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Objectives
 The promises of Molecular Programming:
 In Science & Medicine
 In Engineering
 In Computing

 The current practice of Molecular Programming
 DNA technology
 Molecular languages and tools
 Molecular algorithms
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Synthetic Biology Market
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Some (ongoing) successes stories

• ($4Bn) Reprogram a patient’s own blood cells to 
recognise and destroy specific cancers.

• 90% remission in terminally ill leukemia patients

• ($300M) Reprogram yeast to synthesise chemicals 
• Antimalarial drug in production (with Sanofi)
• Jet fuel used in commercial flights (with Total)

• Supply custom organisms for bio fabrication • Grow meat, leather ($100Bn market) in the lab 
• Proofs of concept already in production
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Hacking Yoghurt
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Tuur van Balen - Hacking Yoghurt
- genetically modify your yoghurt in your own kitchen

https://www.youtube.com/watch?v=Co8NOnErrPU



Live Clothing
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Molecular
Programming

A technology (and theory of computation)
based on information-bearing molecules
of historically biological origin (DNA/RNA)
non necessarily involving living matter



Molecular Programming:
The Hardware Aspect

Smaller and smaller things can be built
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Smaller and Smaller
First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit
Jack Kilby, Sep. 1958.

Single molecule transistor
Observation of molecular orbital gating 
Nature, 2009; 462 (7276): 1039

Molecules on a chip
Placement and orientation of individual DNA shapes on lithographically 
patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

Very few Moore’s cycles left!
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50+ years later
Jan 2010 25nm NAND flash
Intel&Micron. ~50atoms

Jun 2018 7nm (54nm pitch)
TSMC, Intel, Samsung, GlobalFoundries - mass production

Scanning tunneling microscope image 
of a silicon surface: 10nm is ~20 atoms 

(in cubic lattice)
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Moore’s Law

Race to the Bottom
Moore’s Law is approaching the single-
molecule limit

Carlson’s Curve is the new exponential growth 
curve in technology

In both cases, we are now down to molecules

Oxford Nanopore



Building the Smallest Things

www.youtube.com/watch?v=Ey7Emmddf7Y

 How do we build structures that are by definition smaller than your tools? 
 Basic answer: you can’t. Structures (and tools) should build themselves! 
 By programmed self-assembly
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Molecular IKEA
 Nature can self-assemble. 

Can we?

 “Dear IKEA, please send me a chest 
of drawers that assembles itself.”

 We need a magical material where the pieces are 
pre-programmed to fit into to each other.

 At the molecular scale many such materials exist…

http://www.ikea.com/ms/en_US/customer_ser
vice/assembly_instructions.html

Add water

12



Wikimedia

Programmed Self-Assembly
Proteins DNA/RNA

Membranes
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Molecular Programming: 
The Software Aspect

Smaller and smaller things can be programmed
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We can program...
 Information
 Completely!
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Computing

Information

Information



We can program...
 Forces
 Completely! 

(Modulo sensors/actuators)
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Sensing

Actuating

Computing



We can program...
 Matter
 Completely and directly! By self-assembly.

 Currently: only DNA/RNA.

 But DNA is an amazing material
It's like a 3D printer without the printer!
[Andrew Hellington]
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Constructing Actuating

Sensing

Computing



Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

G-C Base Pair
Guanine-Cytosine

T-A Base Pair
Thymine-Adenine
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• DNA in each human cell
 3 billion base pairs
 2nm thick = 4 silicon atoms (in silicon lattice)!
 0.34nm per basepair = 2 bits in 2/3 silicon atom!

 2 meters long
copied in parallel at each cell division!

 750 megabytes 
80% functional, but only 1.5% protein coding

 folded into a 6mm spherical nucleus
= 140 exabytes (million terabytes)/𝑚𝑚3

=> all the data on the internet fits in a shoebox!

• DNA in each human body
 10 trillion cells
 133 Astronomical Units long
 7.5 octabytes (replicated)

• DNA in human population
 20 million light years long Andromeda Galaxy

2.5 million light years away

DNA wrapping into chromosomes

DNA Specs
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DNA Benchmarks

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel processing)

In Bacteria: 1000 nucleotides/second 
(higher error rate)

DNA transcription in real time

RNA polymerase II: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv
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One molecule to rule them all
 There are many, many nanofabrication

techniques and materials

 But only DNA (and RNA) can:
 Organize ANY other matter [caveats apply]

 Execute ANY kinetics [caveats: up to time scaling]

 Assemble Nano-Control Devices
 Interface to Biology

H.Lodish & al. Molecular Cell Biology  4th ed.
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Building Nano-Control Devices
All the components of 
nanocontrollers can 
already be built entirerly 
and solely with DNA, 
and interfaced to the 
environment
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DNA AptamersDNA Aptamers

DNA Walkers & CagesDNA Walkers & CagesSelf-assembling DNA TilesSelf-assembling DNA Tiles

DNA Logical GatesDNA Logical Gates

Constructing Actuating

Sensing

Computing



Constructing Actuating

Sensing

Computing
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Sensing



Aptamers

Artificially evolved DNA molecules 
that stick to (almost) anything you 
like highly selectively
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Pathogen Spotlights
• DNA aptamer binds to:

 A) a pathogen
 B) a molecule our immune system (when allergic) 

hates and immediately removes (eats) along with 
anything attached to it!

Kary Mullis (incidentally, also 
Nobel prize for inventing the 
Polymerase Chain Reaction)

• Result: instant immunity
o Mice poisoned with Anthrax plus 

aptamer (100% survival)
o Mice poinsoned with Anthrax 

(not so good)

25



Constructing Actuating

Sensing

Computing
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Actuating



DNA Robotics
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DNA Walkers
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Constructing
Constructing Actuating

Sensing

Computing



Crosslinking
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Crosslinking
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Crosslinking
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Crosslinking
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Crosslinking
In nature, crosslinking is deadly 
(blocks DNA replication).

In engineering, crosslinking 
is the key to using DNA as 
a construction material.
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DNA Tiling
crosslinking

4 sticky ends
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2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars
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3D DNA Structures

Andrew Tuberfield
Oxford

Ned Seeman
NYU

3D Cyrstal
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Friedrich Simmel
Munich

Robotic ArmTetrahedron



CADnano

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shih
Harvard https://www.youtube.com/watch?v=Ek-FDPymyyg

37



DNA Origami

Paul Rothemund’s
“Disc with three holes” (2006)

Folding a long (6407bp) naturally occurring circular ssDNA
(from bacteriophage M13) via lots of short ‘staple’ strands 
that constrain its shape

Black/gray: 1 long viral strand (natural DNA)
Color: many short staple strands (synthetic DNA)
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Lulu Qian’s 
Hierarchical assembly (2017)

AFM
 im

age

AFM
 im

age

Nature, 552(7683):67–71, 2017
Nature 440, 297, 2006



Constructing Actuating

Sensing

Computing
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Computing



DNA Circuit Boards
 DNA origami are arrays of uniquely-

addressable locations
 Each staple is different and binds to a unique location on 

the origami
 It can be extended with a unique sequence so that 

something else will attach uniquely to it.

 More generally, we can bind “DNA gates” 
to specific locations
 And so connect them into “DNA circuits” on a grid
 Only neighboring gates will interact

Some staples are 
attached to “green blobs” 
(as part of their synthesis)
Other staples aren’t

Dalchau, Chandran, Gopalkrishnan, Reif, Phillips. 2014 40



Information-rich physical structures can be used for storage.

DNA has a data density of 140 exabytes (1.4×1020 bytes) per 𝑚𝑚3

compared to state-of the art storage media that reaches ~500 
megabytes (5×108 bytes) per 𝑚𝑚3

DNA has been shown to be stable for millions of years

DNA Storage (Read/Write)

We have machines that can read (sequence) and write 
(synthesize) DNA. The Carslon Curve of “productivity” is 
growing much faster than Moore’s Law.

Cost of sequencing is decreasing rapidly ($1000 whole human 
genome), while cost of synthesis is decreasing very slowly.
[Rob Carlson, www.synthesis.cc]
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H.Lodish & al. Molecular Cell Biology  4th ed. 42

Curing
Constructing Actuating
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Computing



Interfacing to Biology
 A doctor in each cell

~2002 43



Programmed Drug Delivery
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Molecular Programming: 
The Execution Aspect

How do we "run" a molecular program?
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Programming Language: Chemistry
 A Lingua Franca between Biology, Dynamical Systems, 

and Concurrent Languages

 Chemical Reaction Networks
 A + B r C + D (the program)

 Ordinary Differential Equations
 d[A]/dt = -r[A][B]  … (the behavior)

 Rich analytical techniques based on Calculus
and more recently on stochastic models
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Chemistry as a Concurrent Language
 A connection with the theory of concurrency
 Via Process Algebra and Petri Nets
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Chemical Programming Examples
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Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”: it is a form 
of concurrent computation)

specification program

Y := min(X1, X2) X1 + X2 -> Y

chemical reaction network
48



Chemical Reaction Networks
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 Finite list of chemical reactions over a finite set of species
 N.B.: "abstract" species, not specific atoms/molecules that physically exist

 Computationally Powerful
 Turing-complete up to an arbitrarily small error

 Full Turing Completeness
 When including complexation (polymerization), which DNA enables

(complexation encodes an actual infinity of chemical reactions by finite means)



How do we “run” Chemistry?
 Chemistry is not easily executable
 “Please Mr Chemist, execute me this bunch of reactions that I just made up”

 Most molecular languages are not executable
 They are descriptive (modeling) languages

 How can we execute molecular languages? 
 With real molecules? 
 That we can design ourselves? 
 And that we can buy on the web?
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DNA Strand
Displacement

An "unnatural" use of DNA for emulating 
any system of chemical reactions
with real molecules
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Domains
 Subsequences on a DNA strand are called domains

 provided they are “independent” of each other

 Differently named domains must not hybridize
 With each other, with each other’s complement, with subsequences of each other, with concatenations of other domains (or their 

complements), etc.

x zy
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA 

single strand
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t

t
t

Reversible Hybridization

Short Domains

DNA double 
strand
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Long Domains

x

x
x

Irreversible Hybridization
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DNA Strand Displacement

Microsoft Research Outreach

Strand Displacement
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Strand Displacement

t x

xt

“Toehold Mediated”
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Strand Displacement

xt

Toehold Binding
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Strand Displacement

xt

Branch Migration
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Strand Displacement

xt

Displacement

59



Strand Displacement

xt

x

Irreversible release
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t

Bad Match

x

x

y

zt
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t

Bad Match

x y

z
x
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t

Bad Match

x y

z
x
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xt

Bad Match

y

z

Cannot proceed
Hence will undo
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Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gate 
operation
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Transducer
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t a

xt t a t a x t y t a t

y t

Transducer xy

t x

Input
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Transducer xy

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!
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Transducer xy

x

t a

t t a t a x t y t a t

y t
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Transducer xy

t a

xt t a t a x t y t a t

y t

x t

Active
waste
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Transducer xy

xt t a t a x t y t a t

y t

x t
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Transducer xy

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.
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Transducer xy

t axt a x t y t a t

y t

x t

t
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Transducer xy

t a

a tt axt a x t y

y t

x t

t
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Transducer xy

t a

a tt axt a x t y t

x t

t
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Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

76



Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

77



Transducer xy

t y

t a

a tt axt a x y tt

Output

t
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Transducer xy

x

t y

t a

a tt axt a y tx t

Output

t
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Transducer xy

x

t y

t a tt axt a y tx t

Output
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Transducer xy

a x

t y

t a a tt axt y tx t

Output
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a x

t a a tt axt y tx t

Transducer xy

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

t y

Output
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Reaction   x + y  z + w                join 
half
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t y

xt t y

t x

t b

t a t a

Input

a

b

link

early lock

lock fork garbage harmless harmless

lock join

Input



Reaction   x + y  z + w                fork 
half

85

link

w t z t a t

z t

x t

w t

output output lock join

lock fork

c t

c t

anti-garbageharmless



Reaction   x + y  z + w          garbage
collection

86

yt c t

anti-garbage garbage

harmless
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Approximate Majority Algorithm
 Given two populations of agents (or molecules)
 Randomly communicating by radio (or by collisions)
 Reach an agreement about which population is in majority
 By converting all the minority to the majority

[Angluin et al., Distributed Computing, 2007]

 3 rules of agent (or molecule) interaction
 X + Y → B + B
 B + X → X + X
 B + Y → Y + Y

“our program” 
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Optimal Consensus Algorithm
 Fast: reaches agreement in O(log n) time w.h.p.
 O(n log n) communications/collisions
 Even when initially #X = #Y! (stochastic symmetry breaking)

 Robust: true majority wins w.h.p.
 If initial majority exceeds minority by w(n log n)
 Hence the agreement state is stable

Stochastic simulation of worst-case 
scenario with initially #X = #Y
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DNA Implementation of the 
Approximate Majority algorithm
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Some Large-scale Circuits (so far…)
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Scaling up: DNA Circuit Boards

The first computational circuit boards made of DNA
https://www.microsoft.com/en-us/research/blog/researchers-build-nanoscale-computational-circuit-boards-dna
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Avoiding Clocks
 Muller C-Element
 A Boolean gate
 When x = y then z = x = y, otherwise z remembers its last state.

Core C-Element
(AM with external inputs)

Full C-Element with output
rectified by another AMChemical Reaction Network Designs for Asynchronous Logic Circuits. 

Luca Cardelli, Marta Kwiatkowska, Max Whitby. 
Natural Computing Journal.
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Algorithm Design
A software pipeline for Molecular Programming
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Development Tools
MSRC Biological Computation Group

Visual DSD
A Development 
Environment 
for DNA Strand
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A Language for DNA Structures
 Describe the initial

structures (not behavior)
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Compute Species and Reactions
 Recursively computed from

the initial structures
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Reaction Graph and Export
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Simulation
 Deterministic
 Stochastic (Gillespie)
 Probabilistic (CME)
 Linear Noise Approximation
 “JIT”
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State Space Analysis
CTMC
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Modelchecking
 Export to PRISM probabilistic modelchecker
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Verification
 Quantitative theories of system equivalence and 

approximation.
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Physical Execution
A wetlab pipeline for Molecular Programming
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Computer Aided Design
MSRC Biological Computation Group

Visual DSD
A Development 
Environment 
for DNA Strand
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Output of Design Process
 Domain structures
 (DNA sequences to be determined)

“Ok, how do I 
run this for real?”

105

“What are the 
actual DNA 
sequences?”



Thermodynamic 
Synthesis

From Structures to Sequences

DSD Structure

Output Sequences

“Ok, where do I 
buy these?”

www.nupack.org

“Dot-Paren” representation

106



“DNA Synthesis”
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From Sequences to Molecules
 Copy&Paste

from nupack
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Molecules by FedEx

“Ok, how do I 
run these?”
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Add Water
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Execute (finally!)
 Fluorescence is your one-bit ‘print’ statement

Windows XP!
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Output
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Debugging
 A core dump

113

polyacrylamide gel electrophoresis



Delivery!
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Final Remarks
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"Modern" DNA Computing
 Non-goals
 Not to solve NP-complete problems with large vats of DNA
 Not to replace silicon

 Bootstrapping a carbon-based technology
 To precisely control the organization and dynamics of matter and information at the 

molecular level
 DNA is our engineering material
 Its biological origin is “accidental” (but convenient)
 It is an information-bearing programmable material
 Other such materials will be (are being) developed
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State of the art
 Building a full software/hardware pipeline for a new fundamental technology 
 Mathematical Foundations [~ concurrency theory in the 80’s]

 Programming Languages [~ software engineering in the 70’s]

 Analytical Methods and Tools [~ formal methods in the 90’s]

 Device Architecture and Manufacturing [~ electronics in the 60’s]

 To realize the potential of Molecular Programming

 “With no alien technology” [David Soloveichik]

 We have some good strategies. Device design is now largely a ‘software 
problem’ but with a significant 'engineering scaleup and integration' problem
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Ongoing Challenges
 In-vivo DNA survivability

 Complexity (and crosstalk)

 Manufacturing

 Speed

 Energy
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A Brief History of DNA
DNA, -3,800,000,000

Systematic
manipulation 
of information

Computer 
programming  

20th century

Systematic 
manipulation

of matter

Molecular 
programming

21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994 

Structural DNA Nonotech, 1982 
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Resources
 DNA Computing and Molecular Programming 

Conference - incarnations since 1995
http://www.dna-computing.org/

 Molecular Programming Project (Caltech - U.W. - Harvard - UCSF)
http://molecular-programming.org/ (2008-2018 NSF Expeditions in Computing)

 Georg Seelig’s DNA Nanotech Lab at U.W. CS&E
http://homes.cs.washington.edu/~seelig/

 Biological Computation Group at Microsoft
https://www.microsoft.com/en-us/research/group/biological-computation/
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