
Artificial
Biochemistry

Probability
Distributions

Luca Cardelli

Microsoft Research

Trento, 2006-05-22..26

www.luca.demon.co.uk/ArtificialBiochemistry.htm

Most scientific papers are probably wrong.
...there is less than a 50% chance that the results of any randomly chosen scientific paper are true.

Kurt Kleiner, NewScientist.com - www.newscientist.com/article.ns?id=dn7915

2006-05-26 2

L
u
c
a
 C
a
rd
e
ll
i

Exponential Decay

A quantity subject to exponential decay
decreases at a rate proportional to its value:

where N is the quantity and
λ > 0 is the decay rate

Half life:

where C is the initial value
of the quantitySolution of the equation:

time of halving of the initial
quantity C, independent of C

Mean lifetime:
average length of time an element
remains in an exponentially
decaying discrete set

Poisson processes: Exponential decay leads to the exponential distribution , which is
used to model (homogeneous 1-dimensional) Poisson processes, which
are situations in which an object initially in state A can change to
state B with constant probability per unit time λ. The time at which
the state actually changes is described by an exponential random
variable with parameter λ. Therefore, the integral from 0 to T over
f is the probability that the object is in state B at time T.

2006-05-26 3

L
u
c
a
 C
a
rd
e
ll
i

Exponential Distribution

● http://en.wikipedia.org/wiki/Exponential_distribution
– Probability density function (with rate parameter λ > 0)

– Cumulative distribution function

rate of decay λ

A probability density function is non-negative everywhere and
its integral from −∞ to +∞ is equal to 1. If a probability
distribution has density f(x), then intuitively the infinitesimal
interval [x, x + dx] has probability f(x) dx.

For every real number x, the cumulative distribution function
is given by

where the right-hand side represents the probability that
the random variable X takes on a value less than or equal to x.
The probability that X lies in the interval (a, b] is therefore
F(b) − F(a) if a < b.

Hence: P(X > x) = F(∞)-F(t) = e -λx

probability of
happening before t=1

probability of
happening before t=1

2006-05-26 4

L
u
c
a
 C
a
rd
e
ll
i

0

200

400

600

800

1000

1200

0 1 2 3 4 5

d1()

half-life
ln 2/λ independent of

initial quantity N0

Plotting/counting populations of
processes always means counting a
given barb (action) currently offered
by those processes. Such a barb may
be part of the processes as written,
or may be automatically inserted by
the simulator for plotting purposes
(e.g. “d1()” here).

For λ=1, if I start with 1000 things, and after
2sec I find 135 left, then P(delay > 2sec) =
135/1000 = 0.135 ~ e-λ2

Time in “seconds” (arbitrary unit)

N
um

b
er

 o
f
b
ar

b
s

0

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5

d1() d2() d3() @λ

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2

A() B() C() D() E()

0

2

4

6

8

10

12

0 1 2 3 4 5

d1()

0

20

40

60

80

100

120

0 1 2 3 4 5

d1()

d

Plotting Exponential Distributions
Probability Density Function f(t) (= λP(X>t))

directive sample 5.0

directive plot d1(); d2(); d3()

let d1() = delay@0.5; ()

let d2() = delay@1.0; ()

let d3() = delay@1.5; ()

run 500 of d1()

run 1000 of d2()

run 1500 of d3()

directive sample 5.0

directive plot d1()

let d1() = delay@1.0; ()

run 100 of d1()

plot this
state

directive sample 2.0

directive plot A(); B(); C(); D(); E()

let A() = delay@1.0; ()

and B() = delay@2.0; ()

and C() = delay@3.0; ()

and D() = delay@4.0; ()

and E() = delay@5.0; ()

run 1000 of (A() | B() | C() | D() | E())

actually plotting 1000 * λ *
P(X >t) where P(X >t) = e –λt

(which just happens to be
the same as 1000 * f(t) !)

P(X>t)
P(X≤t)

Scale Invariance: 1000, 100, 10 processes with normalized Y scale

2006-05-26 5

L
u
c
a
 C
a
rd
e
ll
i

0

200

400

600

800

1000

0 1 2 3 4 5

d1s2() d2s2() d3s2()

s2

Plotting Exponential Distributions
Cumulative Distribution Function P(X≤t)

s1
@λ

directive sample 5.0

directive plot d1s2(); d2s2(); d3s2()

let d1s2() = ()

let d2s2() = ()

let d3s2() = ()

let d1s1() = delay@0.5; d1s2()

let d2s1() = delay@1.0; d2s2()

let d3s1() = delay@1.5; d3s2()

run 1000 of d1s1()

run 1000 of d2s1()

run 1000 of d3s1()

plot this
state

plotting 1000 * P(X ≤t)
where P(X ≤t) = 1-e –λt

For λ=1, if I start with 1000 things, and after
2sec I find 865 in S2, then P(delay ≤ 2sec) =
865/1000 = 0.865 ~ 1-e-λ2

P(X>t) P(X≤t)

2006-05-26 6

L
u
c
a
 C
a
rd
e
ll
i

Exponential Distribution
Basic Properties

● Characterized by a single positive real rate parameter λ
– P(Xλ≤t) = 1-e-λt X is the delay before the event

● Memoryless (the only such continuous probability distribution)
– P(X > t0+t | X>t0) = P(X > t)

people knocking on my door at λ = 1-knock-per-hour. P(Knock > Nhours) = “prob. of being knock-free for N hours”

P(Knock > 5hours | Knock > 3hours) = P(Knock > 2hours) = 13%
P(Knock > 48hours | Knock > 46hours) = P(Knock > 2hours) = 13%
We do not need to “remember” when we started counting! memoryless

P(Knock > 1hours) = 36%
P(Knock > 5hours) = 0.7%

P(Knock > 5hours | Knock > 3hours) = P(Knock > 2hours) = 13%
P(Knock > 5hours | Knock > 4hours) = P(Knock > 1hours) = 36%
P(Knock > 5hours | Knock > 4.9hours) = P(Knock > 0.1hours) = 90%
prob. gets better, but is just equal to the knock-free prob. for the remaining time

● Closed under min (cumulative exit rate of a choice):
– X = min(X1, …, Xn) is exponentially distributed if Xi are independently exponential
– P(min(Xλ,Yµ) ≤ t) = 1-e-(λ+µ)t = P(Zλ+µ ≤ t)

● Comparisons between 2 variables (branch probabilities of a choice)
– P(Xλ<Yµ) = λ/(λ+µ)
– P(Yµ<Xλ) = µ/(λ+µ)
– P(Xλ=Yµ) = 0

2006-05-26 7

L
u
c
a
 C
a
rd
e
ll
i

Erlang Distribution

● http://en.wikipedia.org/wiki/Erlang_distribution
– Probability density function (with rate parameter λ > 0, shape parameter k)

– Cumulative distribution function

where γ() is the incomplete gamma function.

When the shape parameter k equals 1, the distribution
simplifies to the exponential distribution.

(θ = 1 / λ):

An Erlang distribution (so named in honor of A. K.
Erlang) is the probability distribution of the amount
of time until the n-th event in a one-dimensional
Poisson process with rate λ. I.e. the sum of n
exponential distributions with the same rate λ.

“pulse”

“sigma”

2006-05-26 8

L
u
c
a
 C
a
rd
e
ll
i

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

s1() s2() s3() s4() s5() s6() s7()

s8() s9() s10()

Erlang Distribution

directive sample 100.0 1000

directive plot s1(); s2(); s3(); s4();
s5(); s6(); s7(); s8(); s9(); s10()

let s1() = delay@1.0; s2()

and s2() = delay@1.0; s3()

and s3() = delay@1.0; s4()

and s4() = delay@1.0; s5()

and s5() = delay@1.0; s6()

and s6() = delay@1.0; s7()

and s7() = delay@1.0; s8()

and s8() = delay@1.0; s9()

and s9() = delay@1.0; s10()

and s10() = ()

run 1000 of s1()

s1 s2 s3 … sk

Erlang random variable Y = X1 + … + Xn is the sum of n exponentially distributed random variables with the same parameter.
Expected value E(Y) = E(X1) + … + E(Xn) (true for general random variables)

Standard deviation σ(Y) = σ(X1) + … + σ(Xn) (true for general independent random variables)

Erlang distribution a.k.a. Gamma distribution when n is a real number.

@λ @λ @λ @λ

shape
parameter

rate
parameter

2006-05-26 9

L
u
c
a
 C
a
rd
e
ll
i

@3 @3 @3

Erlang Up-Transition

@1

@2 @2

etc.

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3

?dead1 ?dead2 ?dead5 ?dead10 ?dead20 ?dead50

plot last

directive sample 3.0 1000

directive plot ?dead1; ?dead2; ?dead5;
?dead10; ?dead20; ?dead50

let s0(n:float, m:float, dead:chan()) =

if n<=0.0 then ?dead

else delay@m; s0(n-1.0, m, dead)

let s(n:float, dead:chan()) = s0(n,n,dead)

new dead1@1.0:chan()

run 100 of s(1.0,dead1)

new dead2@1.0:chan()

run 100 of s(2.0,dead2)

new dead5@1.0:chan()

run 100 of s(5.0,dead5)

new dead10@1.0:chan()

run 100 of s(10.0,dead10)

new dead20@1.0:chan()

run 100 of s(20.0,dead20)

new dead50@1.0:chan()

run 100 of s(50.0,dead50)

2006-05-26 10

L
u
c
a
 C
a
rd
e
ll
i

@1

@3 @3 @3

@2 @2

Erlang Down-Transition

etc.

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3

?live1 ?live2 ?live5 ?live10 ?live20 ?live50

plot all but last

directive sample 3.0 1000

directive plot ?live1; ?live2; ?live5;

?live10; ?live20; ?live50

let s0(n:float, m:float, live:chan()) =

if n<=0.0 then ()

else do ?live or delay@m; s0(n-1.0, m, live)

let s(n:float, live:chan()) = s0(n,n,live)

new live1@1.0:chan()

run 100 of s(1.0,live1)

new live2@1.0:chan()

run 100 of s(2.0,live2)

new live5@1.0:chan()

run 100 of s(5.0,live5)

new live10@1.0:chan()

run 100 of s(10.0,live10)

new live20@1.0:chan()

run 100 of s(20.0,live20)

new live50@1.0:chan()

run 100 of s(50.0,live50)

2006-05-26 11

L
u
c
a
 C
a
rd
e
ll
i

@3 @3 @3

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2

?pen1 ?pen2 ?pen5 ?pen10

?pen20 ?pen50

Erlang Pulse

etc.

Penultimate state of
a 50-long chain, with

10000 processes

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2 2.5 3

?pen1 ?pen2 ?pen5

?pen10 ?pen20 ?pen50

run 10000 of
s(50.0,pen50)

@1

@2 @2

plot penultimate

directive sample 3.0 10000

directive plot ?pen1; ?pen2; ?pen5; ?pen10; ?pen20; ?pen50

let s0(n:float, m:float, pen:chan()) =

if n<=0.0 then ()

else if n<=1.0 then do ?pen or delay@m; s0(n-1.0, m, pen)

else delay@m; s0(n-1.0, m, pen)

let s(n:float, pen:chan()) = s0(n,n,pen)

new pen1@1.0:chan()

run 100 of s(1.0,pen1)

new pen2@1.0:chan()

run 100 of s(2.0,pen2)

new pen5@1.0:chan()

run 100 of s(4.0,pen5)

new pen10@1.0:chan()

run 100 of s(10.0,pen10)

new pen20@1.0:chan()

run 100 of s(20.0,pen20)

new pen50@1.0:chan()

run 100 of s(50.0,pen50)

2006-05-26 12

L
u
c
a
 C
a
rd
e
ll
i

0

100

200

300

400

500

600

700

0 0.5 1 1.5 2

?pen1 ?pen2 ?pen5 ?pen10

?pen20 ?pen50

…the next day I was reading Scientific American…

Number of processes (out of 10000)
over time in the penultimate state of

a 50-long chain of states

Spectral line of hydrogen
in a brown dwarf with

accretion disk

Well, ok, it’s just a routine gamma distribution, which
is the continuous version of an Erlang distribution.

But look at all the matching stochastic bumps!

2006-05-26 13

L
u
c
a
 C
a
rd
e
ll
i

0

50

100

150

200

0 5 10 15 20

?a

0

50

100

150

200

0 5 10 15 20

?a

sequential t=1.0 timers

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1 1.2 1.4

?a100 ?a1000

Erlang Timers

directive sample 2.0 10000

directive plot ?a100; ?a1000

let timer(time:float, steps:float, ring:chan) =

(val ti = time/steps (* break expected time into steps *)

val del = 1.0/ti (* rate for step (inv. of mean lifetime) *)

let step(n:float) = if n<=0.0 then !ring else delay@del; step(n-1.0)

run step(steps))

new s100:chan new a100@1.0:chan

new s1000:chan new a1000@1.0:chan

run 100 of (timer(1.0, 100.0, s100) | ?s100; ?a100)

run 100 of (timer(1.0, 1000.0, s1000) | ?s1000; ?a1000)

100 concurrent timers set to t=1.0
with 100 steps and 1000 steps each

directive sample 20.0 10000

directive plot ?a

let timer(time:float, steps:float, ring:chan) =

(val ti = time/steps (* break expected time into steps *)

val del = 1.0/ti (* rate for step (inv. of mean lifetime) *)

let step(n:float) = if n<=0.0 then !ring else delay@del; step(n-1.0)

run step(steps))

new s:chan new a@1.0:chan

let rering() =

(timer(1.0, 100.0, s) | ?s; (rering() | 10 of ?a))

run rering()

with 100 steps each with 10 steps each

Expected value E(Y) = E(X1) + … + E(Xn)

more steps within each interval gives
more precise timing

An Erlang Timer timer(t,s,r) “rings” r
(by !r) at time t, with a “precision” of s
steps (each with mean lifetime t/s).

This reringer keeps invoking a timer,
each time producing 10 of ?a.

2006-05-26 14

L
u
c
a
 C
a
rd
e
ll
i

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

!a !b

Erlang Clocks and Signal Shaping

directive sample 100.0 10000

directive plot !a; !b

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

new a@1.0:chan new b@1.0:chan

let A(tick:chan) = do !a; A(tick) or ?tick; B(tick)

(* Offers !a, as many as needed, until the next tick *)

and B(tick:chan) = do !b; B(tick) or ?tick; A(tick)

run 10 of (new tick:chan run (clock(10.0, tick) | A(tick)))

(* each signal with its own "new" tick (an infinite speed channel)*)

Signal A repeatedly offers !a until the next “tick”, then
repeatedly offers !b until the next tick, and so on.

0

2

4

6

8

10

12

0 10 20 30 40 50 60 70 80 90 100

!a !b

1 signal sum of 10 signals

multiple clocks eventually
get out of phase

An Erlang Clock clock(t,r) is a
repeating Erlang Timer; it
signals !r every t.

The signal A(t) offers !a as often as
needed, but only until a timeout t
(provided by a concurrently running clock)

Then A(t) becomes B(t) until the next
tick, and then it goes back to A(t)...

Each signal has its own private clock
(new tick), or things get confused.

2006-05-26 15

L
u
c
a
 C
a
rd
e
ll
i0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

!a

Erlang-Clocked Raising Signal
directive sample 20.0 10000

directive plot !a

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S(a:chan, tick:chan) =

do !a; S(a,tick) or ?tick; (S(a,tick) | S(a,tick))

(* Offers !a, as many as needed, until the next tick,

then spawns one additional such signal. *)

let raising(a:chan, t:float) =
(new tick:chan run (clock(t,tick) | S(a,tick)))

(* Encapsulating a clock with a raising signal *)

new a@1.0:chan

run raising(a,1.0)

An raising signal S(a,t) offers !a’s until the
next Erlang tick t, then it spawns off one
more copy of itself. Since all the copies
share the same clock, they increase by 1
each tick (linearly).

2006-05-26 16

L
u
c
a
 C
a
rd
e
ll
i

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20

p()

Erlang-Clocked Raising Concentration
directive sample 20.0 10000

directive plot p()

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S(p:proc(), tick:chan) =

(p() | ?tick; S(p,tick))

(* Spawns a process p() every tick. *)

let raising(p:proc(), t:float) =
(new tick:chan run (clock(t,tick) | S(p,tick)))

(* Encapsulating a clock with a raising concentration *)

new a@1.0:chan

let p() = !a

run raising(p,1.0)

A variation S(p,t) that spawns an
arbitrary (parameterless) process p
at every tick t.

An example of higher-order processes.

2006-05-26 17

L
u
c
a
 C
a
rd
e
ll
i

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16 18 20

!a

Erlang-Clocked Raising and Falling
directive sample 20.0 10000

directive plot !a

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) = do !a; S1(a,tock) or ?tock; ()

(* Offers !a, as many as needed, until the next tock. *)

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

(* For n ticks, starts an S1.

At the end, starts a tock-clock to stop one S1 at each tock. *)

let raisingfalling(a:chan, n:int, t:float) =
(new tick:chan new tock:chan
run (clock(t,tick) | SN(n,t,a,tick,tock)))

(* Encapsulating a clock with a raising and falling signal *)

new a@1.0:chan

run raisingfalling(a,10,1.0)

This is a “test signal” that we will use a lot.

raisingfalling(a,n,t) produces a linearly
increasing !a signal with n steps of length t;
then it decreases back to 0 in similar steps.

S1(a,tock) offers !a until the first tock.

SN (which is tick-clocked) starts an S1 for
n ticks, then it starts a tock-clock that will
stop them all in turn.

2006-05-26 18

L
u
c
a
 C
a
rd
e
ll
i

Exercise (hard): Bell

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 0.0005 0.001 0.0015 0.002 0.0025

B()

(The solution plotted here has 3 nodes and 2 channels; it uses communication.)

Build a small network where one node has a distribution like this:

2006-05-26 19

L
u
c
a
 C
a
rd
e
ll
i

Further Reading: Phase-Type Distributions

● Possible connection between process calculi and data fitting:
– The EM (Expectation-Maximization) algorithm fits data to general

phase-type distributions.

http://mia.ece.uic.edu/~papers/WWW/Flexi-Tunes/tarballs/queue.pdf

● Erlang-like distributions are “universal”:

http://citeseer.ifi.unizh.ch/cache/papers/cs/2964
3/http:zSzzSzwww.cs.wm.eduzSz~esmirnizSzdocsz
Szglobecom02.pdf/ecient-fitting-of-long.pdf

2006-05-26 20

L
u
c
a
 C
a
rd
e
ll
i

SPiM Basic Syntax

2006-05-26 21

L
u
c
a
 C
a
rd
e
ll
i

Summary

● Exponential Distributions
– Simplest (memoryless) distributions

– The only memoryless distributions

– Fully general when networked

● Erlang Distributions
– Useful for building clocks and other signal shapes

when all you got are exponential distributions

● SPiM
– A language for (among other things) programming

with exponential distribution

2006-05-26 22

L
u
c
a
 C
a
rd
e
ll
i

Q?

