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Exponential Decay

A quantity subject to exponential decay 
decreases at a rate proportional to its value:

where N is the quantity and 
λ > 0 is the decay rate

Half life:

where C is the initial value 
of the quantitySolution of the equation:

time of halving of the initial 
quantity C, independent of C

Mean lifetime:
average length of time an element 
remains in an exponentially 
decaying discrete set

Poisson processes: Exponential decay leads to the exponential distribution , which is 
used to model (homogeneous 1-dimensional) Poisson processes, which 
are situations in which an object initially in state A can change to 
state B with constant probability per unit time λ. The time at which 
the state actually changes is described by an exponential random
variable with parameter λ. Therefore, the integral from 0 to T over 
f is the probability that the object is in state B at time T.
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Exponential Distribution

● http://en.wikipedia.org/wiki/Exponential_distribution
– Probability density function (with rate parameter λ > 0)

– Cumulative distribution function 

rate of decay λ

A probability density function is non-negative everywhere and 
its integral from −∞ to +∞ is equal to 1. If a probability 
distribution has density f(x), then intuitively the infinitesimal 
interval [x, x + dx] has probability f(x) dx. 

For every real number x, the cumulative distribution function
is given by

where the right-hand side represents the probability that 
the random variable X takes on a value less than or equal to x. 
The probability that X lies in the interval (a, b] is therefore 
F(b) − F(a) if a < b. 

Hence: P(X > x) = F(∞)-F(t) = e -λx

probability of 
happening before t=1

probability of 
happening before t=1
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Plotting/counting populations of 
processes always means counting a 
given barb (action) currently offered 
by those processes. Such a barb may 
be part of the processes as written, 
or may be automatically inserted by 
the simulator for plotting purposes 
(e.g. “d1()” here).

For λ=1, if I start with 1000 things, and after 
2sec I find 135 left, then P(delay > 2sec) = 
135/1000 = 0.135 ~ e-λ2

Time in “seconds” (arbitrary unit) 
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Plotting Exponential Distributions
Probability Density Function f(t)  ( = λP(X>t) )

directive sample 5.0

directive plot d1(); d2(); d3()

let d1() = delay@0.5; ()

let d2() = delay@1.0; ()

let d3() = delay@1.5; ()

run  500 of d1()

run 1000 of d2()

run 1500 of d3()

directive sample 5.0

directive plot d1()

let d1() = delay@1.0; ()

run 100 of d1()

plot this 
state

directive sample 2.0

directive plot A(); B(); C(); D(); E()

let A() = delay@1.0; ()

and B() = delay@2.0; ()

and C() = delay@3.0; ()

and D() = delay@4.0; ()

and E() = delay@5.0; ()

run 1000 of (A() | B() | C() | D() | E())

actually plotting 1000 * λ * 
P(X >t ) where P(X >t ) = e –λt

(which just happens to be 
the same as 1000 * f(t) ! )

P(X>t)
P(X≤t)

Scale Invariance: 1000, 100, 10 processes with normalized Y scale
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Plotting Exponential Distributions
Cumulative Distribution Function P(X≤t)

s1
@λ

directive sample 5.0

directive plot d1s2(); d2s2(); d3s2()

let d1s2() = ()

let d2s2() = ()

let d3s2() = ()

let d1s1() = delay@0.5; d1s2()

let d2s1() = delay@1.0; d2s2()

let d3s1() = delay@1.5; d3s2()

run 1000 of d1s1()

run 1000 of d2s1()

run 1000 of d3s1()

plot this 
state

plotting 1000 * P(X ≤t ) 
where P(X ≤t ) = 1-e –λt

For λ=1, if I start with 1000 things, and after 
2sec I find 865 in S2, then P(delay ≤ 2sec) = 
865/1000 = 0.865 ~ 1-e-λ2

P(X>t) P(X≤t)
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Exponential Distribution
Basic Properties

● Characterized by a single positive real rate parameter λ
– P(Xλ≤t ) = 1-e-λt X is the delay before the event

● Memoryless (the only such continuous probability distribution)
– P(X > t0+t | X>t0) = P(X > t)

people knocking on my door at λ = 1-knock-per-hour. P(Knock > Nhours) = “prob. of being knock-free for N hours”

P(Knock > 5hours | Knock > 3hours) = P(Knock > 2hours) = 13%
P(Knock > 48hours | Knock > 46hours) = P(Knock > 2hours) = 13%
We do not need to “remember” when we started counting! memoryless

P(Knock > 1hours) = 36%  
P(Knock > 5hours) = 0.7%

P(Knock > 5hours | Knock > 3hours) = P(Knock > 2hours) = 13%
P(Knock > 5hours | Knock > 4hours) = P(Knock > 1hours) = 36%
P(Knock > 5hours | Knock > 4.9hours) = P(Knock > 0.1hours) = 90%
prob. gets better, but is just equal to the knock-free prob. for the remaining time

● Closed under min (cumulative exit rate of a choice):
– X = min(X1, …, Xn) is exponentially distributed if Xi are independently exponential
– P(min(Xλ,Yµ) ≤ t) = 1-e-(λ+µ)t = P(Zλ+µ ≤ t)

● Comparisons between 2 variables (branch probabilities of a choice)
– P(Xλ<Yµ) = λ/(λ+µ)
– P(Yµ<Xλ) = µ/(λ+µ)
– P(Xλ=Yµ) = 0
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Erlang Distribution

● http://en.wikipedia.org/wiki/Erlang_distribution
– Probability density function (with rate parameter λ > 0, shape parameter k)

– Cumulative distribution function 

where γ() is the incomplete gamma function. 

When the shape parameter k equals 1, the distribution 
simplifies to the exponential distribution. 

(θ = 1 / λ): 

An Erlang distribution (so named in honor of A. K. 
Erlang) is the probability distribution of the amount 
of time until the n-th event in a one-dimensional 
Poisson process with rate λ. I.e. the sum of n 
exponential distributions with the same rate λ.

“pulse”

“sigma”



2006-05-26 8

L
u
c
a
 C
a
rd
e
ll
i

0

200

400

600

800

1000

1200

0 2 4 6 8 10 12 14 16 18 20

s1() s2() s3() s4() s5() s6() s7()

s8() s9() s10()

Erlang Distribution

directive sample 100.0 1000

directive plot s1(); s2(); s3(); s4(); 
s5(); s6(); s7(); s8(); s9(); s10()

let s1() = delay@1.0; s2()

and s2() = delay@1.0; s3()

and s3() = delay@1.0; s4()

and s4() = delay@1.0; s5()

and s5() = delay@1.0; s6()

and s6() = delay@1.0; s7()

and s7() = delay@1.0; s8()

and s8() = delay@1.0; s9()

and s9() = delay@1.0; s10()

and s10() = ()

run 1000 of s1()

s1 s2 s3 … sk

Erlang random variable Y = X1 + … + Xn is the sum of n exponentially distributed random variables with the same parameter.
Expected value E(Y) = E(X1) + … + E(Xn) (true for general random variables)

Standard deviation σ(Y) = σ(X1) + … + σ(Xn) (true for general independent random variables)

Erlang distribution a.k.a. Gamma distribution when n is a real number.

@λ @λ @λ @λ

shape 
parameter

rate
parameter
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@3 @3 @3

Erlang Up-Transition
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plot last

directive sample 3.0 1000

directive plot ?dead1; ?dead2; ?dead5; 
?dead10; ?dead20; ?dead50

let s0(n:float, m:float, dead:chan()) = 

if n<=0.0 then ?dead 

else delay@m; s0(n-1.0, m, dead)

let s(n:float, dead:chan()) = s0(n,n,dead)

new dead1@1.0:chan()

run 100 of s(1.0,dead1)

new dead2@1.0:chan()

run 100 of s(2.0,dead2)

new dead5@1.0:chan()

run 100 of s(5.0,dead5)

new dead10@1.0:chan()

run 100 of s(10.0,dead10)

new dead20@1.0:chan()

run 100 of s(20.0,dead20)

new dead50@1.0:chan()

run 100 of s(50.0,dead50)
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Erlang Down-Transition

etc.
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plot all but last

directive sample 3.0 1000

directive plot ?live1; ?live2; ?live5;

?live10; ?live20; ?live50

let s0(n:float, m:float, live:chan()) = 

if n<=0.0 then () 

else do ?live or delay@m; s0(n-1.0, m, live)

let s(n:float, live:chan()) = s0(n,n,live)

new live1@1.0:chan()

run 100 of s(1.0,live1)

new live2@1.0:chan()

run 100 of s(2.0,live2)

new live5@1.0:chan()

run 100 of s(5.0,live5)

new live10@1.0:chan()

run 100 of s(10.0,live10)

new live20@1.0:chan()

run 100 of s(20.0,live20)

new live50@1.0:chan()

run 100 of s(50.0,live50)
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Erlang Pulse

etc.

Penultimate state of 
a 50-long chain, with 

10000 processes
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run 10000 of 
s(50.0,pen50)

@1

@2 @2

plot penultimate

directive sample 3.0 10000

directive plot ?pen1; ?pen2; ?pen5; ?pen10; ?pen20; ?pen50

let s0(n:float, m:float, pen:chan()) = 

if n<=0.0 then () 

else if n<=1.0 then do ?pen or delay@m; s0(n-1.0, m, pen)

else delay@m; s0(n-1.0, m, pen)

let s(n:float, pen:chan()) = s0(n,n,pen)

new pen1@1.0:chan()

run 100 of s(1.0,pen1)

new pen2@1.0:chan()

run 100 of s(2.0,pen2)

new pen5@1.0:chan()

run 100 of s(4.0,pen5)

new pen10@1.0:chan()

run 100 of s(10.0,pen10)

new pen20@1.0:chan()

run 100 of s(20.0,pen20)

new pen50@1.0:chan()

run 100 of s(50.0,pen50)
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…the next day I was reading Scientific American…

Number of processes (out of 10000) 
over time in the penultimate state of 

a 50-long chain of states

Spectral line of hydrogen 
in a brown dwarf with 

accretion disk

Well, ok, it’s just a routine gamma distribution, which 
is the continuous version of an Erlang distribution. 

But look at all the matching stochastic bumps!
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sequential t=1.0 timers
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Erlang Timers

directive sample 2.0 10000

directive plot ?a100; ?a1000

let timer(time:float, steps:float, ring:chan) =

(val ti = time/steps   (* break expected time into steps *)

val del = 1.0/ti         (* rate for step (inv. of mean lifetime) *)

let step(n:float) = if n<=0.0 then !ring else delay@del; step(n-1.0)

run step(steps))

new s100:chan new a100@1.0:chan 

new s1000:chan new a1000@1.0:chan 

run 100 of (timer(1.0, 100.0, s100) | ?s100; ?a100)

run 100 of (timer(1.0, 1000.0, s1000) | ?s1000; ?a1000)

100 concurrent timers set to t=1.0
with 100 steps and 1000 steps each

directive sample 20.0 10000

directive plot ?a

let timer(time:float, steps:float, ring:chan) =

(val ti = time/steps   (* break expected time into steps *)

val del = 1.0/ti         (* rate for step (inv. of mean lifetime) *)

let step(n:float) = if n<=0.0 then !ring else delay@del; step(n-1.0)

run step(steps))

new s:chan new a@1.0:chan 

let rering() =

(timer(1.0, 100.0, s) | ?s; (rering() | 10 of ?a))

run rering()

with 100 steps each with 10 steps each

Expected value E(Y) = E(X1) + … + E(Xn)

more steps within each interval gives 
more precise timing

An Erlang Timer timer(t,s,r) “rings” r
(by !r) at time t, with a “precision” of s
steps (each with mean lifetime t/s).

This reringer keeps invoking a timer, 
each time producing 10 of ?a.
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Erlang Clocks and Signal Shaping

directive sample 100.0 10000

directive plot !a; !b

let clock(t:float, tick:chan) =        (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti     (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

new a@1.0:chan  new b@1.0:chan

let A(tick:chan) = do !a; A(tick) or ?tick; B(tick)

(* Offers !a,  as many as needed, until the next tick *)

and B(tick:chan) = do !b; B(tick) or ?tick; A(tick)

run 10 of (new tick:chan run (clock(10.0, tick) | A(tick)))

(* each signal with its own "new" tick (an infinite speed channel)*)

Signal A repeatedly offers !a until the next “tick”, then 
repeatedly offers !b until the next tick, and so on.
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!a !b

1 signal sum of 10 signals

multiple clocks eventually 
get out of phase

An Erlang Clock clock(t,r) is a 
repeating Erlang Timer; it 
signals !r every t.

The signal A(t) offers !a as often as 
needed, but only until a timeout t
(provided by a concurrently running clock)

Then A(t) becomes B(t) until the next 
tick, and then it goes back to A(t)...

Each signal has its own private clock 
(new tick), or things get confused.
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!a

Erlang-Clocked Raising Signal
directive sample 20.0 10000

directive plot !a

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti   (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S(a:chan, tick:chan) = 

do !a; S(a,tick) or ?tick; (S(a,tick) | S(a,tick))

(* Offers !a, as many as needed, until the next tick,

then spawns one additional such signal. *)

let raising(a:chan, t:float) = 
(new tick:chan run (clock(t,tick) | S(a,tick)))

(* Encapsulating a clock with a raising signal *)

new a@1.0:chan

run raising(a,1.0)

An raising signal S(a,t) offers !a’s until the 
next Erlang tick t, then it spawns off one 
more copy of itself. Since all the copies 
share the same clock, they increase by 1 
each tick (linearly).
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Erlang-Clocked Raising Concentration
directive sample 20.0 10000

directive plot p()

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti   (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S(p:proc(), tick:chan) = 

(p() | ?tick; S(p,tick))

(* Spawns a process p() every tick. *)

let raising(p:proc(), t:float) = 
(new tick:chan run (clock(t,tick) | S(p,tick)))

(* Encapsulating a clock with a raising concentration *)

new a@1.0:chan

let p() = !a

run raising(p,1.0)

A variation S(p,t) that spawns an 
arbitrary (parameterless) process p
at every tick t.

An example of higher-order processes.
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Erlang-Clocked Raising and Falling
directive sample 20.0 10000

directive plot !a

let clock(t:float, tick:chan) =      (* sends a tick every t time *)

(val ti = t/100.0 val d = 1.0/ti   (* by 100-step erlang timers *)

let step(n:int) = if n<=0 then !tick; clock(t,tick) else delay@d; step(n-1)

run step(100))

let S1(a:chan, tock:chan) =  do !a; S1(a,tock) or ?tock; ()

(* Offers !a, as many as needed, until the next tock. *)

let SN(n:int, t:float, a:chan, tick:chan, tock:chan) = 

if n=0 then clock(t, tock) else ?tick; (S1(a,tock) | SN(n-1,t,a,tick,tock))

(* For n ticks, starts an S1. 

At the end, starts a tock-clock to stop one S1 at each tock. *)

let raisingfalling(a:chan, n:int, t:float) = 
(new tick:chan new tock:chan 
run (clock(t,tick) | SN(n,t,a,tick,tock)))

(* Encapsulating a clock with a raising and falling signal *)

new a@1.0:chan

run raisingfalling(a,10,1.0)

This is a “test signal” that we will use a lot.

raisingfalling(a,n,t) produces a linearly 
increasing !a signal with n steps of length t; 
then it decreases back to 0 in similar steps.

S1(a,tock) offers !a until the first tock.

SN (which is tick-clocked) starts an S1 for 
n ticks, then it starts a tock-clock that will 
stop them all in turn.
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Exercise (hard): Bell
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B()

(The solution plotted here has 3 nodes and 2 channels; it uses communication.)

Build a small network where one node has a distribution like this:
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Further Reading: Phase-Type Distributions

● Possible connection between process calculi and data fitting: 
– The EM (Expectation-Maximization) algorithm fits data to general 

phase-type distributions. 

http://mia.ece.uic.edu/~papers/WWW/Flexi-Tunes/tarballs/queue.pdf

● Erlang-like distributions are “universal”:

http://citeseer.ifi.unizh.ch/cache/papers/cs/2964
3/http:zSzzSzwww.cs.wm.eduzSz~esmirnizSzdocsz
Szglobecom02.pdf/ecient-fitting-of-long.pdf
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SPiM Basic Syntax
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Summary

● Exponential Distributions
– Simplest (memoryless) distributions

– The only memoryless distributions

– Fully general when networked

● Erlang Distributions
– Useful for building clocks and other signal shapes 

when all you got are exponential distributions

● SPiM
– A language for (among other things) programming 

with exponential distribution
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Q?


