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On the Nature of Modeling

e In their own words...

- Sydney Brenner: When you want to have a predictive science, you have to be able to
calculate.

- Denis Noble: There will probably therefore be no unique model that does everything at all
levels. ... One of the first questions to ask of a model therefore is what questions does it answer
best.

- Hamid Bolouri & Eric H. Davidson: Abstract models have relatively few parameters and
so ... it is easier to explore their behavior and build models with them. ... In contrast, more
detailed models suffer from an explosion in the number of their parameters.

- Al Her'shey: Influential ideas are always simple. Since natural phenomena need not be simple,
we master them, if at all, by formulating simple ideas and exploring their limitations.

- Martin H Fischer: Facts are not science - as the dictionary is not literature.

e Hiroaki Kitano: Molecular biology has uncovered a multitude of biological facts ... but this alone is not
sufficient for interpreting biological systems. ... A system-level understanding should be the prime goal of
biology.



On the Nature of Data

Complexity and

Scientific Laws

MY STORY BEGINS in 1686 with Gott-
fried W. Leibniz’s philosophical essay
Discours de métaphysique (Discourse
on Metaphysics), in which he discusses
how one can distinguish between facts
that can be described by some law and
those that are lawless, irregular facts.
Leibniz’s very simple and profound idea
appears in section VI of the Discours, in
which he essentially states that a theory
has to be simpler than the data it ex-
plains, otherwise it does not explain
anything. The concept of a law becomes
vacuous if arbitrarily high mathemati-
cal complexity is permitted, because
then one can always construct a law no
matter how random and patternless the
dara really are. Conversely, if the only
law that describes some data is an ex-
tremely complicated one, then the data
are actually lawless.

G.Chaitin: The Limits of Reason
Scientific American, March 2006



The Pragmatic View

e A model is always wrong
- Unless it is quantum mechanics, and even then...

e Butitisa tool:
- A tool for calculating predictions
- A tool for calculating refutations

- (Sydney Brenner: When you want to have a predictive science,
you have to be able to calculate.)



Storing Processes

e Today we represent, store, search, and analyze:
- Gene sequence data
- Protein structure data
- Metabolic network data
- Signaling pathway data

Cellular Abstractions: Cells as Computation
Regev&Shapiro NATURE vol 419, 2002-09-26, 343

e How can we represent, store, and analyze biological processes?

- Scalable, precise, dynamic, highly structured, maintainable representations
for systems biology.

- Not just huge lists of chemical reactions or differential equations.

e In computing..

- There are well-established scalable representations of dynamic reactive
processes.

- They look more or less like little, mathematically based, programming
languages.
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A Frequently-Seen Slide

Something's missing:
Where are the scalable, precise,
dynamic, highly structured,
maintainable representations of
biological processes?



Reactive Systems

e Modeling biological systems
- Not as continuous systems (often highly nonlinear)

- But as discrete reactive systems; abstract machines where:
e States represent situations
e Event-driven transitions between states represent dynamics

- The adequacy of describing (discrete) complex systems as reactive systems
has been argued convincingly [Harel]

e Many biological systems exhibit features of reactive systems:
- Discrete transitions between states
- Deep layering of abstractions ("steps” at multiple levels)
- Complexity from combinatorial interaction of simple components
High degree of concurrency and nondeterminism
"Emergent behavior” not obvious from part list

e Still, needs quantitative semantics
- Stochastic, hybrid, etc. to talk about rates (and geometry).



Reaction System vs. Reactive System

A process calculus (chemistry)

A+B—, C+D
C+D—->,A+B

1 line per
reaction

Does A
become
Cor D?

The same “"model”

A different process calculus ()

1 line per

Maps to -
aCTMC

A Petri-Net-like representation. Precise and dynamic
but not modular, scalable, or maintainable.

component A - ! r'kl; C beCOAmZS
C _ ?Skl; A C not D!

Maps to B = ? r.kl; D

a CTMC D = | S, 2

A compositional graphical representation (precise,
dynamic and modular) and the corresponding calculus.



Stochastic Approach

e Relatively recent development on Process Calculi
- For computer networking simulation and analysis
- Now for biochemical simulation and analysis

e Continuous Time Markov Chains

- Finite State Machines, with state transition times exponentially distributed
(memoryless)

- Well studied class of stochastic processes
- Efficient analysis algorithms for stationary and transient analysis

e High level formalisms mapping to CTMCs

- Stochastic Petri Nets [Molloy]
Markovian Queuing Networks [Muppala & Triverdi]
Stochastic Automata Networks [Plateau]
Probabilistic I/0O Automata [Wu et al.]
Stochastic Process Algebras [Herzog et al.] [Hillston]

Holger Hermanns



Importance of Stochastic Effects

e A deterministic system:
- May get “stuck in a fixpoint”.
- And hence never oscillate.

e A similar stochastic system:

- May be "thrown off the fixpoint” by
stochastic noise, entering a long orbit

that will later bring it back to the fixpoint.

- And hence oscillate.

Surprisingly enough, we -
have found that parameter values that give rise to a stable steady
state in the deterministic limit continue to produce reliable
oscillations in the stochastic case, as shown in Fig. 5. Therefore,
the presence of noise not only changes the behavior of the system
by adding more disorder but can also lead to marked qualitative
differences.
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Fig.5. Timeevolution of A for the deteministic Eq. [1] () and stochastic (b)
versions of the model. The values ofthe parameters are as inthe ca ption of Fig.
1, except that now we set & = 0.05 h~'. For these parameter values, + < 0, so
that the fixed point is stable.

point illustrates a perturbation that would initiate a single sweep of the
{former) oscillatory trajectory.
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Methods

e Model Construction (writing things down precisely)
- Formalizing the notations used in systems biology.
- Formulating description languages.
- Studying their kinetics (semantics).

e Model Validation (using models for postdiction and prediction)

- Simulation from compositional descriptions

e Stochastic: quantitative concurrent semantics.

e Hybrid: discrete transitions between continuously evolving states.
- "Program” Analysis

e Control flow analysis

e Causality analysis
- Modelchecking

e Standard, Quantitative, Probabilistic



Model Validation: Simulation

e Basic stochastic algorithm: Gillespie
- Exact (i.e. based on physics) stochastic simulation of chemical kinetics.
- Can compute concentrations and reaction times for biochemical networks.

e Stochastic Process Calculi
- BioSPi [Shapiro, Regev, Priami, et. al.]
e Stochastic process calculus based on Gillespie.
- BioAmbients [Regev, Panina, Silverma, Cardelli, Shapiro]
e Extension of BioSpi for membranes.
Case study: Lymphocytes in Inflamed Blood Vessels iecaa, priami, quagiaj
e Original analysis of lymphocyte rolling in blood vessels of different diameters.
Case STUdyi Lambda Switch (ceiine kuttier, Tr1 Lille]
e Model of phage lambda genome (well-studied system).

Case study: VICE w risa

e Minimal prokaryote genome (180 genes) and metabolism of who/e VIrtual CEll, in
stochastic n-calculus, simulated under stable conditions for 40K transitions.

e Hybrid approaches

- Charon language (vren;

. Hybr‘i}c‘i systems: continuous differential equations + discrete/stochastic mode
switching.

- Etc.



Model Validation: "Program” Analysis

e Causality Analysis

- Biochemical pathways, ("concurrent traces”
such as the one here), are found in biology
publications, summarizing known facts.

- This one, however, was automatically P
gener'a’red.fr'om a program writfen in BioSpi ;
by comparing ftraces of all possible :
Interactions. [Curti, Priami, Degano, Baldari] \.,ﬁ

- One. Can play WiTh The pr.ogr'am TO inves-rigaTe Fig.2. A computation of Sys. For llezlidabiliL_',"es:'ses‘ enclosed in boxes, have
various hypotheses about the pathways. i g o e e et T o

e Control Flow Analysis

- Flow analysis techniques applied to process
calculi.

- Overapproximation of behavior used to
answer questions about what "cannot
happen”.

- Analeis of positive feedback transcription
regulation in BioAmbients [Flemming Nielson].

e Probabilistic Abstract Interpretation
- [DiPierro Wicklicky].



Model Validation: Modelchecking

e Temporal
- Software verification of biomolecular systems (NA pump)

[Ciobanu]

- Analxsis of mammalian cell cycle (after Kohn) in CTL.

[Chabrier-Rivier Chiaverini Danos Fages Schachter]

e E.g. is state S; a necessary checkpoint for reaching state S,?

e Quantitative: Simpathica/xssys

[Antioniotti Park Policriti Ugel Mishra]

- Quantitative ‘rem,poral logic queries of human Purine
metabolism model.

Eventually(Always (PRPP = 1.7 * PRPP1)
implies
steady_state()
and Eventually(Always(IMP < 2 * IMP1))
and Eventually(Always(hx_pool < 10*hx_pool1)))

e Stochastic: Spring

[Parker Normal Kwiatkowska]

- Designed for stochastic (computer) network analysis
e Discrete and Continuous Markov Processes.
e Process input language.
e Modelchecking of probabilistic queries.



Model Validation: Perturbation

e Perturbation
- Changing the inputs
e Environment perturbation
- Printing the outputs
e Fluorescent tags etc.
- Turning off subsystems
e Gene knockout
e RNA interference
- Replacing subsystems
e Activator bypass

e General Inspection ("Debugging”) Techniques
- "Code walking": what's in the program
e Genome sequencing
- "Stack dumping™: what's running now
e Transcriptional States - mRNA micro-array assays
- "Core dumping”: what's being produced
e Translational States - Proteomics



Model Maintenance



Model Maintenance

e Large models are just like
- Large programs
- Large theorems

e That is
- They need to be maintained
- They have to be written in a language that facilitates maintenance

e Which means
- Models must be easy to read, not to write
- Models must be compact



Chemical Models Explode

e Biochemistry (unlike much of chemistry) is combinatorial
- Biochemical systems have many regular repeated components
- Components interact and combine in complex combinatorial ways

- Components have local state
- A biochemical system is vastly more compact that its potential state space

e Chemical (and, consequently, ODE) descriptions blow up
- Each "state” of a molecule or complex becomes a "chemical species”

- This may lead to exponential explosion in the model description
(stoichiometric matrix)
- Because the state space gets explicitly represented in the model

e There is a better way:
- Describe biochemical systems compositionally
- Each molecule with its own state and interactions
- ... as Nature intended...
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What Reactive Systems Do For Us

We can write things down precisely We can reason
- We can modularly describe high structural - Suitable equivalences on processes
and combinatorial complexity (“do induce algebraic laws.
programming”). - We can relate different systems (e.g.
equivalent behaviors).
We can calculate and analyze - We can relate different abstraction
- Directly support simulation. levels. .
- Support analysis (e.g. control flow, causality, = We can use equivalences for state
nondeterminism). minimization (symmetries).

- Support state exploration (modelchecking).
Disclaimers

: : - Some of these technologies are basically
We can vusual.nze ' ready (medium-scale stochastic simulation and
- Automata-like presentations. analysis, medium-scale nondeterministic and

- Petri-Net-like presentations. stochastic modelchecking).

- - - Others need to scale up significantly to be
State 'Char"rs,.lee Sequence Charts [Harel] really useful. This is our challenge.
¢ Hierarchical automata.

e Scenario composition.

Many approaches, same basic philosophy, tools being built:
= Proc. Computational Methodss in Systems Biology [2003-2005]



Summary

Model Construction

- Various classical approaches, from Bayesian Networks (phenomenological) to
Molecular Dynamics (mechanistic).

- New approaches based on Reactive Systems (mechanistic).

Model Validation
- Various techniques from computing are novel to biology.

Model Scaling and Maintenance
- It is amajor issue, and it will get worse.
- A classical "software engineering” problem. Now "model engineering” ?

Stochastic Approach
- Between discrete and continuous.
- Between deterministic and nondeterministic.
- Exposes new phenomena not evident in any of the above.






