Probability Distributions

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology
Trento, 2006-05-22.. 26
www.luca.demon.co.uk/ArtificialBiochemistry.htm

Exponential Decay

A quantity subject to exponential decay decreases at a rate proportional to its value:

Solution of the equation:

$$
N=C e^{-\lambda t}
$$

Half life: $\quad t_{1 / 2}=\frac{\ln 2}{\lambda}$.

Mean lifetime: $\quad \tau=\frac{1}{\lambda}$.
where N is the quantity and $\Lambda>0$ is the decay rate
where C is the initial value of the quantity
time of halving of the initial quantity C, independent of C
average length of time an element remains in an exponentially decaying discrete set

Poisson processes: Exponential decay leads to the exponential distribution, which is used to model (homogeneous 1-dimensional) Poisson processes, which are situations in which an object initially in state A can change to state B with constant probability per unit time Λ. The time at which the state actually changes is described by an exponential random variable with parameter Λ. Therefore, the integral from 0 to T over f is the probability that the object is in state B at time T.

Exponential Distribution

- http://en.wikipedia.org/wiki/Exponential_distribution

$$
\begin{gathered}
\frac{d N}{d t}=-\lambda N \\
N=C e^{-\lambda t}
\end{gathered}
$$

- Probability density function (with rate parameter $\wedge>0$)

- Cumulative distribution function

A probability density function is non-negative everywhere and its integral from $-\infty$ to $+\infty$ is equal to 1. If a probability distribution has density $f(x)$, then intuitively the infinitesimal interval $[x, x+d x]$ has probability $f(x) d x$.

$$
F(x ; \lambda)=\left\{\begin{array}{cl}
1-e^{-\lambda x} & , x \geq 0 \\
0 & , x<0
\end{array}\right.
$$

For every real number x, the cumulative distribution function is given by

$$
F(x)=\mathrm{P}(X \leq x)
$$

where the right-hand side represents the probability that the random variable X takes on a value less than or equal to x. The probability that X lies in the interval $(a, b]$ is therefore $F(b)-F(a)$ if $a<b$.

$$
\text { Hence: } P(X>x)=F(\infty)-F(\dagger)=e^{-\lambda x}
$$

Plotting Exponential Distributions
 Probability Density Function $f(t)(=A P(X>t))$

For $\Lambda=1$, if I start with 1000 things, and after $2 \mathrm{sec} I$ find 135 left, then $P($ delay $>2 \mathrm{sec})=$ $135 / 1000=0.135 \sim e^{-\wedge 2}$

actually plotting 1000 * \wedge * $P(X>t)$ where $P(X>t)=e^{-\lambda t}$ (which just happens to be the same as 1000 * $f(\dagger)$!)

directive sample 5.0

 directive plot d1(); d2(); d3()let d1() = delay@0.5; ()
let d2() = delay@1.0; ()
let d3() = delay@1.5; ()
run 500 of d1()
run 1000 of d2()
run 1500 of d3()
directive sample 2.0 directive plot $A() ; B() ; C() ; D() ; E()$
let $A()=$ delay@1.0; () and $B()=$ delay@2.0; () and $C()=$ delay@3.0; () and $D()=$ delay@4.0; (and $E()=$ delay@5.0; ()
run 1000 of $(A()|B()| C()|D()| E())$

Scale Invariance: 1000, 100, 10 processes with normalized Y scale

directive sample 5.0
directive plot d1()
let d1() = delay@1.0; ()
run 100 of d1()

Plotting Exponential Distributions
 Cumulative Distribution Function $P(X \leq t)$

For $\Lambda=1$, if I start with 1000 things, and after 2 sec I find 865 in S2, then $P($ delay $\leq 2 \mathrm{sec})=$ $865 / 1000=0.865 \sim 1-e^{-\lambda 2}$

plotting 1000 * $\mathrm{P}(X \leq t)$ where $P(X \leq t)=1-e^{-\lambda t}$
directive sample 5.0
directive plot d1s2(): d2s2(); d3s2()

letd1s2()=()

let d2s2()=()
let d3s2()=()
let d1s1() = delay@0.5; d1s2() let d2s1() = delay@1.0; d2s2() let d3s1() = delay@1.5; d3s2()
run 1000 of d1s1()
run 1000 of d2s1()
run 1000 of d3s1()

Exponential Distribution

Basic Properties

- Characterized by a single positive real rate parameter 1
- $P\left(X_{1} \leq t\right)=1-e^{-\lambda t}$

X is the delay before the event

- Memoryless (the only such continuous probability distribution)
- $P\left(X>t_{0}+\dagger \mid X>t_{0}\right)=P(X>+)$
people knocking on my door at $\Lambda=1$-knock-per-hour. $P\left(\right.$ Knock $\left.>N_{\text {hours }}\right)=$ "prob. of being knock-free for N hours"
$P\left(\right.$ Knock $>5_{\text {hours }} \mid$ Knock $\left.>3_{\text {hours }}\right)=P\left(\right.$ Knock $\left.>2_{\text {hours }}\right)=13 \%$
$P\left(\right.$ Knock $>48_{\text {hours }} \mid$ Knock $\left.>46_{\text {hours }}\right)=P\left(\right.$ Knock $\left.>2_{\text {hours }}\right)=13 \%$
We do not need to "remember" when we started counting! memoryless
$P\left(\right.$ Knock $\left.>1_{\text {hours }}\right)=36 \%$
$P\left(\right.$ Knock $\left.>5_{\text {hours }}\right)=0.7 \%$
$P\left(\right.$ Knock $>5_{\text {hours }} \mid$ Knock $\left.>3_{\text {hours }}\right)=P\left(\right.$ Knock $\left.>2_{\text {hours }}\right)=13 \%$
$P\left(\right.$ Knock $>5_{\text {hours }} \mid$ Knock $\left.>4_{\text {hours }}\right)=P\left(\right.$ Knock $\left.>1_{\text {hours }}\right)=36 \%$
$P\left(\right.$ Knock $>5_{\text {hours }} \mid$ Knock $\left.>4.9_{\text {hours }}\right)=P\left(\right.$ Knock $\left.>0.1_{\text {hours }}\right)=90 \%$
prob. gets better, but is just equal to the knock-free prob. for the remaining time
- Closed under min (cumulative exit rate of a choice):
- $X=\min \left(X_{1}, \ldots, X_{n}\right)$ is exponentially distributed if X_{i} are independently exponential
- $P\left(\min \left(X_{\mu}, Y_{\mu}\right) \leq t\right)=1-e^{-(\lambda+\mu) t}=P\left(Z_{\lambda+\mu} \leq t\right)$
- Comparisons between 2 variables (branch probabilities of a choice)
- $P\left(X_{\Lambda}<Y_{\mu}\right)=N /(\lambda+\mu)$
- $P\left(Y_{\mu}<X_{\Lambda}\right)=\mu /(\Lambda+\mu)$
- $P\left(X_{\Lambda}=Y_{\mu}\right)=0$

Erlang Distribution

- http://en.wikipedia.org/wiki/Erlang_distribution
- Probability density function (with rate parameter $\mathrm{\Lambda}>0$, shape parameter k)

- Cumulative distribution function

$$
\begin{aligned}
& f(x ; k, \lambda)=\frac{\lambda^{k} x^{k-1} e^{-\lambda x}}{(k-1)!} \text { for } x>0 \\
& \quad f(x ; k, \theta)=\frac{x^{k-1} e^{-\frac{x}{\theta}}}{\theta^{k}(k-1)!} \text { for } x>0 . \quad(\theta=1 / \Lambda):
\end{aligned}
$$

When the shape parameter kequals 1 , the distribution simplifies to the exponential distribution.

$$
F(x ; k, \lambda)=\frac{\gamma(k, \lambda x)}{(k-1)!}
$$

where $\gamma()$ is the incomplete gamma function.

An Erlang distribution (so named in honor of A. K. Erlang) is the probability distribution of the amount of time until the n-th event in a one-dimensional Poisson process with rate \wedge. I.e. the sum of n exponential distributions with the same rate Λ.

Erlang Distribution

Erlang distribution a．k．a．Gamma distribution when n is a real number．
Erlang random variable $\mathrm{Y}=\mathrm{X}_{1}+\ldots+\mathrm{X}_{\mathrm{n}}$ is the sum of n exponentially distributed random variables with the same parameter．
Expected value $E(Y)=E\left(X_{1}\right)+\ldots+E\left(X_{n}\right) \quad$（true for general random variables）
Standard deviation $\sigma(Y)=\sigma\left(X_{1}\right)+\ldots+\sigma\left(X_{n}\right) \quad$（true for general independent random variables）

Erlang Up-Transition

directive sample 3.01000
directive plot ?dead1; ?dead2; ?dead5;
?dead10; ?dead20; ?dead50
let s (n :float, m :float, dead:chan ()$)=$
if $n<=0.0$ then ? dead
else delay@m; $s 0(n-1.0, m$, dead)
let $s(n$:float, dead:chan ()$)=s 0(n, n$, dead $)$
new dead1@1.0:chan()
run 100 of $s(1.0$, dead1)
new dead2@1.0:chan() run 100 of $s(2.0$, dead2)
new dead5@1.0:chan() run 100 of $s(5.0$, dead5)
new dead10@1.0:chan() run 100 of $s(10.0$, dead10)
new dead20@1.0:chan() run 100 of $s(20.0$, dead20)
new dead50@1.0:chan() run 100 of $s(50.0$, dead50)

Erlang Down-Transition

directive sample 3.01000
directive plot ?live1; ?live2; ?live5;
?live10; ?live20; ?live50
let $s 0(n:$ float, m :float, live:chan()) $=$
if $n<=0.0$ then ()
else do ?live or delay@m; sO(n-1.0, m, live)
let $s(n$:float, live:chan ()$)=s 0(n, n$, live $)$
new live1@1.0:chan()
run 100 of $s(1.0$, live1)
new live2@1.0:chan()
run 100 of $s(2.0$, live2)
new live5@1.0:chan() run 100 of $s(5.0$, live 5$)$
new live10@1.0:chan() run 100 of $s(10.0$, live10)
new live20@1.0:chan() run 100 of $s(20.0$,live20)
new live50@1.0:chan() run 100 of $s(50.0$,live50)

Erlang Pulse

directive sample 3.010000
directive plot ?pen1; ?pen2; ?pen5; ?pen10; ?pen20; ?pen50
let $s 0(n$:float, m :float, pen:chan ()$)=$

$$
\text { if } n<=0.0 \text { then }()
$$

else if $n<=1.0$ then do ?pen or delay@m; $s O(n-1.0, m$, pen $)$
else delay@m; sO(n-1.0,m, pen)
let $s(n$:float, pen:chan ()$)=s 0(n, n$, pen $)$
new pen1@1.0:chan()
run 100 of $s(1.0$, pen 1$)$
new pen2@1.0:chan()
run 100 of $s(2.0$, pen2)
new pen5@1.0:chan()
run 100 of $s(4.0$, pen5)
new pen10@1.0:chan()
run 100 of $s(10.0$, pen10)
new pen20@1.0:chan()
run 100 of $s(20.0$, pen20)
new pen50@1.0:chan()
_run 100 of $s(50.0$, pen50)

...the next day I was reading Scientific American...

Number of processes (out of 10000) over time in the penultimate state of a 50 -long chain of states
—?pen1 —? ?pen2 -?pen5 -?pen10

Well, ok, it's just a routine gamma distribution, which is the continuous version of an Erlang distribution. But look at all the matching stochastic bumps!

Spectral line of hydrogen
in a brown dwarf with accretion disk

[^0]
Erlang Timers

An Erlang Timer timer (t, s, r) "rings" r

 (by !r) at time t, with a "precision" of s steps (each with mean lifetime t / s).```
directive sample 2.0 10000
directive plot?a100; ?a1000
let timer(time:float, steps:float,ring:chan)=
 (val ti = time/steps (* break expected time into steps *)
 val del=1.0/+i (* rate for step (inv. of mean lifetime)*)
 let step(n:float) = if n<=0.0 then !ring else delay@del; step(n-1.0)
 run step(steps))
```

Expected value $E(Y)=E\left(X_{1}\right)+\ldots+E\left(X_{n}\right)$

new s100:chan new $100 @ 1.0$ :chan
new s1000:chan new 1000@1.0:chan
run 100 of (timer(1.0, 100.0, s100) |?s100; ?a100)
run 100 of (timer $(1.0,1000.0$, s1000) $\mid ? s 1000 ; ? a 1000)$

more steps within each interval gives more precise timing

## This reringer keeps invoking a timer, each time producing 10 of ?a.

## Erlang Clocks and Signal Shaping

directive sample 100.010000
directive plot !a; !b

```
let clock(t:float, tick:chan)= (* sends a tick every t time *)
 (val ti=t/100.0 val d=1.0/ti (* by 100-step erlang timers *)
 let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)
 run step(100))
```

new a@1.0:chan new b@1.0:chan
let $A($ tick:chan $)=$ do !a; $A$ (tick) or ?tick; $B$ (tick)
(* Offers !a, as many as needed, until the next tick *)
and $B$ (tick:chan) $=$ do ! b; $B$ (tick) or ?tick; $A$ (tick)
run 10 of (new tick:chan run (clock(10.0, tick) | A(tick)))
(* each signal with its own "new" tick (an infinite speed channel)*)

An Erlang Clock clock( $t, r$ ) is a repeating Erlang Timer; it signals ! every t.

The signal $A(t)$ offers la as often as needed, but only until a timeout $\dagger$ (provided by a concurrently running clock)

Then $A(t)$ becomes $B(t)$ until the next $t$ tick, and then it goes back to $A(\dagger)$...

Each signal has its own private clock (new tick), or things get confused.

Signal A repeatedly offers !a until the next "tick", then repeatedly offers! b until the next tick, and so on.
multiple clocks eventually get out of phase


## Erlang-Clocked Raising Signal

directive sample 20.010000
directive plot !a
let clock(t:float, tick:chan) = (* sends a tick every t time *)
(val $t i=t / 100.0$ val $d=1.0 /+i \quad$ (* by 100 -step erlang timers *)
let step $(n$ :int $)=$ if $n=0$ then !tick; $\operatorname{clock}(t$, tick $)$ else delay@d; step $(n-1)$
run step(100))
let $S($ a:chan, tick:chan) $=$
do !a; S(a,tick) or ?+ick; (S(a,tick) | S(a,tick))
(* Offers !a, as many as needed, until the next tick, then spawns one additional such signal. *)
let raising(a:chan, t:float) $=$
(new tick:chan run (clock(t,tick) | S(a,tick)))
(* Encapsulating a clock with a raising signal *)
new a@1.0:chan
run raising(a,1.0)

An raising signal $S(a, t)$ offers la's until the next Erlang tick $t$, then it spawns off one more copy of itself. Since all the copies share the same clock, they increase by 1 each tick (linearly).


## Erlang-Clocked Raising Concentration

```
directive sample 20.0 10000
directive plot p()
let clock(t:float, tick:chan) = (* sends a tick every t time *)
 (val ti=t/100.0 val d=1.0/ti (* by 100-step erlang timers *)
 let step(n:int)= if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)
 run step(100))
let S(p:proc(), tick:chan)=
 (p()| ?+ick; S(p,tick))
(* Spawns a process p() every tick. *)
let raising(p:proc(), t:float)=
 (new tick:chan run (clock(t,tick)| S(p,tick)))
(* Encapsulating a clock with a raising concentration *)
new a@1.0:chan
let p()=!a
run raising(p,1.0)
```



## Erlang-Clocked Raising and Falling

directive sample 20.010000
directive plot !a
let clock(t:float, tick:chan) $=$ (* sends a tick every + time *) (val $\mathrm{ti}=+/ 100.0$ val $d=1.0 / \mathrm{ti} \quad$ (* by 100-step erlang timers *)
let step( $n$ :int $)=$ if $n<=0$ then !tick; clock( $t$,tick) else delay@d; step $(n-1)$ run step(100))
let S1(a:chan, tock:chan) = do !a; S1(a,tock) or ?tock; ()
(* Offers !a, as many as needed, until the next tock. *)
let $\mathrm{SN}(\mathrm{n}: \mathrm{int}, \mathrm{t}$ :float, a:chan, tick:chan, tock:chan) =
if $n=0$ then $\operatorname{clock}(t$, tock $)$ else ?tick: (S1( a,tock) | SN( $n-1$, t, $a$, tick,tock))
(* For $n$ ticks, starts an S1.
At the end, starts a tock-clock to stop one S1 at each tock. *)
let raisingfalling(a:chan, $n: i n t, t: f l o a t)=$
(new tick:chan new tock:chan
run (clock(t,tick) | SN(n,t, a,tick,tock)))
(* Encapsulating a clock with a raising and falling signal *)
new a@1.0:chan
run raisingfalling(a,10,1.0)

This is a "test signal" that we will use a lot. raisingfalling $(a, n, t)$ produces a linearly increasing !a signal with $n$ steps of length t; then it decreases back to 0 in similar steps.

## S1(a,tock) offers !a until the first tock.

SN (which is tick-clocked) starts an S1 for $n$ ticks, then it starts a tock-clock that will stop them all in turn.


## Exercise (hard): Bell

Build a smal/ network where one node has a distribution like this:

(The solution plotted here has 3 nodes and 2 channels; it uses communication.)

## Further Reading: Phase-Type Distributions

- Erlang-like distributions are "universal":

Queueing Theory

Ivo Adan and Jacques Resing
Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513,5600 MB Eindhoven, The Netherlands

February 14, 2001
We mention two important classes of phase-type distributions which are dense in the class of all non-negative distribution functions. This is meant in the sense that for any non-negative distribution function $F(\cdot)$ a sequence of phase-type distributions can be found which pointwise converges at the points of continuity of $F(\cdot)$. The denseness of the two classes makes them very useful as a practical modelling tool. A proof of the denseness can be found in $[5,6]$. The first class is the class of Coxian distributions, notation $C_{k}$, and the other class consists of mixtures of Erlang distributions with the same scale parameters. The phase representations of these two classes are shown in the figures 4 and 5 .


Figure 5: Phase diagram for the mixed Erlang distribution

- Possible connection between process calculi and data fitting:
- The EM (Expectation-Maximization) algorithm fits data to general phase-type distributions.

Efficient fitting of long-tailed data sets into
hyperexponential distributions
Alma Risk
Vesselin Diev $\qquad$ Evgenia Smirni Department of Computer Science
College of William and Mary Williamsburg, VA 23187-8795, USA
http://citeseer.ifi.unizh.ch/cache/papers/cs/2964 3/http:zSzzSzwww.cs.wm.eduzSz~esmirnizSzdocsz e-mail \{riska,vdiev,esmirni\}@cs.wm.edu Szglobecom02.pdf/ecient-fitting-of-long.pdf

## SPiM Basic Syntax

| Program |  | $\begin{aligned} & \{\text { directive sample } \text { Float }\{\text { Integer }\}\} \\ & \left\{{\text { directive plot } \left.\text { Point }_{1} \ldots \text { Point }_{N}\right\}}^{\text {Declaration }_{1} \ldots \text { Declaration }_{N}}\right. \end{aligned}$ | Sample Directive Plot Directive Declarations, $N \geq 1$ | |
|---|---|---|---|---|
| Declaration |  | $\begin{aligned} & \text { new } \text { Name }\{0 \text { Rate }\}: \text { Type } \\ & \text { type } \text { Name }=\text { Type } \\ & \text { val Pattern }=\text { Value } \\ & \text { run Process } \\ & \text { let Definition } 1 \text { and } \ldots \text { and } \text { Definition }_{N} \end{aligned}$ | Channel Declaration Type Declaration Value Declaration Process Declaration Definitions, $N \geq 1$ |
| Definition | :: $=$ | Name $\left(\right.$ Pattern $_{1}, \ldots$, Pattern $\left._{N}\right)=$ Process | Definition, $N \geq 0$ |
| Process | $::=$ | () <br> (Process ${ }_{1}$ \| ... | Process $_{M}$ ) <br> Name (Value ${ }_{1}, \ldots$, Value $\left._{N}\right)\{$; Process $\}$ <br> ActionProcess <br> do ActionProcess ${ }_{1}$ or $\ldots$ or ActionProcess $M_{M}$ <br> replicate ActionProcess <br> if Value then Process \{else Process\} <br> match Value case Case C. . case Case $_{N}$ <br> Integer of Process <br> (Declaration D . . Declaration $_{N}$ Process) $^{\text {D }}$ | Null Process <br> Parallel, $M \geq 2$ <br> Instantiation, $N \geq 0$ <br> Action Process <br> Choice, $M \geq 2$ <br> Replicated Action <br> Conditional Process <br> Matching, $N \geq 1$ <br> Repetition <br> Declarations, $N \geq 0$ |
| ActionProcess | ::= | Action $;$ Process $\}$ | Action Process |
| Action |  | ```!Channel {(Value },\mp@code{, .., Value}N) ?Channel {(\mp@subsup{Pattern}{1}{},\ldots,\mp@subsup{\mathrm{ Pattern}}{N}{})} delay@Rate``` | Output, $N \geq 0$ <br> Input, $N \geq 0$ <br> Delay |
|  | Na Flo Na |  |  |

## Summary

- Exponential Distributions
- Simplest (memoryless) distributions
- The only memoryless distributions
- Fully general when networked
- Erlang Distributions
- Useful for building clocks and other signal shapes when all you got are exponential distributions
- SPiM
- A language for (among other things) programming with exponential distribution

> Q?


[^0]:    SPECTRAL LINE OF HYDROGEN can reveal whether a brown dwarf has a gas disk. Hydrogen atoms at rest emit light at distinct wavelengths (dotted line), but when a gas is moving, this light gets smeared out into a range of wavelengths reflecting the range of velocities within the gas. Gas on the dwarf surface, being comparatively slow moving, generates a narrow spectral bump (lower curve). A broad hump (upper curve) is a telitale sign of gas plummeting in from a disk. Most young brown dwarfs appear to have disks, suggesting they form in much the same way full-fledged stars do.

