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On the Nature of Modeling

● In their own words...

– Sydney Brenner: When you want to have a predictive science, you have to be able to 
calculate.

– Denis Noble: There will probably therefore be no unique model that does everything at all 
levels. … One of the first questions to ask of a model therefore is what questions does it answer 
best.

– Hamid Bolouri & Eric H. Davidson: Abstract models have relatively few parameters and 
so … it is easier to explore their behavior and build models with them. … In contrast, more 
detailed models suffer from an explosion in the number of their parameters.

– Al Hershey: Influential ideas are always simple. Since natural phenomena need not be simple, 
we master them, if at all, by formulating simple ideas and exploring their limitations.

– Martin H Fischer: Facts are not science – as the dictionary is not literature.
●Hiroaki Kitano: Molecular biology has uncovered a multitude of biological facts … but this alone is not 

sufficient for interpreting biological systems. … A system-level understanding should be the prime goal of 
biology.
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On the Nature of Data

G.Chaitin: The Limits of Reason
Scientific American, March 2006
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The Pragmatic View

● A model is always wrong
– Unless it is quantum mechanics, and even then...

● But it is a tool:
– A tool for calculating predictions

– A tool for calculating refutations

– (Sydney Brenner: When you want to have a predictive science, 
you have to be able to calculate.)
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Storing Processes

● Today we represent, store, search, and analyze:
– Gene sequence data

– Protein structure data

– Metabolic network data

– Signaling pathway data

– …

● How can we represent, store, and analyze biological processes?
– Scalable, precise, dynamic, highly structured, maintainable representations 
for systems biology.

– Not just huge lists of chemical reactions or differential equations.

● In computing…
– There are well-established scalable representations of dynamic reactive 
processes.

– They look more or less like little, mathematically based, programming 
languages.

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343
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A Frequently-Seen Slide
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A Frequently-Seen Slide

Something’s missing:

Where are the scalable, precise, 
dynamic, highly structured, 
maintainable representations of 
biological processes?
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Reactive Systems

● Modeling biological systems
– Not as continuous systems (often highly nonlinear)

– But as discrete reactive systems; abstract machines where:
●States represent situations

●Event-driven transitions between states represent dynamics

– The adequacy of describing (discrete) complex systems as reactive systems 
has been argued convincingly [Harel]

● Many biological systems exhibit features of reactive systems:
– Discrete transitions between states

– Deep layering of abstractions (“steps” at multiple levels)

– Complexity from combinatorial interaction of simple components

– High degree of concurrency and nondeterminism

– “Emergent behavior” not obvious from part list

● Still, needs quantitative semantics
– Stochastic, hybrid, etc. to talk about rates (and geometry).
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r: A + B →k1 C + D
s: C + D →k2 A + B

A  =  !rk1; C
C  =  ?sk1; A

B  =  ?rk1; D
D  =  !sk2; B

Reaction System vs. Reactive System

A

C

B

D

k1

rk1

A process calculus (chemistry) A different process calculus (π)

A Petri-Net-like representation. Precise and dynamic, 
but not modular, scalable, or maintainable.

A compositional graphical representation (precise, 
dynamic and modular) and the corresponding calculus.

Reaction
oriented

Interaction
oriented

Maps to 
a CTMC

Maps to 
a CTMC

The same “model”

Interaction
oriented

1 line per 
reaction

1 line per 
component

Does A 
become 
C or D?

A 
becomes 
C not D!

A

C

B

D
sk2

!rk1 ?rk1?sk2 !sk2
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Stochastic Approach

● Relatively recent development on Process Calculi
– For computer networking simulation and analysis
– Now for biochemical simulation and analysis

● Continuous Time Markov Chains
– Finite State Machines, with state transition times exponentially distributed 
(memoryless)

– Well studied class of stochastic processes
– Efficient analysis algorithms for stationary and transient analysis

● High level formalisms mapping to CTMCs
– Stochastic Petri Nets [Molloy]
– Markovian Queuing Networks [Muppala & Triverdi]
– Stochastic Automata Networks [Plateau]
– Probabilistic I/O Automata [Wu et al.]
– Stochastic Process Algebras [Herzog et al.] [Hillston]

Holger Hermanns
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● A deterministic system:
– May get “stuck in a fixpoint”. 

– And hence never oscillate.

● A similar stochastic system:
– May be “thrown off the fixpoint” by 
stochastic noise, entering a long orbit 
that will later bring it back to the fixpoint. 

– And hence oscillate.

Importance of Stochastic Effects

Mechanisms of noise-
resistance in genetic 
oscillators

Jose´ M. G. Vilar, Hao 
Yuan Kueh, Naama 
Barkai, Stanislas Leibler

PNAS  April 30, 2002 
vol. 99  no. 9  p.5991
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Model Validation
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Methods

● Model Construction (writing things down precisely)
– Formalizing the notations used in systems biology.

– Formulating description languages.

– Studying their kinetics (semantics).

● Model Validation (using models for postdiction and prediction)
– Simulation from compositional descriptions

●Stochastic: quantitative concurrent semantics.

●Hybrid: discrete transitions between continuously evolving states.

– “Program” Analysis
●Control flow analysis

●Causality analysis

– Modelchecking
●Standard, Quantitative, Probabilistic
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Model Validation: Simulation

● Basic stochastic algorithm: Gillespie
– Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
– Can compute concentrations and reaction times for biochemical networks.

● Stochastic Process Calculi
– BioSPi [Shapiro, Regev, Priami, et. al.]

●Stochastic process calculus based on Gillespie.
– BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]

●Extension of BioSpi for membranes.
– Case study: Lymphocytes in Inflamed Blood Vessels [Lecaa, Priami, Quaglia]

●Original analysis of lymphocyte rolling in blood vessels of different diameters.
– Case study: Lambda Switch [Celine Kuttler, IRI Lille]

●Model of phage lambda genome (well-studied system).
– Case study: VICE [U. Pisa]

●Minimal prokaryote genome (180 genes) and metabolism of whole VIrtual CEll, in 
stochastic π-calculus, simulated under stable conditions for 40K transitions.

● Hybrid approaches
– Charon language [UPenn]

●Hybrid systems: continuous differential equations + discrete/stochastic mode 
switching.

– Etc.



16

L
u
c
a
 C
a
rd
e
ll
i

2006-05-26

Model Validation: “Program” Analysis

● Causality Analysis
– Biochemical pathways, (“concurrent traces”
such as the one here), are found in biology 
publications, summarizing known facts.  

– This one, however, was automatically 
generated from a program written in BioSpi 
by comparing traces of all possible 
interactions. [Curti, Priami, Degano, Baldari]

– One can play with the program to investigate 
various hypotheses about the pathways.

● Control Flow Analysis
– Flow analysis techniques applied to process 
calculi.

– Overapproximation of behavior used to 
answer questions about what “cannot 
happen”.

– Analysis of positive feedback transcription 
regulation in BioAmbients [Flemming Nielson].

● Probabilistic Abstract Interpretation
– [DiPierro Wicklicky].
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Model Validation: Modelchecking

● Temporal
– Software verification of biomolecular systems (NA pump)

[Ciobanu]

– Analysis of mammalian cell cycle (after Kohn) in CTL.
[Chabrier-Rivier Chiaverini Danos Fages Schachter]

●E.g. is state S1 a necessary checkpoint for reaching state S2?

● Quantitative: Simpathica/xssys
[Antioniotti Park Policriti Ugel Mishra]

– Quantitative temporal logic queries of human Purine 
metabolism model.

● Stochastic: Spring
[Parker Normal Kwiatkowska]

– Designed for stochastic (computer) network analysis
●Discrete and Continuous Markov Processes.
● Process input language.
●Modelchecking of probabilistic queries. 

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))
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Model Validation: Perturbation

● Perturbation
– Changing the inputs

●Environment perturbation

– Printing the outputs
●Fluorescent tags etc.

– Turning off subsystems
●Gene knockout

●RNA interference

– Replacing subsystems
●Activator bypass

● General Inspection (“Debugging”) Techniques
– “Code walking“: what’s in the program

●Genome sequencing

– “Stack dumping“: what’s running now
●Transcriptional States - mRNA micro-array assays

– “Core dumping“: what’s being produced
●Translational States - Proteomics
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Model Maintenance
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Model Maintenance

● Large models are just like
– Large programs

– Large theorems

● That is
– They need to be maintained

– They have to be written in a language that facilitates maintenance

● Which means
– Models must be easy to read, not to write

– Models must be compact
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Chemical Models Explode

● Biochemistry (unlike much of chemistry) is combinatorial
– Biochemical systems have many regular repeated components

– Components interact and combine in complex combinatorial ways

– Components have local state

– A biochemical system is vastly more compact that its potential state space

● Chemical (and, consequently, ODE) descriptions blow up
– Each “state” of a molecule or complex becomes a “chemical species”

– This may lead to exponential explosion in the model description 
(stoichiometric matrix)

– Because the state space gets explicitly represented in the model

● There is a better way:
– Describe biochemical systems compositionally

– Each molecule with its own state and interactions

– ... as Nature intended...
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The Plan
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What Reactive Systems Do For Us

We can write things down precisely
– We can modularly describe high structural 
and combinatorial complexity (“do 
programming”).

We can calculate and analyze
– Directly support simulation.
– Support analysis (e.g. control flow, causality, 
nondeterminism).

– Support state exploration (modelchecking).

We can visualize
– Automata-like presentations.
– Petri-Net-like presentations.
– State Charts, Live Sequence Charts [Harel]

●Hierarchical automata.
●Scenario composition.

We can reason
– Suitable equivalences on processes 
induce algebraic laws.

– We can relate different systems (e.g. 
equivalent behaviors).

– We can relate different abstraction 
levels.

– We can use equivalences for state 
minimization (symmetries).

Disclaimers
– Some of these technologies are basically 

ready (medium-scale stochastic simulation and 
analysis, medium-scale nondeterministic and 
stochastic modelchecking).

– Others need to scale up significantly to be 
really useful. This is our challenge.

Many approaches, same basic philosophy, tools being built:
⇒ Proc. Computational Methods in Systems Biology [2003-2005]
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Summary

● Model Construction
– Various classical approaches, from Bayesian Networks (phenomenological) to 
Molecular Dynamics (mechanistic).

– New approaches based on Reactive Systems (mechanistic).

● Model Validation
– Various techniques from computing are novel to biology.

● Model Scaling and Maintenance
– It is a major issue, and it will get worse.

– A classical “software engineering” problem. Now “model engineering” ?

● Stochastic Approach
– Between discrete and continuous.

– Between deterministic and nondeterministic.

– Exposes new phenomena not evident in any of the above.
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Q?


