
Sequenceable Event Recorders
(with an introduction to DNA Computing)

Luca Cardelli, University of Oxford
CELLS’21, 2021-10-08

Outline
1. From “any” Digital or Analog system

to a Chemical Reaction Networks

2. From (made-up) Chemical Reaction Networks
to (real) Molecules that implement them

3. Detecting Molecular Events

Part 1

From (almost) any algorithm
and (almost) any dynamical system
to a Chemical Reaction Network

Chemical Reaction Networks (CRN)

X + Y ->r Z + W
 A phenomenological model of kinetics in the natural sciences

By (only) observing naturally occurring reactions

 A programming language, finitely encoded in the genome
By which living things manage the unbounded processing of matter and information

 A mathematical structure, rediscovered in many forms
Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, …

 A description of mechanism (“instructions” / “interactions”)
rather than behavior (“equations” / “approximations”)

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior

4

Programming Examples

5

Y := 2X X -> Y + Y

Y := X1 + X2 X1 -> Y
X2 -> Y

Y := min(X1, X2) X1 + X2 -> Y

Y := X/2 X + X -> Y

spec program

Advanced Programming Examples

6

Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed
“sequentially”)

(X,Y) :=
if XY then (X+Y, 0)
if YX then (0, X+Y)

Approximate Majority

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

spec program

Programming any algorithm as a CRN

7

A CRN is a finite set of reactions over a finite set of species

CRNs are not Turing complete
Like Petri nets: reachability is decidable

But unlike Petri nets, CRNs are approximately Turing complete
Because reactions have also rates
This make it possible to approximate Turing completeness by approximating test-for-zero in a register machine.
The probability of error (in test-for-zero) can be made arbitrarily small over the entire (undecidably long) computation.

Adding polymerization to the model makes it fully Turing complete

“approximately”

Register Machines (almost…)
PCi -> R1 + PCj

PCi + R1 -> PCj

PCi + R2 -> R2 + R1 + PCj
??? Whatever trick we use will have some error

8

i: INC R1; JMP j

i: DEC R1; JMP j

i: IF R2>0 {INC R1; JMP j}

i: IF R2=0 …

 Turing-complete up to an arbitrarily small error
 The error bound is set in advance uniformly for any computation of arbitrary length

(because we cannot know how long the computation will last), and the machine will
progressively “slow down” to always stay below that bound.

Programming any dynamical system as a CRN

9

For example, take the canonical oscillator: sine/cosine

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺
c⁻ -> c⁻ + s⁻

s⁺ + s⁻ -> Ø
c⁺ + c⁻ -> Ø

let s = (s⁺ - s⁻)
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻)
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

Equation of motion of
a simple pendulum

∂2θ = -g/l sinθ

Programming any dynamical system as a CRN

10

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺
c⁻ -> c⁻ + s⁻

s⁺ + s⁻ -> Ø
c⁺ + c⁻ -> Ø

let s = (s⁺ - s⁻)
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻)
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

Programming any dynamical system as a CRN

11

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺
c⁻ -> c⁻ + s⁻

s⁺ + s⁻ -> Ø
c⁺ + c⁻ -> Ø

let s = (s⁺ - s⁻)
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻)
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

Programming any dynamical system as a CRN

12

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

3. All positivized ODEs are Hungarian: I.e., all negative monomials have their l.h.s. differential variable as a factor.

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺
c⁻ -> c⁻ + s⁻

s⁺ + s⁻ -> Ø
c⁺ + c⁻ -> Ø

let s = (s⁺ - s⁻)
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻)
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

Programming any dynamical system as a CRN

13

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

3. All positivized ODEs are Hungarian: I.e., all negative monomials have their l.h.s. differential variable as a factor.

4. Hungarization: All Hungarian ODEs can be exactly reduced to mass action CRNs.

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺
c⁻ -> c⁻ + s⁻

s⁺ + s⁻ -> Ø
c⁺ + c⁻ -> Ø

let s = (s⁺ - s⁻)
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻)
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

Programming any dynamical system as a CRN

14

For example, take the canonical oscillator: sine/cosine

1. Polynomization: All “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

3. All positivized ODEs are Hungarian: I.e., all negative monomials have their l.h.s. differential variable as a factor.

4. Hungarization: All Hungarian ODEs can be exactly reduced to mass action CRNs.

5. Molecular Programming: All mass action CRNs, up to time rescaling, can be arbitrarily approximated by engineered DNA molecules.

∂s = c
∂c = -s

s⁻ -> s⁻ + c⁺
s⁺ -> s⁺ + c⁻
c⁺ -> c⁺ + s⁺
c⁻ -> c⁻ + s⁻

s⁺ + s⁻ -> Ø
c⁺ + c⁻ -> Ø

let s = (s⁺ - s⁻)
let c = (c⁺ - c⁻)

Positivation

∂s⁺ = c⁺
∂s⁻ = c⁻
∂c⁺ = s⁻
∂c⁻ = s⁺

Linearity
∂ (s⁺ - s⁻) = (c⁺ - c⁻)
∂ (c⁺ - c⁻) = -(s⁺ - s⁻)

Re
na

m
in

g

(Optional)

∂ s⁺ = c⁺ - s⁻ · s⁺
∂ s⁻ = c⁻ - s⁻ · s⁺
∂ c⁺ = s⁻ - c⁻ · c⁺
∂ c⁻ = s⁺ - c⁻ · c⁺

s⁺0=max(0,s0)
s⁻0= max(0,-s0)
c⁺0= max(0,c0)
c⁻0= max(0,-c0)

Hungarization DNA compilation

(1) 2 3 4 5

Molecular Dynamics

≈
≈

“elementary”

CRN Semantics (deterministic)

15

 ODE semantics of CRNs
State produced by a CRN (species , reactions)
with flux (r.h.s. of its mass action ODEs) at time t,
from initial state (initial concentrations x0, volume V, temperature T):

CRN Semantics (stochastic)

16

 CME semantics of CRNs (Chemical Master Equation)
 Kolmogorov forward equation of the Markov Chain produced by the CRN
 Unfeasible to solve or even simulate (to compute the distribution of outcomes)
 The Gillespie algorithm produces individual samples (traces) of the CME distribution

 LNA semantics of CRNs (Linear Noise Approximation)
Gaussian state (mean & variance) produced by a CRN (species , reactions)
with flux (r.h.s. of its mass action ODEs) at time t,

Chemistry as a Concurrent Language
 A connection with the theory of concurrency

 Via Process Algebra and Petri Nets

17

Finally, Some Bad Programs

18

X -> X + X
Violates conservation of mass.
(No biggie, assume there is inflow/outflow.)

X + X -> X + X + X
Violates finite density.
(This is really bad.)

X -> Y
Violates thermodynamics.
(No biggie, assume there is a tiny reverse reaction.)

Chemistry is (also) a formal language that we
can use to implement any algorithm and any
dynamical system with real (DNA) molecules

 Turing complete and “Shannon complete”

 ANY collection of abstract chemical reactions
can be implemented with specially designed DNA
molecules, with accurate kinetics (up to time scaling).

 Approaching a situation where we can "systematically compile"
(synthesize) a model to DNA molecules, run an (automated)
protocol, and observe (sequence) the results in a closed loop.

19

Summarizing
 Our models are (chemical) programs
 We can compute their behavior (their final state)
 We can (virtually) run them by integration of the ODEs
 We can (physically) run them by DNA nanotech

20

Part 2

From a Chemical Reaction Network
to a set of DNA molecules
that do “the same thing”

How do we “run” Chemistry?
 Chemistry is not easily executable

 “Please Mr Chemist, execute me this bunch of reactions that I just made up”

 Most molecular languages are not executable
 They are descriptive (modeling) languages

 How can we execute molecular languages?
 With real molecules?
 That we can design ourselves?
 And that we can buy on the web?

22

DNA Strand
Displacement

An "unnatural" use of DNA for emulating
any system of chemical reactions
with real molecules

23

Domains
 Subsequences on a DNA strand are called domains

 provided they are “independent” of each other

 Differently named domains must not hybridize
 With each other, with each other’s complement, with subsequences of each other, with concatenations of other domains (or their

complements), etc.

x zy
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA

single strand

24

t

t
t

Reversible Hybridization

Short Domains

DNA double
strand

25

Long Domains

x

x
x

Irreversible Hybridization

26

DNA Strand Displacement

Microsoft Research Outreach

Strand Displacement

27

Strand Displacement

t x

xt

“Toehold Mediated”

28

Strand Displacement

xt

Toehold Binding

29

Strand Displacement

xt

Branch Migration

30

Strand Displacement

xt

Displacement

31

Strand Displacement

xt

x

Irreversible release

32

t

Bad Match

x

x

y

zt

33

t

Bad Match

x y

z
x

34

t

Bad Match

x y

z
x

35

xt

Bad Match

y

z

Cannot proceed
Hence will undo

36

Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gate
operation

37

Transducer

38

t a

xt t a t a x t y t a t

y t

Transducer xy

t x

Input

39

Transducer xy

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

40

Transducer xy

x

t a

t t a t a x t y t a t

y t

41

Transducer xy

t a

xt t a t a x t y t a t

y t

x t

Active
waste

42

Transducer xy

xt t a t a x t y t a t

y t

x t

43

Transducer xy

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.

44

Transducer xy

t axt a x t y t a t

y t

x t

t

45

Transducer xy

t a

a tt axt a x t y

y t

x t

t

46

Transducer xy

t a

a tt axt a x t y t

x t

t

47

Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

48

Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

49

Transducer xy

t y

t a

a tt axt a x y tt

Output

t

50

Transducer xy

x

t y

t a

a tt axt a y tx t

Output

t

51

Transducer xy

x

t y

t a tt axt a y tx t

Output

52

Transducer xy

a x

t y

t a a tt axt y tx t

Output

53

a x

t a a tt axt y tx t

Transducer xy

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

t y

Output

54

55

Reaction x + y  z + w join
half

56

t y

xt t y

t x

t b

t a t a

Input

a

b

link

early lock

lock fork garbage harmless harmless

lock join

Input

Reaction x + y  z + w fork
half

57

link

w t z t a t

z t

x t

w t

output output lock join

lock fork

c t

c t

anti-garbageharmless

Reaction x + y  z + w garbage
collection

58

yt c t

anti-garbage garbage

harmless

59

Approximate Majority Algorithm
 Given two populations of agents (or molecules)

 Randomly communicating by radio (or by collisions)
 Reach an agreement about which population is in majority
 By converting all the minority to the majority

[Angluin et al., Distributed Computing, 2007]

 3 rules of agent (or molecule) interaction
 X + Y → B + B
 B + X → X + X
 B + Y → Y + Y

“our program”

60

Optimal Consensus Algorithm
 Fast: reaches agreement in O(log n) time w.h.p.

 O(n log n) communications/collisions
 Even when initially #X = #Y! (stochastic symmetry breaking)

 Robust: true majority wins w.h.p.
 If initial majority exceeds minority by w(n log n)
 Hence the agreement state is stable

Stochastic simulation of worst-case
scenario with initially #X = #Y

61

DNA Implementation of the
Approximate Majority algorithm

62

Some Large-scale Circuits (so far…)

63

Scaling up: DNA Circuit Boards

The first computational circuit boards made of DNA
https://www.microsoft.com/en-us/research/blog/researchers-build-nanoscale-computational-circuit-boards-dna

64

Avoiding Clocks
 Muller C-Element

 A Boolean gate
 When x = y then z = x = y, otherwise z remembers its last state.

Core C-Element
(AM with external inputs)

Full C-Element with output
rectified by another AMChemical Reaction Network Designs for Asynchronous Logic Circuits.

Luca Cardelli, Marta Kwiatkowska, Max Whitby.
Natural Computing Journal.

65

Part 3

Detecting Molecular Events

Preorder Recorder
• Detecting molecular events is very difficult and very important
• In science we want to know “what’s going on?”
• In bioengineering we want to know “what when wrong?”
• We often want to know the order of events to help determine causation

• We discuss a “preorder recorder” algorithm that reads out the preorder of first-
occurrence of a set of events in a chemical soup, where an event is the
appearance of a DNA/RNA strand in the soup

• These events could be DNA circuit signals, or naturally transcribed RNA, or
DNA/RNA transduced in response to e.g. presence of certain proteins

08/10/2021 67

DNA Domains

68

 Subsequences on a DNA strand are called domains
 provided they are “independent” of each other

 Differently named domains must not hybridize
 with each other, with each other’s complement, with subsequences of each other,

with concatenations of other domains (or their complements), etc.

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

x zy
x* z*y*

A T G C
| | | |
T A C G

Domain Kinetics
 "Short" Domains

 "Long" Domains

69

t

t*
tReversible

Hybridization

x*
x

xIrreversible
Hybridization

x

x

DNA Strand Displacement

70

x

x

t

t*

Input

Fuel
Toehold Binding

xt

Branch Migration

xt

Strand Displacement

t

Output

Waste

Fluorescence Readout

71

x

x

t

t*

x

xtQuencher
Fluorophore

How to Read DNA (Output)
 Fluorescence Readout

 Limited redout capability: 3/4 "colors" of output.
 Output can be read continuously over time

 Atomic Force Microscope Readout
 Detecting shapes and patterns
 Comprehensive view of the results

 Sequencing Readout
 At the end of a computation, sequence the strand types left in the soup
 Output is a multiset of strand types (each with a real-valued concentration)

72

Sanger Sequencing

73

The Sanger (chain-termination) method
for DNA sequencing. (1) A primer is
annealed to a sequence, (2) Reagents
are added to the primer and template,
including: DNA polymerase, dNTPs, and
a small amount of all four
dideoxynucleotides (ddNTPs) labeled
with fluorophores. During primer
elongation, the random insertion of a
ddNTP instead of a dNTP terminates
synthesis of the chain because DNA
polymerase cannot react with the missing
hydroxyl. This produces all possible
lengths of chains. (3) The products are
separated on a single lane capillary gel,
where the resulting bands are read by a
imaging system. (4) This produces
several hundred thousand nucleotides a
day, data which require storage and
subsequent computational analysis

https://en.wikipedia.org/wiki/Sanger_sequencing

Sequence to be read

High Throughput Sequencing
 Sequencing by Synthesis

 Like Sanger sequencing, but done in parallel
on a "lawn" of single strands, removing the
fluorophores at each step to carry on.

 Nanopore Sequencing
 ~ 200 single different DNA molecules

sequenced in parallel

74
http://www2.technologyreview.com/news/427677/nanopore-sequencing/

American astronaut Kate Rubins with a MinION
sequencer on the ISS in August 2016.
https://en.wikipedia.org/wiki/Oxford_Nanopore_Technologies

How to Write DNA (Gates + Input)
 Synthesizing DNA using silicon microfabrication

technology

75

Twist Bioscience developed a proprietary semiconductor-based
synthetic DNA manufacturing process featuring a high-

throughput silicon platform that allows us to miniaturize the
chemistry necessary for DNA synthesis. This miniaturization

allows us to reduce the reaction volumes by a factor of
1,000,000 while increasing throughput by a factor of 1,000,

enabling the synthesis of 9,600 genes on a single silicon chip at
full scale. Traditional synthesis methods produce a single gene

in the same physical space using a 96-well plate.

=> DNA Storage

Cloning

76

 Standard technique, but not normally used to
produce "computational" DNA.

The Pace of Biotechnology

 How can we take full advantage of this,
for DNA-based algorithms?

77

Moore’s Law

Many DNA strand displacement
computational schemes are "Universal"
 4-domain, 3-domain, 2-domain, split-domain ...

 Can be used to systematically compile arbitrary finite chemical
reaction networks to DNA molecules that exhibit (approximately)
the same kinetics.

 But not all can be written by cloning and read by sequencing.

78

A Typical 3-domain Scheme

79

x input

y output

z output

"Non-clonable, non-sequenceable"

2-input "join"

A 2-domain Scheme

80

2-input "join"

Clonable but not Sequenceable

81

Sequencing (of double strands) must be preceded by polymerase extension
(to remove single-stranded gaps) and ligation (to remove nicks)

A 2-input join gate, join(a,b):

if a, b are present together, then after full activation:

an “abqr+q” read (after ligation) reveals there was activation of join(a,b),
hence both a and b occurred. Otherwise, we would read “abq+qr”.

Sequenceable Join gate

82

Two-domain gate architecture [L.Cardelli 2013]
based on double stranded DNA (no secondary structure)
hence gates can be sequenced by standard means

Join Gate activation steps

83

Sequence the soup: an "abqr" read indicates that both "a" and "b" were present.

What we can use
 Technologies to write (synthesize) whole sets of DNA strands

in parallel

 Technologies to read (sequence) whole sets of DNA strands
in parallel

 An architecture to do computation on DNA strands and produce
sequenceable results

 Hence ... highly concurrent algorithms!
84

Coincidence Recorder
Goal: determine which pairs of a set of events were present together in the pot.

Algorithm:
At the beginning, add all the pairs join(x,y) for x,y in Events.
At the end, sequence the whole pot.
End.

N.B. join(x,x) tells us if x was ever present.

N2 algorithm: great, we make “good use” of high-throughput synthesis and sequencing!
It uses no power when events are not present (it does not record timing, only coincidence).

85

Choice gate Specification

“a?b” + a -> a + “a≤b”
“a?b” + b -> b + “b≤a”

That is, we want to implement the CRN:

But by the general scheme in Part 2
this would not be sequenceable
(and would require too many distinct domains)

Sequenceable Choice gate

(also clonable)

Sequenceable Choice gate outcomes

If b arrives first:

If a arrives first:

pabqr + spbaq

pbaqr + spabq

Sequencing pattern:

Preorder Recorder
Goal: Record the preorder of first arrivals of a set of events that occur in a pot.

Algorithm:
At the beginning, add all the pairs x?y, for x,y in Events.
At the end, sequence the whole pot and reconstruct the preorder by transitive reduction.
End.

E.g.: Events = {a,b,c}

89

Correctness
 The choice gate presented here is "faulty by design"

 There is cross-talk e.g. between a?b and b?c
 But it turns out this does not hurt the particular preorder recorder algorithm

 A proper choice gate can be designed
 That avoids cross-talk and can be used compositionally in other algorithms
 But it is more complex and more expensive (O(n2) distinct domains needed)

 Correctness of the preorder recorder is non-trivial
 It depends on non-compositional properties of the choice gate
 It uses n2 gates, but only O(n) distinct domains. This is important in practice.

90

Proper Choice Gate

 axb,bxa are domains uniquely determined by a,b
91

Conclusions
 Technological advances

 High-throughput synthesis and sequencing

 Provide new readout opportunities
 Reading and writing n2 elements feasibly

 Which can inspire a new class of parallel algorithms
 Coincidence Recorder, Preorder Recorder, ... ???

92

