A C()=$
do delay@1.0; BC()
or delay@2.0; AD()
and $A D()=$ delay@1.0; $(B() \mid D())$
and $B C()=$ delay@2.0; $(B() \mid D())$
and $B()=()$
and $D()=()$
run 1000 of $A C()$

Appendix

Derivatives for Functional Programmers

The Rate of Change

Differentiation for Functional Programmers (like me)
Derivative is an operator that maps continuous functions to continuous functions. It is defined [Newton] as the higher-order function:

```
derivative \(=\lambda f . \lambda x . \lim (h \rightarrow 0) .(f(x+h)-f(x)) / h\)
derivative: \((R \rightarrow R) \rightarrow(R \rightarrow R)\)
f• stands for derivative(f) ( \(\dot{f}\left[\right.\) Newton], \(f^{\prime}\) [Lagrange])
```

```
sin}=\operatorname{cos}\quad\mathrm{ a true fact: the derivative of sin is cos
```

sin}=\operatorname{cos}\quad\mathrm{ a true fact: the derivative of sin is cos
\mp@subsup{\operatorname{sin}}{}{\circ}=\lambdax.\operatorname{cos}(x) a true fact: it is that function that maps }x\mathrm{ to }\operatorname{cos}(x
\mp@subsup{\operatorname{sin}}{}{\circ}=\lambdax.\operatorname{cos}(x) a true fact: it is that function that maps }x\mathrm{ to }\operatorname{cos}(x
\mp@subsup{\operatorname{sin}}{}{\circ}(x)=\operatorname{cos}(x)\quad\mathrm{ an abuse of notation for one of the above}
\mp@subsup{\operatorname{sin}}{}{\circ}(x)=\operatorname{cos}(x)\quad\mathrm{ an abuse of notation for one of the above}
(first x is binding)

```
    (first x is binding)
```


The Rate of Change
 Differential Equations for Functional Programmers (like me)

A differential equation means find any f such that $f^{\circ}=F$ (where f may occur in $F!$)

```
f}=\mp@code{cos solution: f=sin (no recursion in definition of f}\mp@subsup{f}{}{\circ}\mathrm{ )
f0}=\lambdax.-k\cdotf(x) solutions(for any C): f=\lambdax.Ce -k\cdotx
d/dxf=-kf common abuse of the above equation
    (x is unapplied on the right! what if not pointwise???)
f=Ce}\mp@subsup{e}{}{-kx}\quadcommon abuse of the above solutio
    ( }x\mathrm{ is unbound on the right!)
d/dxf(x) = ... Proper Liebniz notation, mostly useful for partial differentiation
```

Pointwise abuse: To make things a bit shorter, we overload arithmetic operators pointwise from numbers to number-valued functions (constants are overloaded to constant functions) so we can write:

$$
f^{\bullet}=-2 f \quad \text { or } \quad f^{\bullet}(x)=-2 f(x) \quad\left(\text { meaning } f^{\circ}=\lambda x \cdot(\lambda y,-2)(x) \cdot f(x)\right)
$$

Note that omitting " (x) " does not always work, e.g. when considering "non-pointwise equations", then the differentiation parameter must be explicit:

$$
f^{\circ}(x)=-2 f(x-1)
$$

Fortunately we don't have many of such "history-dependant" derivatives.

The Rate of Change of Concentrations

Therefore, for example:

$$
[P]^{\circ}=-k[P]
$$

means

$$
x \cdot=-k X
$$

means

$$
(\lambda t \cdot X(t))^{\bullet}=\lambda t \cdot-k \cdot(X(t))
$$

with solution(s) for X :
$f_{C}=\lambda t . C e^{-k t}$ for each initial concentration C
In general we have a system of differential equations among concentrations:

$$
\begin{aligned}
& {[A]^{\circ}=\ldots[A] \ldots[B] \ldots[C] \ldots} \\
& {[B]^{\circ}=\ldots[A] \ldots[B] \ldots[C] \ldots} \\
& {[C]^{\circ}=\ldots[A] \ldots[B] \ldots[C] \ldots}
\end{aligned}
$$

which may be hard to solve symbolically, in which case we will have to solve it numerically (for some specific values of initial concentrations).

