Most scientific papers are probably wrong. Artificial
...there is less than a 50% chance that the results of any randomly chosen scientific paper are frue.

Kurt Kleiner, NewScientist.com - www.newscientist.com/article.ns?id=dn7915 BIOChCﬂ'\ISTf‘Y

Probability
Distributions

Luca Cardelli

Microsoft Research

The Microsoft Research - University of Trento
Centre for Computational and Systems Biology

Trento, 2006-05-22..26

www.luca.demon.co.uk/ArtificialBiochemistry.htm

Exponential Decay

A quantity subject to exponential decay
decreases at a rate proportional to its value:

Solution of the equation:

Half life:

Mean lifetime:

Poisson processes:

ﬂ — _\N where N is the quantity and

dt ' A> 0 is the decay rate

] Y where C is the initial value
N=Ce ™. of the quantity
Foon — 111_2 time of halving of the initial

1/2 A quantity C, independent of C

1 average length of time an element
T= N remains in an exponentially

decaying discrete set

Exponential decay leads to the exponential distribution , which is
used to model (homogeneous 1-dimensional) Poisson processes, which
are situations in which an object initially in state A can change to
state B with constant probability per unit time A. The time at which
the state actually changes is described by an exponential random
variable with parameter A. Therefore, the integral from O to Tover
fis the probability that the object is in state B at time T

Exponential Distribution

e http://en.wikipedia.org/wiki/Exponential_distribution ar = M
- Probability density function (with rate parameter A > O) N = Ce ™,
0
12 \ = /| rate of decay A
.1 . | Ne— AT : >0,
Eg \ probability of] F(z;A) = { EIf] , f: ; 0.

sil happening before t=1

03 kb
o4 b
03 b
02
01 b

0

A probability density function is non-negative everywhere and
”» its integral from - to +o is equal to 1. If a probability

T 1 distribution has density A x), then intuitively the infinitesimal
— ———1 interval [x, x+ dx] has probability Ax) dx.

1 T T —

09t "' 1 — AT , I = D,
08 F / e { F(z;)\) = { B

0 , r < 0.

07 F

06 |
For every real number x, the cumulative distribution function

probability of | isgivenb _ -
happening before t=1 1 g Y F(r)=P(X <),

0s f

04 F

where the right-hand side represents the probability that
—— 1 the random variable X takes on a value less than or equal to x.
/ —— | The probability that Xlies in the interval (a, 5] is therefore

: : . . . Rb)- Ra)if a< b.

I Hence: P(X > x) = F(eo)-F() = &

i et

0.3
I.
I.

L =]

Plotting Exponential Distributions
Probability Density Function f(+) (= AP(X>1))

d1() d2() d3()
1600 @A
1400 Plotting/counting populations of @' LEREEL] J o)
processes always means counting a P(X<t)
1200 - given barb (action) currently offered P(X>1) let d1() = delay@0.5; ()
y those processes. Such a barb may lot this
1000 - be part of the processes as written, P let d2() = delay@1.0; ()
or may be automatically inserted by State let d3() = delay@1.5; ()
800 - the simulator for plotting purposes
3 500 (e.g. "d1()" here). actually plotting 1000 * A * run 500 of d1()
5 P(X>#) where P(X>#) = " run1000 of 420
c (which just happens to be run 1500 of d3()
2 the same as 1000 * f(t)!)
3 0 I I I [
0 Time in “seCfnds" (ar‘biTr‘aéy unit) 3 4 5 AQ B() c() D() E()
For A=1, if T start with 1000 things, and after 1o 4
2sec I find 135 left, TAP;en P(delay > 2sec) = 800 - let AQ = delay@1.0; ()
135/1000=0.135 ~ e 600 | and B() = delay@2.0; ()
400 - and €() = delay@3.0; ()
200 | and D() = delay@4.0; ()
. and E() = delay@®5.0; ()

0 0.5 1 15 2 run1000 of (AQ) | BO | €O | DO | EO)

Scale Invariance: 1000, 100, 10 processes with normalized Y scale
—d1() —d1() —d10
1200 . 120 12

1000 half-life 100 10
800 In 2/A independent of g | 8
600 initial quantity Ny 4 | 6 |

400 40 - \ 4 4 let dl() = delay@lO, ()
201 K N N run 100 of d1()

Plotting Exponential Distributions

Cumulative Distribution Function P(X<t)

—— d1s2() —— d2s2() —— d3s2()
1000

800

600 -

400 -

200

0 ! ! ! !
0 1 2 3 4 5

For A=1, if T start with 1000 things, and after
2sec I find 865 in S2, then P(delay < 2sec) =
865/1000 = 0.865 ~ 1-e*?

plot this
State

plotting 1000 * P(X'<t)
where P(X'<t)=1-g7*

let d1s1() = delay@0.5; d1s2()
let d2s1() = delay@1.0; d2s2()
let d3s1() = delay@1.5; d3s2()

run 1000 of d1s1()
run 1000 of d2si()
run 1000 of d3s1()

Exponential Distribution

Basic Properties

e Characterized by a single positive real rate parameter A
- P(X;<t)=1-eM X is the de/ay before the event

e Memoryless (the only such continuous probability distribution)
- P(X > 1'0+‘|' | X>To) = P(X > 1')

people knocking on my door at A = 1-knock-per-hour. P(Knock > N, ..) = “prob. of being knock-free for N hours”

P(Knock > 5, .« | Knock >3, .) = P(Knock > 2, ,..) = 13%
P(Knock > 48, .. | Knock > 46, ..) = P(Knock > 2, ..) = 13%
We do not need to “remember” when we started counting! memoryless

P(Knock > 1, ,.c) = 36%
P(Knock > 5, ,.s) = 0.7%

P(Knock > 5, .« | Knock >3, .) = P(Knock > 2, ,.) = 13%

P(Knock >5, . | Knock >4,) =P(Knock>1, .J)=36%

P(Knock >5, . | Knock>4.9,) =P(Knock>0., ..)=90%

prob. gets better, but is just equal to the knock-free prob. for the remaining time

e C(Closed under min (cumulative exit rate of a choice):
- X =min(Xy, .., X,) is exponentially distributed if X; are independently exponential
- P(min(X,Y) <1) = l-e Wt = P(Z, <t)

e Comparisons between 2 variables (branch probabilities of a choice)
- P(Xy<Y,) = M(A+p)
= P(Y,<X,) = p/(A+p)
- P(X,=Y,)= 0

Erlang Distribution

e http://en.wikipedia.org/wiki/Erlang_distribution

- Probability density function (with rate parameter A > O, shape parameter k)

0.5

04 F
1

02 F

0l F

i

- Cumulative distrib

09}
08 b
07 b
06 |
osr |
o4t |

02t

II
03 I'.

mauw

nm
b
DoDDD
TNERRE
=l
LWoooo

—

1]

12 14 16 18

0

ution function

03t/

)
0.1 f

rmmnnm
[a=: R = ==l
Ll s nnm
== b
[(F f=F=F==]

NGr B L sl

/\.LR:IR:—IE—}.I

f(r;k,)..)z—(k_l)l for x = 0.
r*le—%
f[l‘, JEG, 9) = m for r = 0. (e =1/ A):

When the shape parameter A equals 1, the distribution
simplifies to the exponential distribution.

F(r;k,hjzfgk_’—)f))!

where y() is the incomplete gamma function.

An Erlang distribution (so named in honor of A. K.
Erlang) is the probability distribution of the amount
of time until the #-th event in a one-dimensional
Poisson process with rate A. I.e. the sum of n
exponential distributions with the same rate A.

Erlang Distribution

@)\/ rate

@A @A @A arameter
@@ 2t.@ 2t | B (GR) | Perome

shape let s1() = delay@1.0; s2()

par‘ame'rer' and s2() = delay@1.0; s3()
and s3() = delay@1.0; s4()

and s4() = delay@1.0; s5()

$10 20 30 #0 0 60 ——+70 and s5() = delay@1.0; s6()

1200 - ——s8() $9() s10() — and s6() = delay@1.0; s7()
and s7() = delay@1.0; s8()

1000 - and s8() = delay@1.0; s9()

and s9() = delay@1.0; s10()
and s10() = ()

run 1000 of s1()

800

600

400
200

0 [I I
0 2 4 6 8 10 12 14 16 18 20

Erlang distribution a.k.a. Gamma distribution when n is a real number.

Erlang random variable ¥ = X; + ... + X,, is the sum of n exponentially distributed random variables with the same parameter.
Expected value E(Y) = E(X;) + .. + E(X,) (true for general random variables)
Standard deviation o(Y) = o(X;) + .. + 6(X,) (true for general independent random variables)

Erlang Up-Transition

directive sample 3.0 1000
@1 directive plot ?deadl; ?dead2; ?deadb;
llllllllllllllllllllllllllllllllll’ 7dead10, 7dead20, ')dead5o
let sO(n:float, m:float, dead:chan()) =
if n<=0.0 then ?dead
O » O @ 2 O else delay@m; sO(n-1.0, m, dead)
let s(n:float, dead:chan()) = sO(n,n,dead)
new dead1@1.0:chan()
run 100 of s(1.0,dead1)
OIIIIIIIOIIIIIIIOIIIIIIIO newdeadz@l.o:chan()
run 100 of s(2.0,dead?2)

l new dead5@1.0:chan()

erc. plot last run 100 of 5(5.0,dead5)
new dead10@1.0:chan()
run 100 of s(10.0,dead10)

9 9 9 9 9 9 new dead20@1.0:chan()
1200 ?deadl ?dead?2 ?dead5 ?dead10 ?dead20 ?dead50 run 100 of 5(20.0 dead20)

new dead50@1.0:chan()

1000 run 100 of s(50.0,dead50)

800 -

600 -

400 -
200 -

Erlang Down-Transition

directive sample 3.0 1000
@1 directive plot ?livel; ?live2; ?liveb;
llllllllllllllllllllllllllllllllll’ ?hvalo; ?Ilvezo; ?||V65o

let sO(n:float, m:float, live:chan()) =

@ 2 if n<=0.0 then ()
O p O O else do ?live or delay@m; sO(n-1.0, m, live)
let s(n:float, live:chan()) = sO(n,n,live)
new livel@1.0:chan()
run 100 of s(1.0,livel)
QIIIIIIIOIIIIIIIOIIIIIIIO new Ilvez@l'O:chan()
run 100 of s(2.0,live2)

new live5@1.0:chan()
etc. plot all but last run 100 of s(5.0 live5)

new livel0@1.0:chan()
run 100 of s(10.0,livel0)

?Nivel Nive2 ?liveS 2MivelO ?Mive20 ?live50 ,
1200 new live20@1.0:chan()
run 100 of s(20.0,live20)
1000 - new live50@1.0:chan()
run 100 of s(50.0,live50)
800
600 -
400
200 -
O [[| | |

Erlang Pulse

@ 1 directive sample 3.0 10000

> directive plot ?penl; ?pen2; ?pen5; ?penl0; ?pen20; ?pen50
let sO(n:float, m:float, pen:chan()) =

if n<=0.0 then ()
else if n«<=1.0 then do ?pen or delay@m; sO(n-1.0, m, pen)

@ 2 else delay@m; sO(n-1.0, m, pen)
O‘"""""""O‘"""'"'""O let s(n:float, pen:chan()) = sO(n,n,pen)
new penl@1.0:chan()
run 100 of s(1.0,penl)

new pen2@1.0:chan()
IIIIIIIOIIIIIIIOIIIIIIIO r‘unlooofs(zolpenz)

new pen5@1.0:chan()

run 100 of s(4.0,pen5)

e-l-c . new penl0@1.0:chan()
: plot penultimate run 100 of $(10.0,pen10)

new pen20@1.0:chan()
run 100 of s(20.0,pen20)

new pen50@1.0:chan()
run 100 of s(50.0,pen50)

7penl 7pen2 7pen5 -

1200 7penl0 2pen20 2pens50 700 — ?pen20 ?pen50
600 |

1000 - Penultimate state of

800 _ 50 4 4 50-long chain, with run 10000 of
400 | 10000 processes $(50.0,pen50)

600 -
300

400 | 200

200 - 100 -

0 B T T 0 T T T

700 -
600
500 -
400 -
300
200 -
100

..the next day I was reading Scientific American...

Number of processes (out of 10000)
over time in the penultimate state of

a B0-long chain of states
—— penl ——7pen2 ——7penS —— ?penl(

— — Mpen20 —— 7penS0 S

0 0.5 1 1.5 2

Well, ok, it's just a routine gamma distribution, which
is the continuous version of an Erlang distribution.
But look at all the matching stochastic bumps!

Spectral line of hydrogen
in a brown dwarf with
accretion disk

Relative Power per Unit Area
8

655.8 656.0 656.2 656.4 656.6 656.8
Wavelength (nanometers)

SPECTRAL LINE OF HYDROGEN can reveal whether a brown dwarf has a gas
disk. Hydrogen atoms at rest emit light at distinct wavelengths [dotted
line), but when a gas is moving, this light gets smeared out into a range of
wavelengths reflecting the range of velocities within the gas. Gas on the
dwarf surface, being comparatively slow moving, generates a narrow
spectral bump (lower curve). Abroad hump [upper curve) is a telltale sign
of gas plummeting in from a disk. Most young brown dwarfs appearto have
disks, suggesting they form in much the same way full-fledged stars do.

30 SCIENTIFIC AMERICAN JANUARY 2006

Erlang Timers

An Erlang Timer timer(t,s,r) "rings" r
(by Ir) at time t, with a “precision” of s
steps (each with mean lifetime 1/s).

Expected value E(Y) = E(X,) + .. + E(X.)

120 2a100 221000
100 |

directive sample 2.0 10000 5 | 100 concurrent fimers set to t=1.0
e ., | with 100 steps and 1000 steps each
let timer(time:float, steps:float, ring:chan) =

(val ti = time/steps (* break expected time into steps *) 40 1

val del = 1.0/%i (* rate for step (inv. of mean lifetime) *) 20

let step(n:float) = if n<=0.0 then Iring else delay@del; step(n-1.0) 0 | | | ‘ | |

run step(steps)) 0 02 04 06 0.8 1 1.2 14
new s100:chan new a100@1.0:chan
new s1000:chan new a1000@1.0:chan
run 100 of (timer(1.0, 100.0, s100) | 25100 2a100)
run 100 of (timer(1.0, 1000.0, s1000) | ?s1000; ?a1000) ThIS rler\lnger\ keeps |nvok|n9 a Tlmer!’

each time producing 10 of ?a.
SequenTKII 1-:10 Tlmer‘s directive sample 20.0 10000
200 Ta 200 Ta directive plot ?a
150 150 . ,)
let timer(time:float, steps:float, ring:chan) =
100 100 - (val ti = time/steps (* break expected time into steps *)
50 - 50 | val del = 1.0/ti (* rate for step (inv. of mean lifetime) *)
0 | | | 0 | | | let step(n:float) = if n<=0.0 then !ring else delay@del; step(n-1.0)
20 20 run step(steps))

0 5 10 15
with 100 steps each

more steps within each interval gives
more precise timing

0 5 10 15
with 10 steps each

new s:chan new a@1.0:chan

let rering() =
(timer(1.0, 100.0, s) | ?s; (rering() | 10 of ?a))

run rering()

Erlang Clocks and Signal Shaping

directive sample 100.0 10000
directive plot la; Ib

let clock(t:float, tick:chan) =
(val ti = t/100.0 val d = 1.0/ti
run step(100))

new a@1.0:chan new b@&1.0:chan
let A(tickichan) = do la; A(tick) or ?tick; B(tick)

(* Offers la, as many as needed, until the next tick *)

and B(tick:chan) = do Ib; B(tick) or ?tick; A(tick)

run 10 of (new tick:chan run (clock(10.0, tick) | A(tick)))

(* sends a tick every t time *)
(* by 100-step erlang timers *)
let step(n:int) = if n<=0 then ltick; clock(t, tick) else delay@d; step(n-1)

(* each signal with its own "new" tick (an infinite speed channel)*)

Signal A repeatedly offers la until the next "tick”, then
repeatedly offers Ib until the next tick, and so on.

1 signal

12

la

0.8 4
0.6 4
0.4 4
0.2 4

100

An Erlang Clock clock(t,r) is a
repeating Erlang Timer; it
signals Ir every .

The signal A(t) offers la as often as
needed, but only until a timeout t
(provided by a concurrently running clock)

Then A(t) becomes B(t) until the next
tick, and then it goes back to A(%)...

Each signal has its own private clock
(new tick), or things get confused.

multiple clocks eventually
get out of phase

sum of 10 signals

'b

la

20

30 40 50 60 70 80 90 100

Erlang-Clocked Raising Signal

directive sample 20.0 10000
directive plot la

let clock(t:float, tick:chan) = (* sends a tick every t time *)

(val ti=1/100.0 val d = 1.0/ti (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then ltick; clock(t,tick) else delay@d; step(n-1)

run step(100))
An raising signal S(a,t) offers la's until the
next Erlang tick t, then it spawns off one
more copy of itself. Since all the copies
share the same clock, they increase by 1
each tick (linearly).

let S(a:chan, tick:chan) =
do la; S(a,tick) or ?tick; (S(a,tick) | S(a,tick))
(* Offers la, as many as needed, until the next tick,
then spawns one additional such signal. *)

let raising(a:chan, t:float) =
(new tick:chan run (clock(t,tick) | S(a,tick)))

(* Encapsulating a clock with a raising signal *)

new a@1.0:chan
run raising(a,1.0)

Erlang-Clocked Raising Concentration

directive sample 20.0 10000
directive plot p()

let clock(t:float, tick:chan) = (* sends a tick every t time *)
(val ti=1/100.0 val d = 1.0/ti (* by 100-step erlang timers *)
let step(n:int) = if n<=0 then ltick; clock(t,tick) else delay@d; step(n-1)

run step(100))
let S(p:proc(), tick:chan) = A variation S(p,t) that spawns an
(p() | ?tick; S(p.tick)) arbitrary (parameterless) process p

at every tick t.
An example of higher-order processes.

(* Spawns a process p() every tick. *)
let raising(p:proc(), t:float) =
(new tick:chan run (clock(t,tick) | S(p,tick)))
(* Encapsulating a clock with a raising concentration *)

new a@1.0:chan
let p() = la
run raising(p,1.0)

25 0
20 |

15
10 -

Erlang-Clocked Raising and Falling

directive sample 20.0 10000 This is a "test signal” that we will use a lot.

directive plot la raisingfalling(a,n,t) produces a linearly

let clock(t:float, tick:chan) = (* sends a tick every t time *) increasing la Signal with n steps of leng‘rh T,
(val ti = 1/100.0 val d = 1.0/ti (* by 100-step erlang timers *) then it decreases back to O in similar steps.
let step(n:int) = if n<=0 then ltick; clock(t,tick) else delay@d; step(n-1)
run step(100))

let S1(a:chan, tock:chan) = do la; S1(a,tock) or ?tock; () S1(a,tock) offers la until the first tock.

(* Offers la, as many as needed, until the next tock. *)

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) =
if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))
(* For n ticks, starts an S1.
At the end, starts a tock-clock to stop one S1 at each tock. *)

SN (which is tick-clocked) starts an S1 for
n ticks, then it starts a tock-clock that will
stop them all in turn.

let raisingfalling(a:chan, n:int, t:float) =
(new tick:chan new tock:chan
run (clock(t,tick) | SN(n,t,a,tick,tock)))

(* Encapsulating a clock with a raising and falling signal *)

new a@1.0:chan
run raisingfalling(a,10,1.0)

12 la
10 -

o N MO
T

Exercise (hard): Bell

Build a sma// network where one node has a distribution like this:

— B0
10000
9000 -
8000 -
7000
6000
5000 -
4000 |
3000 -
2000
1000 |

0 0.0005 0.001 0.0015 0.002 0.0025

(The solution plotted here has 3 nodes and 2 channels; it uses communication.)

Further Reading: Phase-Type Distributions

e Erlang-like distributions are “universal:

Queueing Theory http://mia.ece.uic.edu/~papers/ WWW/Flexi-Tunes/tarballs/queue.pdf
Ivo Adan and Jacques Resing T
Department of Mathematics and Computing Science J"' 1 ™
Eindhoven University of Technology P
P.O. Box 513, 5600 MB Eindhoven, The Netherlands Fl-":l
February 14, 2001 A N (2
) . . o . , - m m
We mention two important classes of phase-type distributions which are dense in the :
class of all non-negative distribution functions. This is meant in the sense that for any
non-negative distribution function F'(-) a sequence of phase-type distributions can be found p;
which pointwise converges at the points of continuity of F(-). The denseness of the two ST P
classes makes them very useful as a practical modelling tool. A proof of the denseness can o‘.\ 1) _ 2 _ k
be found in [5, 6]. The first class is the class of Coxian distributions, notation Cj,, and o ' u" ' “'J
the other class consists of miztures of Erlang distributions with the same scale parameters.
The phase representations of these two classes are shown in the figures 4 and 5. Figure 5. Phase diagram for the mixed Erlang distribution

e Possible connection between process calculi and data fitting:

- The EM (Expectation-Maximization) algorithm fits data to general

phase-type distributions. Efficient fitting of long-tailed data sets into

hyperexponential distributions

Alma Riska Vesselin Diev Evgenia Smirni
De t of C ter Sci
é’j““e’g‘f;f %.v-df-fx L;nedr L,{C;;N http://citeseer.ifi.unizh.ch/cache/papers/cs/2964
Williamsburg, VA 23187-8795, USA 3/http:zSzzSzwww.cs.wm.eduzSz~esmirnizSzdocsz
Szglobecom02.pdf/ecient-fitting-of-long.pdf

e-mail {riska,vdiev,esmirni }@cs wm.edu

Program

Declaration

Definition

Process

SPiM Basic Syntax

Action Process

Action

Channel
Rate

= Jdirective sample Float {Integer}}

{directive plot Point; ... Pointy}
Declarationy ... Declarationy

new Name{@Rate}:Type

type Name =Type

val Pattern = Value

run Process

let Definition) and ... and Definitiony

n= Name (Patterny, ... ,Patterny) = Process

replicate ActionProcess

if Value then Process {else Process]
match Value case Casey ... case Clasey
Integer of Process

i Declarationy ... Dedarationy Process)

n= Action{; Process}

TChannel { { Patterny , ..., Patterny i}

n= 1Channel {(Valuey, ... ,Valuspy)}
|
| delay@Rate

Name)
Float

Name

)

(Processy | ... | Processpy)

Name (Valuey, ... ,Valuey){; Process}
Action Process

do ActionProcess; or ... or ActionProcessyy

Sample Directive
Plot Directive
Declarations, W = 1

Channel Declaration
Type Declaration
WValue Declaration
Process Declaration

Definitions, N = 1

Definition, N =0

MNull Process
Parallel, M =2
Instantiation, N = 0
Action Process
Choice, M =2
Replicated Action
Conditional Process
Matching, N = 1
Repetition
Declarations, N = 0

Action Process
Clutput, N = 0

Input, N =0
Delay

Summary

e Exponential Distributions
- Simplest (memoryless) distributions
- The only memoryless distributions
- Fully general when networked

e Erlang Distributions

- Useful for building clocks and other signal shapes
when all you got are exponential distributions

e SPIM

- A language for (among other things) programming
with exponential distribution

