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Outline
• The Scientific Method

Its eventual automation

• Models (that know nothing about protocols)
Chemical Reaction Networks

• Lab Protocols (that know nothing about models)
Digital Microfluidics

• Integration
Closed-loop modeling and protocol execution
The Kaemika App



An integrated language for
chemical models & experimental protocols
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Deterministic (ODE) and
stochastic (LNA) simulation

Chemical reaction networks (CRNs)
and liquid-handling protocols

Reaction scores

Functional scripting

GUI

Search "Kaemika" in the app stores
http://lucacardelli.name/kaemika.html

CMSB'2020 Best Tool Paper Award



The Scientific Method

Ḥasan Ibn al-Haytham (1027) Book of Optics

Galileo Galilei (1638) Two New Sciences



The Scientific Method ~ 1638

1 Person

Discovery through Observation

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.



The Scientific Method ~ 2000’s

1 Lab

1 protein = 30 people / 30 years

Humans have >250,000 proteins 

Discovery through Collaboration

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.



The Scientific Method ~ 2020’s

1 Program

while (true) {
predict();
falsify();

}

Discovery through Automation

Robot scientist becomes 
first machine to discover 
new scientific knowledge

Ross King

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.



The Inner Loop
• A model is refined by testing a protocol against a systems
• A protocol is refined by testing a model against a systems

• Today: publication does not accurately reflect execution

• Model: poorly-maintained matlab script 
• Protocol: poorly-described manual steps in the lab
• System: poorly-characterized and hardly “resettable”

•  Crisis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility-1.17552

Model

Protocol

System



The Inner Loop
• Tomorrow, automation

• Model: unambiguous (mathematical) description (CompBio)
• Protocol: standardized (engineered) parts and procedures (SynthBio)
• System: characterized (biological) organism and foundries (SysBio)

• Verification: simulation / analysis / model checking / theorem proving
• Observation:  lab automation
• Falsification: statistical inference / model reduction 

• Performance evaluation/optimization: of model+protocol+system combined
• Management: version control, equipment monitoring, data storage

Model

Protocol

System

Falsification

Verification

Observation
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The Inner Loop
• A specific domain

• Aiming for closed-loop 
automated modelling and 
experimentation

• Via Molecular Programming

Model

Protocol

System

Falsification

Verification

Observation

In this talk

Chemical Reaction 
Networks

DNA Nanotechnology
Synthetic Biology

Molecular/Biological
Systems



Models

(those things that know nothing about protocols)

We could choose Differential Equations as our modeling language, 
as in most of science.

Instead, we choose Chemical Reaction Networks 
(this is roughly equivalent).

It turns out that in order to “implement differential equations” we 
need to “implement chemical reactions” anyway (or some other 
physical realization).



Chemical Reaction Networks (CRN)

X + Y  ->r Z + W
 A phenomenological model of kinetics in the natural sciences

By (only) observing naturally occurring reactions

 A programming language, finitely encoded in the genome 
By which living things manage the unbounded processing of matter and information

 A mathematical structure, rediscovered in many forms
Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, …

 A description of mechanism (“instructions” / “interactions”) 
rather than behavior (“equations” / “approximations”)

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior
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Programming Examples
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Y := 2X X -> Y + Y

Y := X1 + X2 X1 -> Y 
X2 -> Y

Y := min(X1, X2) X1 + X2 -> Y

Y := X/2 X + X -> Y

spec program



Advanced Programming Examples
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Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”)

(X,Y) :=
if XY then (X+Y, 0) 
if YX then (0, X+Y)

Approximate Majority

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

spec program



Programming any algorithm as a CRN
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A CRN is a finite set of reactions over a finite set of species

CRNs are not Turing complete
Like Petri nets: reachability is decidable

But unlike Petri nets, CRNs are approximately Turing complete
Because reactions have also rates
This make it possible to approximate Turing completeness by approximating test-for-zero in a register machine. 
The probability of error (in test-for-zero) can be made arbitrarily small over the entire (undecidably long) computation.

Adding polymerization to CRNs makes them fully Turing complete

“approximately”



Programming any dynamical system as a CRN
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“elementary”

Equation of motion of 
the simple pendulum

∂2θ = -g/l sinθ

https://en.wikipedia.org/wiki/Pendulum

Galileo Galilei 1602
Christiaan Huygens 1673

A dynamical systems is anything characterized by a system of differential equations (ODEs).

Elementary dynamical systems are those that include on the r.h.s. only
polynomials, trigonometry, exponentials, fractions, and their inverses. 
(All of biochemistry, all of electronics, most of physics.)

STEP 1, Polynomization: Elementary ODEs can be exactly reduced to just polynomial ODEs.



Programming any dynamical system as a CRN
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Consider the canonical polynomial oscillator: sine/cosine

∂s = c
∂c = -s

let s = (s⁺ - s⁻) 
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

∂ (s⁺ - s⁻) = (c⁺ - c⁻) 
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

“elementary”

A very simple elementary ODE system.

But variables go negative: we can’t have that in a CRN (no negative concentrations).

STEP 2, Positivation: Split potentially negative variables of polynomial ODEs into the 
difference of two positive variables. Obtain the same trajectories as differences.



Programming any dynamical system as a CRN
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Translate positive ODEs to chemical reactions

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Hungarization

Mass Action

“elementary”

The Law of Mass Action tells us how to produce polynomial ODEs from CRNs.
The inverse process is called Hungarization, it works for Hungarian ODEs 
(polynomial ODEs where each negative monomial has the l.h.s. differentiated variable as a factor).

STEP 3, Hungarization: Translate polynomial ODEs to chemical reaction networks: 
each monomial on the r.h.s. produces one reaction.

Subject to the ODEs being Hungarian, but that is always satisfied after positivation!



Programming any dynamical system as a CRN
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Translate those CNRs to (real, DNA) molecules

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

DNA compilation

Chemistry

“elementary”

Chemistry tells us (sometimes) what reactions molecules obey.
The inverse process is possible for DNA molecules, because we can “program” them.

STEP 4, Molecular programming: Translate any mass action chemical reaction network 
into a set of DNA molecules that obey those reactions.

Works up to an arbitrarily good approximation of Mass Action kinetics, 
and up to time rescaling.



Programming any dynamical system as a CRN
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Thus, CNRs are “Shannon complete”, and can by physically realized

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺ 
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺ 
c⁻ -> c⁻ + s⁻ 

s⁺ + s⁻ -> Ø 
c⁺ + c⁻ -> Ø 

let s = (s⁺ - s⁻) 
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻) 
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1)
2 3 4

Chemistry

“elementary”



Chemistry is (also) a formal language that we 
can use to implement any dynamical system
with real (DNA) molecules

 Approaching a situation where we can "systematically compile" 
(synthesize) a model to DNA molecules, run an (automated) 
protocol, and observe (sequence) the results in a closed  loop.

 N.B.: DNA can be used to manipulate and organize 
programmatically other forms of matter, so this is not really 
restricted to DNA experiments. 

21



Model Semantics (deterministic)
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 ODE semantics of CRNs

State produced by a CRN (species      , reactions      ) 
with flux        (r.h.s. of its mass action ODEs) at time t, 
from initial state                       (initial concentrations x0, volume V, temperature T): 

Law of Mass Action makes up the r.h.s. of an ODE system    ∂ =    



Summarizing
 Our models are (chemical) programs
 We can compute their behavior (their final state)
 We can (virtually) run them by integration of the ODEs
 We can (physically) run them by DNA nanotech

 Recall: we are aiming for models that can be placed into a closed-
loop automated model+protocol cycle.

23



Protocols

(those things that know nothing about models)



A Protocol
For DNA gate assembly and activation in vitro

25

Protocol steps 
(liquid handing)



Digital Microfluidics
OpenDrop
https://www.youtube.com/watch?v=ncfZWqPm7-4
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https://www.youtube.com/watch?v=pSls9L_h3Q0
OpenDrop speed test

Purple Drop  (UW)
https://misl.cs.washington.edu/projects/fluidics.html

Manipulating droplets by electrical fields



Digital Microfluidics
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 A general, programmable, platform to execute the 
main liquid-handling operations

 To close the cycle, it can support many automated 
observation techniques on-board or off-board via 
peripheral pumps (sequencing, mass spec, …) 
although these are all very hardware-dependent.



A Protocol Language
Samples: containers with volume, temperature, concentrations

28



Protocol Semantics (deterministic)
Each program denotes a final state <concentrations, volume, temperature>

29

is the final state produced by a protocol        where r binds its free variables:

State produced by CRN                              with flux F at time t: 

(Equilibrate semantics)

(CRN semantics)



Kaemika Microfluidics Compiler
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 Mix, split, equilibrate, dispose
 Automatic routing – no geometrical information
 Hot/cold zones

sample A {3μL, 20C}

split B,C,D,E = A

mix F = E,C,B,D

dispose F



Summarizing
 Our protocols are (liquid handling) programs
 We can compute their behavior (their final state)
 We can (virtually) run them (by simulation)
 We can (physically) run them (by digital microfluidics)

31



Models together with Protocols



An Integrated Description
Samples: containers with volume, temperature, concentrations

33

+
=

each sample evolves (via Equilibrate) according to
a given overall CRN:

Protocol Model

Joint script

(species, reactions)



Program Semantics (deterministic)
Each program denotes a final state <concentrations, volume, temperature>

34

is the final state produced by a protocol        for a fixed CRN                         :

State produced by CRN                              with flux F at time t: 



A Joint Semantics
This semantics gives us a joint simulation algorithm, connecting chemical simulation with 
protocol simulation.

In this presentation everything is deterministic. The state of the protocol is passed to the 
chemical simulator, which computes a new state that it passes to the protocol simulator, and 
so on.

Kaemika uses such a joint simulation algorithm for stochastic simulation, passing also variance 
information back and forth between chemical and protocol simulation. 
This requires an extension of the above semantics using the Linear Noise Approximation of 
chemical kinetics, which computes mean and variance of concentrations (both by ODEs, not 
e.g. by Gillespie algorithm), and a similar extension of the protocol operations.



Program Semantics (stochastic)
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Each program denotes a final state <concentrations, covariances, volume, temperature>



Stochastic Analysis
 We can ask: what is the probability of a certain outcome given 

uncertainties in both the protocol and the model?
 Conversely: which parameters of both the protocol and the model

best fit the observed result?
 E.g., we can use Statistical Modelchecking to estimate the 

probability that the output will fall in a certain range, given the 
distributions over uncertain model and protocol parameters.

37



Summarizing

38

Model+Protocol

Realization (e.g. DNA Synthesis)

Protocol execution

Readout (e.g., DNA sequencing)

Data analysis

DNA compilation

Digital microfluidics compilation

Falsification+Optimization

Automated discovery loop:



Simulating Reaction Networks 
together with Digital Protocols



Kaemika
 A prototype language for

chemical models & protocols

 http://lucacardelli.name/kaemika.html

 Search "Kaemika" in the App stores

40

• CRN simulation
• Microfluidics simulation
• Reaction graphs
• ODE equations
• Stochastic noise (LNA)



Main features
 Species and reactions

 Characterized by initial values and rates

 “Samples” (compartments) and Protocols
 Isolate species and reactions in a compartment, and mix compartments 

 Kinetics (simulation)
 Deterministic (ODE) or stochastic (LNA) for chemical models
 Digital microfluidics for chemical protocols

 Programming abstractions
 Assemble models and protocols as compositions of modules 

41



Species and Reactions
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//======================================
// Lotka 1920, Volterra 1926
// (simplified with all rates = 1)
//======================================

number x1₀ <- uniform(0,1) // random x1₀
number x2₀ <- uniform(0,1) // random x2₀

species x1 @ x1₀ M      // prey
species x2 @ x2₀ M      // predator

x1 -> x1 + x1       {1} // prey reproduces
x1 + x2 -> x2 + x2  {1} // predator eats prey
x2 -> Ø             {1} // predator dies

equilibrate for 40

<= Demo: LotkaVolterra



Writing Models Compositionally
 Embedded chemical notation

Programs freely contain both chemical reactions and control flow
Can generate unbounded-size reaction networks

 Rich data types
numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation

 Modern abstractions
Functional: programs take data as parameters and produce data as results
Monadic: programs also produce effects (species, reactions, liquid handling)
Nominal: lexically scoped chemical species (species are not “strings”)

43



Ex: Predatorial (recursive model)
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function Predatorial(number n) {
if n = 0 then

define species prey @ 1 M
prey -> 2 prey // prey reproduces
report prey
yield prey

else
define species predator @ 1/n M
species prey = Predatorial(n-1)
prey + predator ->{n} 2 predator // predator eats
predator -> Ø // predator dies
report predator
yield predator

end
}

species apexPredator = Predatorial(5)
equilibrate for 50

//======================================
// Creates a stack of predator-prey 
// relationships in Lotka-Volterra style,
// and returns the apex predator. 
//======================================

<= Demo: Predatorial



Ex: Serial Dilution (recursive protocol)
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network SerialDilution(number count, sample s, network f) {
if count > 0 then

sample solvent {9*observe(volume,s) L, observe(kelvin,s) K}
mix s = s, solvent
split s, dilution = s by 0.1, 0.9
f(dilution)
SerialDilution(count-1, s, f)

end
}

//initial sample to be diluted:

sample init {1mL, 25C}          
species A @ 1M in init
species B @ 1M in init
A + B ->{20} A
A -> Ø

//apply this network to each dilution;
//note that this invokes a simulation
//each time in each solution

network test(sample s) {        
equilibrate s for 10
dispose s

}

//dilute 4 times

SerialDilution(4, init, test) 

Prepare a series of increasingly 
diluted solutions and apply a 
network f to each (f can add 
species and reactions to the 
solutions)

RESULT:
sample init {1mL, 298.2K} {A = 1M, B = 1M}
sample s2 {1mL, 298.2K} {A = 100mM, B = 100mM}
sample s4 {1mL, 298.2K} {A = 10mM, B = 10mM}
sample s7 {1mL, 298.2K} {A = 1mM, B = 1mM}
sample s10 {1mL, 298.2K} {A = 100uM, B = 100uM}



Extracting the Model and the Protocol
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species {c}

sample A 
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 = A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 = B for 1

split C,D = A1 by 0.5
dispose C

mix E = D with B1
a + b -> b + b

equilibrate F = E for 20
dispose F

From the script The protocol The (final) model (sample E)



Extracting  the Hybrid Transition System
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species {c}

sample A 
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 = A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 = B for 1

split C,D = A1 by 0.5
dispose C

mix E = D with B1
a + b -> b + b

equilibrate F = E for 20
dispose F

The full story (Hybrid system)From the script



Extra features

48

 General kinetic rates 
 Fractions, rational powers, exponentials, trigonometry. E.g., x -> y {{ 1/x }}
 Work with both deterministic and stochastic simulation and equation-extraction
 Event triggers (discontinuous waveforms)

 Direct ODE notation
 Instead of a reaction, just write an ODE like  ∂x = s · y - s · x
 This is translated to the reaction Ø -> x {{s · y - s · x}} using general kinetic rates

 Timeflows (trajectories as first-class values)
 Programmable plot reports (e.g., var(2 · a - 3 · b))
 Capture timeflow outputs to combine (e.g., avg) and re-plot/export them later

 Mass action compiler
 Turn any elementary ODE system (with fractions, rational powers, exponentials, trigonometry) into an equivalent system of 

pure mass action reactions.

 Programmable random numbers and distributions
 As in MIT’s Omega probabilistic language, with rejection sampling.

 Export
 SBML, ODE, Bitmap, SVG, GraphViz

 Reaction scores
 A new representation of directed 

hypergraphs with catalysis



Conclusions
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A Language for Modeling and Optimizing Experimental Biological Protocols
Luca Cardelli, Marta Kwiatkowska, Luca Laurenti. MDPI Computation 2021.

Experimental biological protocols with formal semantics
Alessandro Abate, Luca Cardelli, Marta Kwiatkowska, 
Luca Laurenti, Boyan Yordanov. CMSB 2018.

Kaemika app - Integrating protocols and chemical simulation
Luca Cardelli. CMSB 2020.

Kaemika User Manual
http://lucacardelli.name/Papers/Kaemika%20User%20Manual.pdf

Integrated modeling
Of chemical reaction networks and protocols
How the Kaemika app supports it
Why it needs a new language for smooth integration

Closed-loop modeling, experimentation and analysis
For complete lab automation
To “scale up” the scientific method

Thanks to:
Gold (parser generator)
OSLO (ODE simulator)
C#/Xamarin (IDE)
App store reviewers

NO thanks to:
XAML (uber obfuscator)
App store certificates
Dark mode support


