Discovery through A omat

Luca Cardelli, Universit
QAVAS Oxford, 2021-09-28

Outline
« The Scientific Method

Its eventual automation

« Models (that know nothing about protocols)
Chemical Reaction Networks

L ab Protocols (that know nothing about models)
Digital Microfluidics

« Integration

Closed-loop modeling and protocol execution
The Kaemika App

The Scientific Method

Hasan Ibn al-Haytham (1027) Book of Optics

Galileo Galilei (1638) Two New Sciences

Develop Make Think of
General Observations Interesting
Theories s somonss Questions
General theores must be own experiences, thoughts YWhy does that
consistent with most or all or reading pattern occur?
avaiable data and with
I Refine, Alter,
Expand or Reject Formulate
Gather Data to / Hypotheses Hypotheses
Test Predictions el o

phenomenon | am

Relevant data can come from the
wondering about?

iterature, new observations or
Develop Testable /

formal experiments. Thorough
testing requires replication to
Predictions
¥ my hypothesis is correct,

verify results.
then lexpecta, b, c, ..

Discovery through Automation

The Scientific Method ~ 2020’ e gy

sequencing = .2 .

Make
Observations
What do | see in nature™
m:‘h:.cnn be lv:rn one's
Develop orresdng.
General Theories — Interesting

nurmm‘ ‘v."m"m“"‘u";. Questions
Wiy does that

paiern oocur?

f“ﬂ

Refine, Alter,
Expand, or Reject

Hypotheses Robot scientist becomes

first machine to discover

Fonnulate new scientific knowledge
Hypothesa - - —= i
mv'm 3 - i
wondering sboul? Rz |

while (true) {
predict();
experiment();
falsify();

Gather Data to
Test Predictions

Develop
Testable
Predictions
If rrvy hypotesis |8 cormect,
on lenpectn. b. ¢

The Inner Loop

» A model is refined by testing a (fixed) protocol against a systems

A protocol is refined by testing a (fixed) model against a systems ,Q (

» Today: publication does not accurately reflect execution

* Model: poorly-maintained matlab script '
* Protocol: poorly-described manual steps in the lab
+ System: poorly-characterized and hardly “resettable”

+ = (risis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility-1.17552

"

Models

(those things that know nothing about protocols)

Chemical Reaction Networks (CRN)
X+Y > /Z+W

- A phenomenological moael of kinetics in the natural sciences

By (only) observing naturally occurring reactions

- A programming language, finitely encoded in the genome

By which living things manage the unbounded processing of matter and information

- A mathematical structure, rediscovered in many forms

Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocals, ...

- A description of mechanism (“instructions” / “interactions”)
rather than behavior ("equations” / “approximations”)

Although the two are related in precise ways
Enabling, e.g., the study of the evolution of mechanism through unchanging behavior

Programming Examples

Spec program
Y = 2X X->Y+Y
Y= |X/2] X + X ->Y
Y = X1+ X2 X1->Y
X2 ->Y

Y ;= min(X1, X2) X1+ X2 ->Y

Advanced Programming Examples

spec program

Y := max(X1, X2) X1->L1+Y max(X1,X2)=
X2 o> 12 + VY (XT+X2)-min(X1,X2)
LT+ L2 ->K (but is not computed
Y +K->0 ‘sequentially”)

Approximate Majority

(X,Y) := X+Y->Y+B
if X=Y then (X+Y, O) Y+ X->X+B
if Y>X then (0, X+Y) B+ X->X+X

B+Y->Y+Y

Programming any algorithm as a CRN

A CRN is a finite set of reactions over a finite set of species

CRNs are not Turing complete
Like Petri nets: reachability is decidable

But unlike Petri nets, CRNs are approximately Turing complete
Because reactions have also rates

This make it possible to approximate Turing completeness by approximating test-for-zero in a register machine.
The probability of error (in test-for-zero) can be made arbitrarily small over the entire (undecidably long) computation.

Adding polymerization to the model makes it fully Turing complete

0

Programming any dynamical system as a CRN

(920 = -g/l sinf

Equation of motion of

For example, take the canonical oscillator: sine/cosine

(1)

0s=c
oc = -s

9 (s - s) (c*-¢)
A(c"-¢c)=-(s"-59)

|

,S’
| + + - - +
(ﬂ’ -
- - | s"o=max(0,s, +_s ot -
. _ | s7o= max(0,-s,, + + +
c’o= max(0,c,
X

ﬂ’\t u “l ‘t/u

(

11

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine
(1 2 3 4 5

lets=(s"-5)
ds=c letc= (c <) + + T->sT 4+ "
dc = -s - - | s"o=max(0.so) fosst+ o
. _ | s7o= max(0,-sy)

+ + P
o7 ->c+s PR
.| =m0 e
o= max(0,-c,) ->C +5 ~
~J
ST+ >0 ~

9 (s - s)—(c
o(c-c)=-(s"-)

0 N0 unoon
[

c+c >0
(Optional)

1. Polynomization: Al “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

Abstraction of Elementary Hybrid Systems by Variable - B
Transformation

Jiang Liu', Naijun Zhan?, Hengjun Zhao, and Liang Zou®

12

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

(1 2

lets=(s"-5)
0s=c letc= (c)
dc = -s

9 (s -
9 (c -

s)—(c
) =-(s"-)

0 N0 unoon
[|

ST+ >0
ct+c >0
(Optional)

1. Polynomization: Al “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,

fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences)

(e)
->s + "
->st
> +s”
->C + ST

5

Molecular Dynamics|
~

Biomolecular implementation of linear 1/0 systems

K. Oishi E. Klavins

13

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

(1 2

lets=(s"-5)
0s=c letc= (c)
dc = -s

9 (s -
9 (c -

s)—(c

c)=-(s"-)

3

- | s*o=max(0,s,)
_ | s7o= max(0,-sy)

c’o=max(0,c,)

* | o= max(0,-c;)

4

Emme)

(e)
->s + "
->st
> +s”
->C + ST

0 N0 unoon
[|

ST+ >0
ct+c >0

(Optional)

1. Polynomization: Al “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,

fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

5

Molecular Dynamics|
~

3. All positivized ODEs are Hungarian: |, all negative monomials have their | hs. differential variable as a factor.

14

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine
(1 2 3 4 5

lets=(s"-5)
ds=c letc= (c) * + s ->5 + "
. _ | s7o= max(0,-sy)

pain gy C+-> C+ + S+ ‘ T £ Fad o
L] 60 1o _ - - Molecular Dynamics|
¢ o= max(0,-c;) C ->C +5§ ~
~Jy
e
: sS+s >0 ~
d(s"-s) =(c" - + -
d(c-cC)=-(s"-) e

c+c->0
(Optional)

1. Polynomization: Al “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

3. All positivized ODEs are Hungarian: |, all negative monomials have their | hs. differential variable as a factor.

4. Hungarization: Al Hungarian ODEs can be exactly reduced to mass action CRNs.

ON THE INVERSE PROBLEM OF REACTION KINETICS

V. HARS - J. TOTH

15

Programming any dynamical system as a CRN

For example, take the canonical oscillator: sine/cosine

1 2 3 4 5
() lets=(s"-5)

Os=c letc = (c) -> s+ " .“Yh ‘ﬁ
- o) mmmd | 5c | Emmm) B "‘ 4374

s7o= max(0,-sg)

c’o=max(0,c,)

: o
> +st — ’“ "*",‘
' _ - - Molecular Dynamics|
, o= max(0,-c,) ->C + 5 ~
s"+s >0
0(s"-s)=(c- * >0
o(c"-c)=-(s"-)

0 N0 unoon
[|

Q

cC +C
(Optional)

1. Polynomization: Al “elementary” ODEs (all those that include polynomials, trigonometry, exponentials,
fractions, and their inverses) can be exactly reduced to just polynomial ODEs.

2. Positivation: All polynomial ODEs can be exactly reduced to polynomial ODEs in the positive quadrant (as differences).

3. All positivized ODEs are Hungarian: |, all negative monomials have their | hs. differential variable as a factor.

DNA as a universal substrate for chemical
4. Hungarization: Al Hungarian ODEs can be exactly reduced to mass action CRNs. kinetics

David Soloveichik, Georg Seelig, and Erik Winfree
PNAS March 23, 2010 107 (12) 5393-5398; https://doi.org/10.1073/pnas.0909380107

5. Molecular Programming: All mass action CRNs, up to time rescaling, can be arbitrarily approximated by engineered DNA molectles. 16

Chemistry is (also) a formal language that we
can use to implement any algorithm and any
dynamical system with real (DNA) molecules

+ Turing complete and “Shannon complete”

- ANY collection of abstract chemical reactions
can be implemented with specially designed DNA
molecules, with accurate kinetics (up to time scaling).

- Approaching a situation where we can "systematically compile'
(synthesize) a model to DNA molecules, run an (automated)
protocol, and observe (sequence) the results in a closed loop.

17

A Model

A Chemical Reaction Network, provided explicitly or (in this case) generated from a
higher-level description of the initial strands, according to the DNA strand
displacement rules

2 3
-~ soo B @ 0.000 . g __
i 2 3 4+ e 2% 3 -
2 3 L1 2 0.0003\ k. & "’734
™ 2 3* 4 E 1% 2% 3* 4
< 1 2 3 4
£ 2\ 3 + 3 4 %0.000 Som——ts — . 2 3
— 1% 2% 3* 4
1 2 3* 4
2 3 W
=", > _+ 3 4 0.000 2 3N A
1* 2% 3% 4 — N011%% T
1 2 3 -
2 3 4 4+ 1 2 0,000§> — . wm—_ 2 3
—— e 1* 2% R 3% 4% =

18

Model Semantics (deterministic)
- ODE semantics of CRNs

State produced byaCRN C = (A, R) (species A, reactions R)
with flux [’ (r.h.s. of its mass action ODEs) at time t,
from initial state (x.V.7) (initial concentrations x,, volume V, temperature T):

[((AR,z0), V. D)I(H)(t) = (G(1), V,T)

+
let G : [0...H) — R be the solution of G(t') = xo +] F(V. T)(G(s))ds
0

19

Summarizing

+ Our models are (chemical) programs

- We can compute their behavior (their final state)

+ We can (virtually) run them by integration of the ODEs
- We can (physically) run them by DNA nanotech

20

Protocols

(those things that know nothing about models)

A Protocol
For DNA gate assembly and activation in vitro

‘.,2 3 2 -llT o% 3* ? O Sample
Output Gateg @ Mix Protocol steps

‘ Eésu':;ﬁgf:te (liquid handing)
@ Dispose

3 4

e —

Input,

22

Digital Microfluidics

OpenDrop

https://www.youtube.com/watch?v=ncfZWagPm7-4

CARTRIDGE

Purple Drop (UW)

https://misl.cs.washington.edu/projects/fluidics.html

OpenDrop speed test

https://www.youtube.com/watch?v=pSIs9L h3Q0

23

Digital Microfluidics

- A general, prog

rammable, platform to execute the

main liquid-handling operations

- To close the cycle, it can support many automated

observation tec
peripheral pum
although these

nniques on-board or off-board via
DS (sequencing, mass speg, ...)
are all very hardware-dependent.

A Protocol Language

S drn /9/6 S. containers with volume, temperature, concentrations

P — xr ((I Sa‘mple U@T’i@ble} Experimental Biological Protocols with Formal
(xo, V,T) (initial condition) S
let ¢ = Pl in PQ (de ﬁne toeal marsable) Alessandro Abate?, Luca ca’;ijL]g;len 1\\1{22‘2 ;\;:ilatkowska?, Luca Laurenti?,
Mix(Py, Py) (miz samples) ORI ol < et o SO

let v,y = Split(Py,p)in Py (split samples)
Equilibrate(P,t) (equilibrate sample for t seconds)
Dispose(P) (discard sample)

25

Protocol Semantics (deterministic)

Each program denotes a final state <concentrations, volume, temperature>

[[P]]p is the final state produced by a protocol P where p binds its free variables:

[<]” = p(z)
[zo, V. T]? = (w6, V. T)
[Mix(Py, P,)]P =
let ([é Vi.1y) = [[Plﬂp
let (x5, Va2, T) = [P2]”
(tt‘%vl + 16172 1 ThVi 4+ 15Vs
i+ Vs,

[let & = Py in P2]?P =
let (zo,V,T) = [AA]*?
let p1 = p{z + (20, V.T)}
HPQ]]'OI

llet z,y = Split(Py,p)in P]P =
let (xo,V,T) = [P1]°
let py = p{w (20, V -p.T).y < (29, V - (1 —p),T)}
[P

(Equilibrate semantics)

[Dispose(P)]? = (0141,0,0),

(CRN semantics)

26

ika Microfluidics Compiler

Kaem
M

— no geometrical information

D)
)
O
oS
k%
=
Q
© o
e
o <
= 5
D)
o ©
ORNS
I.l_u
S c
e
= 5
<C

- Hot/cold zones

sample A {3uL, 20C}

split B,C,D,E = A

E,C,B,D

ix F =

mi

dispose F

27

Summarizing

+ Qur protocols are (liquid handling) programs

- We can compute their behavior (their final state)

- We can (virtually) run them (by simulation)

+ We can (physically) run them (by digital microfluidics)

28

Models together with Protocols

Automating “the whole thing”

Protocols: sets of steps to direct lab machinery (or people)

Published in specialized journals. With varying accuracy.

Models: sets of equations to predict the results of lab experiments
Published in Auxiliary Online Materials. With lots of typos.

. Falsification /~
Protocols know nothing about models (Model |
What hypothesis is the protocol trying to test? It is not written in the protocol. / e . (,./f
Models know nothing about protocols | System | {} Verification
- What lab conditions are being used to test the model? It is not written in the model. AN o
hi bly talking about th t s N
While presuma Y alking abou € Same system ' Protocol |
Through the experiment. Observation \\ J

S J—

Reproducibility crisis
Experiments are hard to reproduce. (materials, conditions, shortcuts)
Even models are hard to reproduce! (typos in equations, sketchy diagrams, unexplained graphs, mysterious scripts)

Similar to classical lifecycle problems in C.S.

Documentation (model) gets out of step from code (protocol) if their integration is not automated.

30

An Integrated Description

S drn /9/6 S. containers with volume, temperature, concentrations

P=

(20, V,T)

letx = Pyin P>

Miz(Py, P,)

let x,y = Split(Py,p)in Py
Equilibrate(P,t)
Dispose(P)

(a sample variable)

(initial condition)

(define local variable)

(mixz samples)

(split samples)

(equilibrate sample for t seconds)

(discard sample)

each sample evolves (via Equilibrate) according to

a given overall CRN:
C=(AR)

(species, reactions)

Experimental Biological Protocols with Formal
Semantics

Alessandro Abate?, Luca Cardellil2, Marta Kwiatkowska?, Luca Laurenti?,
and Boyan Yordanov!

! Microsoft Research Cambridge
2 Department of Computer Science, University of Oxford

Joint script

Input; =< 1* 2 > Output =< 2 3 >
Inputy =< 3 4* > Gate = {1*}[2 3]{4"}

Py =let Inl = ((Inputl,100.0nM),0.1mL,25.0°C) in

let In2 = ((Input2,100.0nA).0.1mL,25.0°C) in

let GA = ((Output,100.0nM), 0.1mL, 25.0°C) in

let GB = ((Gatep.100.0nM),0.1mL,25.0°C) in

let sGA,_ Dispense(GA, py)in

let sGB,= Dispense(GB, pa)in

let sInl,_ Dispense(Inl,ps)in

let sIn2,— Dispense(Inl, py)in

Observe(Equilibrate(Mix(Miv(Equilibrate(
Mix(sGA, sGB),t1),sInl), sIn2).t2),idn).

31

Program Semantics (deterministic)

Each program denotes a final state <concentrations, volume, temperature>

[P]” is the final state produced by a protocol P for afixed CRN C = (A, R) :

[<]” = p(z)
[zo, V. T]? = (w6, V. T)
[Mix(Py, P,)]P =
let ([é Vi.1y) = [[Plﬂp
let (x5, Va2, T) = [P2]”
(tt‘%vl -+ 16172 1 TV + T5V5
Vit Y

Vi 4+ Va, T)
[let & = Py in P2]?P =

let (zo,V,T) = [AA]*?

let p1 = p{z + (20, V.T)}

HPQ]]'OI

llet x,y = Split(Py,p)in Py]P =
let (xo,V,T) = [A])°
let py = p{aw (00, V -p.T),y ¢ (29, V - (1 —p),T)}
[P2]
[Equilibrate(P, t)]”
let (xo,V,T) = [P]°
[(A,R,xp), V,T)](H)(?)
[Dispose(P)]? = (0M1,0,0),

Il

State produced by CRN C = (A, R) with flux F at time t:

[((AR, z0), V. T)](H)(t) =

ot/
letG :[0...H) — R be the solution of G(t') = xo +/ F(V,T)(G(s))ds
(G(t),V, T) ’ 32

A Joint Semantics

This semantics gives us a joint simulation algorithm, connecting chemical simulation with
protocol simulation.

In this presentation everything is deterministic. The state of the protocol is passed to the
chemical simulator, which computes a new state that it passes to the protocol simulator, and
SO on.

Kaemika uses such a joint simulation algorithm for stochastic simulation, passing also variance
information back and forth between chemical and protocol simulation.

This requires an extension of the above semantics using the Linear Noise Approximation of
chemical kinetics, which computes mean and variance of concentrations (both by ODEs, not
e.g. by Gillespie algorithm), and a similar extension of the protocol operations.

Stochastic Analysis

- We can ask: what is the probability of a certain outcome given
uncertainties in both the protocol and the model?

- Conversely: which parameters of both the protocol and the model
best fit the observed result?

- Also, we can use Statistical Modelchecking:

A 2" 1500 executions including protocol uncertainty due timing
and pipetting errors (red).

1500 executions including only model uncertainty about
rates of the CRN (yellow).

1500 executions including both sources of uncertainty
(blue).

1.5

Output

1t

051

406 4997 498 4i§fgn- s som smz 50 We may estimate by Statistic Model Checking, e.g. the
nal Time x10
probability that Output will fall in a certain range, given
distributions over uncertain model and protocol parameters. ,,

Simulating Reaction Networks
together with Digital Protocols

An integrated language for
chemical models &

aemika

R _
[*kimika/ experimental protocols

.‘ ' Deterministic (ODE) and
M 3 stochastic (LNA) simulation

ios
5 : E— Chemical reaction networks (CRNs)
'-TM o and liquid-handling protocols
B Windows ﬁ?ﬂ?rﬁ L
O GitHak o . o Reaction scores QEF} rrL [gL

Functional scripting
Search "Kaemika" in the app stores
http://lucacardelli.name/kaemika.html GUI

36

Kaemika .
.m

- A prototype language for B

chemical models & protocols % andreis
P e,
B windows T

O GitHub

- http://lucacardelli.name/kaemika.html

- Search "Kaemika" in the App stores

¢ CRN simulation

* Microfluidics simulation
» Reaction graphs

* ODE equations

» Stochastic noise (LNA)
37

Main features

- Species and reactions

- Characterized by initial values and rates

- "Samples” (compartments) and Protocols

- Isolate species and reactions in a compartment, and mix compartments

- Kinetics (simulation)

- Deterministic (ODE) or stochastic (LNA) for chemical models
- Digital microfluidics for chemical protocols

- Programming abstractions

- Assemble models and protocols as compositions of modules

38

Species and Reactions

//====m===m=m========== e
// Lotka 1920, Volterra 1926
// (simplified with all rates

Il
[
\/

number x1, <- uniform(0,1) // random x1,
number x2, <- uniform(0,1) // random x2,

species x1 @ x1, M // prey

species x2 @ x2, M // predator

x1 -> x1 + x1 {1} // prey reproduces

x1 + x2 -> x2 + x2 {1} // predator eats prey
X2 > 0 {1} // predator dies

equilibrate for 40

<= Demo: LotkaVolterra

UNDAMPED OSCILLATIONS, ETC. 1595

UNDAMPED OSCILLATIONS DERIVED FROM THE LAW OF MASS
ACTION.
By ArrreDp J. LoTkA.
Received June 2, 1920.

39

Stochastic (LNA) simulation

- For all programs (any CRN, any Protocol

2AM Oscillator

dlo1 = - hi1-lo1-0.5-hi2-lo1 +lo1-md + 0.5-102 - md

0hi2 = -0.5 - hi1 - hi2 - hi2 - 102 + hi2 - md»¢ + 0.5 - 101 - md»4

0lo2 = 0.5 - hi1 - md»q - hi2-102 - 0.5 - lo1 - 102 + 102 - md»,

6hi1 = - hi1 -lo1-0.5-hi1-lo2 + hi1-md + 0.5 - hi2 - md

omd =2-hil-lo1 +0.5-hil-lo2 + 0.5-hi2-1lo1-hil-md-0.5-hi2-md-lol-md-0.5-102-md

omd»4 = 0.5 hi1-hi2 - 0.5 hi1-md» + 2-hi2-102 + 0.5 - lo1 - l02 - hi2 - md»4 - 0.5 - lo1 - md»4 - 02 - md»4

dvar(lo1) = - cov(hil,lo1) - lo1 - 0.5 - cov(hi2,lo1) - lo1 - cov(lo1,hi1) - lo1 - 0.5 - cov(lo1,hi2) - o1 + cov(lo1,md) - loT + hi1-lo1 + 0.5 - hi2 - lo1 + 0.5 -covﬂa1,|ﬁd) 102 + cov(md,lo1) - lo1 + 0.5 -
cov(md,lo1) - lo2 + 0.5 - cov(lo1,l02) - md + 0.5 - cov(lo2,l01) - md + lo1-md + 0.5 102 - md - 2 - hi1 - var(lo1) - hi2 - var(lo1) + 2 - md - var(lo1)

dcov(lo1,hi2) = cov(lo1,md») - hi2 - 0.5 - cov(lo1,hi1) - hi2 - cov(hi1,hi2) - o1 - 1.5 - cov(lo1,hi2) - hi1 - 0.5 - cov(lo1,hi2) - hi2 - cov(lo1,l02) - hi2 + 0.5 ~cov(||3é,n;d»1) -lo1 + covfmd,biZ) -lo1 - |4 s — |5 =
cov(lo1,hi2) - [02 + 0.5 - cov(md,hi2) - o2 + cov(lo1,hi2) - md + 0.5 - cov(lo2,hi2) - md + cov(lo1,hi2) - md»; - 0.5 - Io7 - var(hi2) + 0.5 - md» - var(lo1) - - - o

dcov(lo1,l02) = 0.5 - cov(lo1,md»4) - hi1 - cov(hi1,l02) - o1 - 0.5 - cov(hi2,102) - Io1 + cov(lo1,md»4) - lo2 + cov(md,lo2) - lo1 + 0.5 - cov(md,l02) - 102 + 0.5 - cov(lo1,hi1) - md»; - 0.5 - cov(lo1,l02) -
lo1 - cov(lo1,hi2) - 102 - cov(lo1,l02) - hi1 - 1.5 - cov(lo1,l02) - hi2 + cov(lo1,102) - md + cov(lo1,102) - md»; - 0.5 - l02 - var(lo1) + 0.5 - md - var(lo2)

dcov(lo1,hi1) = cov(lo1,md) - hi1 + 0.5 - cov(lo1,md) - hi2 - cov(lo1,hi1) - lo1 + cov(md,hi1) - o1 - 0.5 - cov(lo1,hi1) - 102 - 0.5 - cov(lo1,l02) - hi1 - 0.5 - cov(hi2,hi1) - lo1 - cov(lo1,hi1) - hi1 - 0.5 -
cov(lo1,hi1) - hi2 + 0.5 - cov(md,hi1) - 102 + 2 - cov(lo1,hi1) - md + 0.5 - cov(lo1,hi2) - md + 0.5 - cov(lo2,hi1) - md - lo1 - var(hi1) - hi1 - var(lo1)

dcov(lo1,md) = 2 - cov(lo1,hi1) - lo1 - cov(hi1l,md) - lo1 - cov(lo1,md) - o1 - hi1 - lo1 - 0.5 - hi2 - lo1 + 0.5 - cov(lo1,hi1) - 102 - 0.5 - cov(lo1,md) - l02 - cov(lo1,hi1) - md + 0.5 - cov(lo1,l02) - hi1 - 0.5
- cov(hizmd) - lo1 + 0.5 - cov(lo1,hi2) - o1 - 0.5 - cov(lo1,hi2) - md - 0.5 - cov(lo1,l02) - md - 2 - cov(lo1,md) - hi1 - cov(lo1,md) - hi2 + cov(lo1,md) - md + 0.5 - cov(lo2,md) - md - lo1 - md - 0.5 - o2
-md + 2 - hi1-var(lo1) + 0.5 hi2 - var(lo1) + lo1 - var(md) + 0.5 - lo2 - var(md) - md - var(lo1)

dcov(lo1,md»4) = 0.5 - cov(lo1,hi1) - hi2 - cov(hi1l,md»4) - lo1 - 0.5 - cov(lo1,md»4) - lo1 - cov(lo1,md»4) - 102 + cov(md,md»4) - lo1 + 0.5 - cov(md,md»4) - 102 - 0.5 - cov(lo1,hi1) - md»; + 0.5 -
cov(lo1,hi2) - hi1 + 2 - cov(lo1,102) - hi2 - 0.5 - cov(hi2,md»4) - lo1 + 0.5 - cov(lo1,l02) - lo1 + 2 - cov(lo1,hi2) - 102 - cov(lo1,102) - md»; + 0.5 - cov(lo2,md»4) - md - cov(lo1,hi2) - md»; - 1.5 -
cov(lo1,md»4) - hi1 - 1.5 - cov(lo1,md»4) - hi2 + cov(lo1,md»;) - md + 0.5 - lo2 - var(lo1) - 0.5 - md», - var(lo1)

40

Writing Models Compositionally

- Embedded chemical notation

Programs freely contain both chemical reactions and control flow
Can generate unbounded-size reaction networks

- Rich data types

numbers, species, functions, networks, lists, flows (time-courses)
flows are composable functions of time used in rates, plotting, and observation

- Modern abstractions

Functional: programs take data as parameters and produce data as results
Monadic: programs also produce effects (species, reactions, liquid handling)
Nominal: lexically scoped chemical species (species are not “strings”)

41

. ! //
Ex: Predatorial e ——
) // relationships in Lotka-Volterra style,

// and returns the apex predator.

//

function Predatorial (humber n) {

if n = 0 then
define species prey @ 1 M
prey -> 2 prey // prey reproduces
report prey
yield prey

else
define species predator @ 1/n M
species prey = Predatorial(n-1)
prey + predator ->{n} 2 predator // predator eats
predator -> @ // predator dies

2003 y
i [72.55s 255% [375s |

report predator A 1%EE- E:;mup4
y_ie-ld pr‘edatOI" predator- 1 tﬁ; — prEdatDr.3
end predator - 2 -« E predator- 2
} R P t-§ _ predator- |
. . I q; predator
species apexPredator = Predatorial(5) predator - 4 —aae
equilibrate for 50 R L
42

<= Demo: Predatorial

Describing a Protocol
- Samples (e.qg., test tubes)

- Are characterized by a volume and a temperature
- Contain a specified set of species

+ Evolve according to reactions that operates on those species
- Isolate species and reactions

- Protocol Operations (e.g., liquid handling)

+ Accept and produce samples
- Accepted samples are used up (they can only be operated-on once)

43

Samples

Samples contain concentrations of species, acted over by reactions.
Fach sample has a fixed volume and a fixed temperature through its evolution.
Sample concentrations are in units of molarity M = mol/L. An amount can also be given in

The default implicit sample is called the vessel {1 mL, 20 C} grams (if molar mass is specified).
The resulting concentration 1is then

relative to sample volume.

species {c} // a species for multiple samples species {NaCl#58.44}

sample A {1ulL, 20C} // volume and temperature
species a @ 10mM in A // species local to A
amount ¢ @ 1ImM in A // amount of c in A
a+cCc->a+a

sample C {1mL, 20C}
amount NaCl @ 8g 1in C

Reactions can be specified with

sample B {1ulL, 20C} Arrhenius parameters {collision
species b @ 10mM in B // species local to B frequency, activation energy}.
amount ¢ @ 1ImM in B // amount of c in B The reaction kinetics is then
b+c->c+c relative to sample temperature T.

a+c —>{2, 5} a+ a
; . // rate 1is 2*eA(-5/(R*T))
<= Demo: MixAndSplit

Ex: Serial Dilution (recursive protocol)

network SerialDilution(number count, sample s, network f) {
if count > 0 then

;ﬂqifvghg?MHw@dmmﬂL,wwwﬂmwmm)m Prepare a Series Of increa51ng1y
e A e diluted solutions and apply a

ana 2 PHutIonCcount=t, s,) network f to each (f can add

d species and reactions to the

initial sample to be diluted: -
' P solutions)
sample init {lmL, 25C}
species A @ 1M 1in 1init
species B @ 1M 1in 1init
A + B ->{20} A
A->0

//apply this network to each dilution;
//note that this invokes a simulation
//each time in each solution

} ;) RESULT:

networ test(sample s - -

eqwﬂimatespﬁw n sample init {1mL, 298.2K} {A = 1M, B = 1M}
dispose s sample s2 {1mL, 298.2K} {A = 100mM, B = 100mM}

¥ sample s4 {1mL, 298.2K} {A = 10mM, B = 10mM}

sample s7 {1mL, 298.2K} {A 1mM, B = 1mM}

//dilute 4 times

sample s10 {1mL, 298.2K} {A = 100uM, B = 100uM}

SerialDilution(4, init, test)

45

ics Compiler

icrofluid

ital M

DIg

— no geometrical information

D)
)
O
oS
k%
=
Q
© o
e
o <
= 5
D)
o ©
ORNS
I.l_u
S c
e
= 5
<C

Y

- Hot/cold zones

sample A {3uL, 20C}

split B,C,D,E = A

E,C,B,D

ix F =

mi

dispose F

46

MixAndSplit

.

<= Demo

Extracting the Model and the Protocol

From the script

species {c}

sample A

species a @ 1M 1in A
amount ¢ @ 0.1IM 1in A
a+cCc->a+a
equilibrate A1l = A for 1

sample B

species b @ 1M 1in B
amount ¢ @ 0.1IM 1in B
b+c->c+c
equilibrate B1 = B for 1

split C,D = Al by 0.5
dispose C

mix E = D with Bl
a+b->b+b

equilibrate F = E for 20
dispose F

The protocol

MixAndSplit OE QR
A
cqstrtfor
v
B A1
et fort wiihs
v y s
B1 D
Mo
<
E
|
e for 0
v
F C
dispose dispdse
<

° o Protocol Step Graph
[} 0O * output <

The (final) model (sample E)

Sample E

STATE_S

sample E {1.5mL, 293.2K} {
a = 354,5mM
c = 178mM
b = 0.5674M
consumed
arc->a+a
btec=>¢c+c

C 1 | a+b->b+b
}
KINETICS for STATE_5 (sample E) for 20 time units:

da=a*c-at*bh
3c =c*h-a*c
ob=a*b-c*b

47

Extracting the Hybrid Transiti

The full story (Hybrid system)

From the script

species {c}

sample A

species a @ 1M 1in A
amount ¢ @ 0.1IM 1in A
a+cCc->a+a
equilibrate A1 = A for 1

sample B

species b @ 1M 1in B
amount ¢ @ 0.1IM 1in B
b+c->c+c
equilibrate B1 = B for 1

split C,D = Al by 0.5
dispose C

mix E = D with Bl
a+b->b+b

equilibrate F = E for 20
dispose F

MixAndSplit

A B

v
B, A1
.V
A1,B1
oy
B1,C,D
-
B1,D

cquitrate - £fer20
A
F

° e Protocol State Graph

o
b=l

| [STATE_1 (equilibrate B1 := B for 1)=>
|
STATE_O STATE.2
sample A {1mL, 293.2K} { L e
a=1m ¢ = 36,300
S L consuned
consumed »
avcoasa b e
y © = 248.80M
sample B {1mL, 293.2K} { e S
| b=1M ¥
¢ = 100mM
TRANSITION
consumed [STATE2 (spLLt C, D := AT by 0.5)=>
bsec->c+e AT
} sample B1 {1nL, 293.2K} {
b = 0.851M
KINETICS for STATE_O (sample A) for 1 time units: LS
da=a*c c>cec
_ »
d =-a*c sample C {500pL, 293.2K} {
a = 106
TRANSITION &= 50 am
[STATE O (equilibrate A1 := A for 1)=> STATE_1] ascoasra
+
STATE 1 sanple D {SOOHL, 293.2K} {
% a = 1.068
sample B {1mL, 293.2K} { ¢ = 36,308
b = 18 consuned
arcoasa
c = 100mM
consumed

b+c->c+c

|
sample A1 {imL, 293.2K} {

}
(]
(e

a = 1.064M
c = 36.38mM
consumed
a+c->a+a
}
| KINETICS for STATE_1 (sample B) for 1 time units:
ob=-b*c
dc=b*c

i = ® OL‘JEUK

° o System Equations

4 [na] O *

Ougut

[

o System Equations

] ¥

STATE 2]

STATE_3]

MixAndSplit O [} MixAndSplit 03 &
o

TRANSITION
[STE3 (dispose O)=> STATE_4]
STATE 4
sanple B {1nL, 293.2K) {

b = 0.85120

© = 248,80
consuned

i
sanple D {500pL, 293.2K) {
a = 1.0640

TRANSITION
[STATE4 (mix E := D, BI)=> STATES]

STATE_S
sample E {1.5mL, 293.2K) {
a = 354.5m

asb>beb
¥

KINETICS for STATES (sample E) for 20 time units:
Gazatc-ath

TRANSITION
[STATES (equilibrate F := E for 20)=> STATE_6]

° o System Equations

Jaci] ¥

STATE_6
sample F {1.50L, 293.2K} {
52670

TRANSITION
[STATES (dispose F)=> STATE_7]

STATE_7

° o System Equations

48

Kaemika: Extra features

Extra features

General kinetic rates

Fractions, rational powers, exponentials, trigonometry. E.g., x -> y {{ 1/x }}
Work with both deterministic and stochastic simulation and equation-extraction
Even triggers (discontinuous waveforms)

Direct ODE notation

Instead of a reaction, just write an ODE like dx =s-y -s-x
This is translated to the reaction @ -> x {{s - y - s - x}} using general kinetic rates

Timeflows (trajectories as first-class values)
Programmable plot reports (e.g., var(2 - a - 3 - b))
Capture timeflow outputs to combine (e.g., avg) and re-plot/export them later

Mass action compiler

Turn any elementary ODE system (with fractions, rational powers, exponentials, trigonometry) into an equivalent system of
pure mass action reactions.

Programmable random numbers and distributions

As in MIT's Omega probabilistic language, with rejection sampling.

Export

SBML, ODE, Bitmap, SVG, GraphViz

50

Rea CtiO N SCOIres (graphical representation of reaction networks)

Horizonal lines: species. Vertical stripes: reactions.

Reactants and products

Repeated species

at+b->c+d
a -

b:- e —
e

¢ it

e

2b->c+d

i
d

Catalyst

Catalyst but no reactants

Blue: reagents. Red: products. Green: catalysts.

Reactants but no products

Products but no reactants

a->@

b->a-+b

bira—>a ¢

d—>=d-+€

N

i

6

d

Catalyst but no products

Autocatalyst

A G =

a->2a

Reaction Scores vs. Reaction Graphs

- 2AM Oscillator

Q= O = O

¥ -4
I P e
[s B v IR R o)
g e

ey ey ey iy
Lo B v I v I v]
[Sa Ry W N |
i i K

<= Demo: 2AM QOscillator

e [

|4 Is s

GraphViz

52

Mass Action Compiler

: porenz chaotic attractor

Sample S

AT

| E-]

;LE. X++X77>®
les |18 s |20 s |38 s |48 s] o+ 3 ctact K - y’7>y’+x*{10)

not mass action vy o
OX=S-y-S-X

Oy =r-X-X-2-Yy
0z=x-y-b-z

X" ->x" + x {10}
y+y >0
X > X Y
Z4+X > +xX +y
x'->x" +y* {28}

y >y ey

T +X > +X +y
Z+X > Xy
X -> X +y {28}

Yy ->y+y

'+7 >0

s=10 Y +X >y +x +27
— y x>y +xt+
b =8/3 7 ->7 +7 {2.667)
r=28 Yy ez
_ : o : - = y +X >y +x 4+
Xo =1 7> 7'+ 7 (2.667)
Yo=0 -
20 = 28 it
x =0
y'=0
y =0
z' =28
z =0

<= Demo: LorenzAttractor >3

Advanced Scripting 1

Global Sensitivity Analysis (of a Lotka-Volterra system)

function f(number r1 r2 r3) { <- A function f to run one simulation (ri are the input parameters to be perturbed)
define <- define D yield E returns the value of E after executing the statements D
sample S <- Make a new sample S to contain species and reactions for simulation
species x1 @ 0.66 M in S <- Lotka-Volterra prey species x1 (initial conditions could be a parameter as well)
species x2 @ 0.44 M in S <- Lotka-Volterra predator species x2
X1 ->x1 + x1 {r1} <- Prey reproduces, with perturbed rate r1
X1 +x2->x2 +x2 {r2} <- Predator eats prey, with perturbed rate r2
X2 ->@ {r3} <- Predator dies, with perturbed rate r3
equilibrate S for 2.5 <- Simulate the system up to time 2.5 (first peak of the oscillation)
yield [observe(x1,S), observe(x2,S)] <- Return the output concentrations of x1,x2 from S at time 2.5 as pairs
}
random X(omega w) { <- Create a bivariate random variable X over uniform[0..1) sample spaces w(i)
f(1+(w(0)-0.5)/10, 1+(w(1)-0.5)/10, 1+(w(2)-0.5)/10) <- producing random instances f(1+e1, 1+e2, 1+e3) = [x1,X2]; e 31255
} with e1, e2, e3 being 10% independent perturbations of the parameters
draw 2000 from X <- Produce a density plot of 2000 instances drawn from X
X[0] i.e. a plot of the distributions of X[0]=x1 and X[1]=x2 at time 2.5

X[1] vertical bars are mean and standard deviation

< x1 sensitivity to random
10% t . . .
) SO N.B., consider also exporting your Kaemika model to SBML and

TR variations at time 2.5 , o A .
L — use the Sobol’ method of global sensitivity analysis in e.g. Copasi.

. Experimental biological protocols with formal semantics
C ‘ Alessandro Abate, Luca Cardelli, Marta Kwiatkowska,
O n C u S | O n S Luca Laurenti, Boyan Yordanov. CMSB 2018.
Kaemika app - Integrating protocols and chemical simulation
Luca Cardelli. CMSB 2020.

Kaemika User Manual
http://lucacardelli.name/Papers/Kaemika%20User%20Manual.pdf

Integrated modeling

Of chemical reaction networks and protocols Thanks to:
How the Kaemika app supports it Gold (parser generator)
_ PP SUPP _ . OSLO (ODE simulator)
Why it needs a new language for smooth integration C#/Xamarin (IDE)
App store reviewers
Closed-loop modeling, experimentation and analysis NE el e
For complete lab automation XAML (general obfuscator)

App store certificates

To “scale up” the scientific method Berk fnadle supEa

55

