Integrated Scientific Modeling and Lab Automation

Luca Cardelli, University of Oxford
http://www.biocompute.club/, 2020-05-15
Discovery through Observation

The Scientific Method ~ 1638

1 Guy
Discovery through Collaboration

The Scientific Method ~ 2000’s

1 protein = 30 people / 30 years
Humans have >250,000 proteins ☺
Discovery through Automation

The Scientific Method ~ 2020’s

```java
while (true) {
    predict();
    falsify();
}
```
The Inner Loop

- A model is refined by testing a (fixed) protocols against a systems
- A protocol is refined by testing a (fixed) model against a systems

Today: publication does not accurately reflect execution

- Model: poorly-maintained matlab script
- Protocol: poorly-described manual steps in the lab
- System: poorly-characterized and hardly “resettable”

⇒ Crisis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility-1.17552
The Inner Loop

• Tomorrow, **automation**

Nodes
- Model: unambiguous (mathematical) description (CompBio)
- Protocol: standardized (engineered) parts and procedures (SynthBio)
- System: characterized (biological) organism and foundries (SysBio)

Arcs
- Verification: simulation / analysis / model checking / theorem proving
- Observation: lab automation
- Falsification: statistical inference / model reduction

Lifecycle
- Performance evaluation/optimization: of model+protocol+system combined
- Management: version control, equipment monitoring, data storage
The Inner Loop

- **Tomorrow, automation**
 - Model: unambiguous (mathematical) description (CompBio)
 - Protocol: standardized (engineered) parts and procedures (SynthBio)
 - System: characterized (biological) organism and foundries (SysBio)

- **Verification**: simulation / analysis / model checking / theorem proving
- **Observation**: lab automation
- **Falsification**: statistical inference / model reduction

- **Performance evaluation/optimization**: of model+protocol+system combined
- **Management**: version control, equipment monitoring, data storage

Nodes
- **Chemical Reaction Networks**
- **DNA Nanotechnology, Synthetic Biology**

A arcs
- **System**
- **Protocol**
- **Verification**
- **Observation**
- **Falsification**
Why are *abstract* chemical reactions interesting?

\[X + Y \rightarrow^r Z + W \]

- A fundamental model of kinetics in the natural sciences
- A fundamental mathematical structure, rediscovered in many forms
 - Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, ...
- A description of mechanism rather than just behavior
 - A way of describing and comparing biochemical algorithms
 - Enabling addition analysis techniques, e.g. evolution of mechanism through unchanging behavior
- A programming language (coded up in the genome) by which living things manage the processing of matter and information
Also, a formal language we can implement with *real* (DNA) molecules

- ANY collection of abstract chemical reactions can be implemented with specially designed DNA molecules, with accurate kinetics (up to time scaling).

- A situation where we can "systematically compile" (synthesize) a model, run an (automated) protocol, and observe (sequence) the results in a closed loop.

DNA as a universal substrate for chemical kinetics

David Soloveichik, Georg Seelig, and Erik Winfree
PNAS March 23, 2010 107 (12) 5393-5398; https://doi.org/10.1073/pnas.0909338107
Reaction: \(x + y \rightarrow z + w \)

-reactants half

"join" structure
Reaction \[x + y \rightarrow z + w \] products half

"fork" structure
Reaction \(x + y \rightarrow z + w \)
Join \(x + y \rightarrow z \)
DNA Implementation of the Approximate Majority Algorithm

\[X + Y \rightarrow 2B \]
\[B + X \rightarrow 2X \]
\[B + Y \rightarrow 2Y \]
Experimental-Protocol Languages for Chemical Reaction Networks
Automating “the whole thing”

- Protocols: sets of steps to direct lab machinery (or people)
 - Published (possibly) in specialized journals. With varying accuracy.
- Models: sets of equations to predict the results of lab experiments
 - Published (possibly) in Auxiliary Online Materials. With lots of typos.

- Protocols know nothing about models
 - What hypothesis is the protocol trying to test? It is not written in the protocol.
- Models know nothing about protocols
 - What lab conditions are being used to test the model? It is not written in the model.
- While presumably talking about the same system
 - Through the experiment.

- Reproducibility crisis
 - Experiments are hard to reproduce.
 - Even models are hard to reproduce!

- Similar to a classical problem in C.S.
 - Documentation (model) gets out of step from code (protocol) if their integration is not automated.
A Protocol

For DNA gate assembly and activation in vitro

Protocol steps (liquid handing)
A Model

A Chemical Reaction Network, provided explicitly or (in this case) generated from a higher-level description of the initial strands, according to the DNA strand displacement rules.
An Integrated Description

This requires a language

\[C = (A, R) \]

\[P = \begin{align*}
 x & \quad \text{(sample variable)} \\
 (x_0, V, T) & \quad \text{(initial condition)} \\
 \text{Mix}(P_1, P_2) & \quad \text{(mix samples)} \\
 \text{let } x = P_1 \text{ in } P_2 & \quad \text{(define variable)} \\
 \text{let } x, y = \text{Dispense}(P_1, p) \text{ in } P_2 & \quad \text{(dispense samples)} \\
 \text{Equilibrate}(P, t) & \quad \text{(let time pass)} \\
 \text{Dispose}(P) & \quad \text{(discard } P)
\end{align*} \]

The CRN can be computed from (input, output, gate), and its initial conditions and evolution are determined by the protocol steps.
Language Semantics (deterministic)

The deterministic case is a warm-up exercise, but simple to explain
Each program denotes a final state \(<\text{concentrations, volume, temperature}>\)

\([P]^p\) is the final state produced by a protocol \(P\) for a fixed CRN \(\mathcal{C} = (\mathcal{A}, \mathcal{R})\):

\[
\begin{align*}
[x]^p &= \rho(x) \\
[x, V, T]^p &= (x_0, V, T) \\
[Mix(P_1, P_2)]^p &= \\
&\quad \text{let } (x_1^1, V_1, T_1) = [P_1]^p \\
&\quad \text{let } (x_2^2, V_2, T_2) = [P_2]^p \\
&\quad \frac{x_1^1V_1 + x_2^2V_2}{V_1 + V_2}, \frac{T_1V_1 + T_2V_2}{V_1 + V_2} \\
[let x \leftarrow P_1 in P_2]^p &= \\
&\quad \text{let } (x, V, T) = [P_1]^p \\
&\quad \text{let } \rho_1 = \rho\{x \leftarrow (x_0, V \cdot p, T), y \leftarrow (x_0, V \cdot (1 - p), T)\} \\
&\quad [P_2]^\rho_1 \\
[let x, y = Dispense(P_1, p) in P_2]^p = \\
&\quad \text{let } (x_0, V, T) = [P_1]^p \\
&\quad \text{let } \rho_1 = \rho\{x \leftarrow (x_0, V \cdot p, T), y \leftarrow (x_0, V \cdot (1 - p), T)\} \\
&\quad [P_2]^\rho_1 \\
[Equilibrate(P, t)]^p &= \\
&\quad \text{let } (x_0, V, T) = [P]^p \\
&\quad [(\mathcal{A}, \mathcal{R}, x_0), V, T]([H](t)) \\
[Dispose(P)]^p &= (0^{|\mathcal{A}|}, 0, 0),
\end{align*}
\]

State produced by CRN \(\mathcal{C} = (\mathcal{A}, \mathcal{R})\) at time \(t\):

\[
\begin{align*}
[\mathcal{C}, (x_0, V, T)]([H](t)) &= \\
&\quad \text{let } G : [0..H] \rightarrow \mathbb{R}^{|\mathcal{A}|} \text{ be the solution of } G(t) = x_0 + \int_0^t F(V, T)(G(s))ds \\
&\quad (G(t), V, T)
\end{align*}
\]
Language Semantics (stochastic)

Dispense has a volume uncertainty.

Equilibrate has a time uncertainty.

Reactions have rate uncertainty and/or intrinsic molecular noise.

Each program now represents a Hybrid System with stochastic jumps between deterministic evolutions:

Which in turn denotes a Piecewise Deterministic Markov Process (PDMP)
Stochastic Analysis

• We can ask: what is the probability of a certain outcome given uncertainties in both the protocol and the model?
• Conversely: which parameters of both the protocol and the model best fit the observed result?

1500 executions including protocol uncertainty due timing and pipetting errors (red).
1500 executions including only model uncertainty about rates of the CRN (yellow).
1500 executions including both sources of uncertainty (blue).

We may estimate by Statistic Model Checking, e.g. the probability that Output will fall in a certain range, given distributions over uncertain model and protocol parameters.
Kaemika

- A prototype language for chemical models & protocols

- http://lucacardelli.name/kaemika.html

- Search "Kaemika" in the App stores

- CRN simulation
- Microfluidics simulation
- Reaction graphs
- ODE equations
- Stochastic noise (LNA)
Describing a Model

- **Species and reactions**
 - Characterized by initial values and rates

- **Kinetics**
 - Deterministic (ODE) or stochastic (LNA)

- **“Samples” (compartments) and Protocols**
 - Isolate species and reactions in a compartment, and mix compartments

- **Programming abstractions**
 - Assemble models as compositions of modules
Species and Reactions

//======================================
// Lotka 1920, Volterra 1926
// (simplified with all rates = 1)
//======================================

number x1_0 <- uniform(0,1) // random x1_0
number x2_0 <- uniform(0,1) // random x2_0

species x1 @ x1_0 M // prey
species x2 @ x2_0 M // predator

x1 -> x1 + x1 {1} // prey reproduces
x1 + x2 -> x2 + x2 {1} // predator eats prey
x2 -> Ø {1} // predator dies

equilibrate for 40
Reaction scores (graphical representation of reaction networks)

Reactants and products

\[a + b \rightarrow c + d \]

Repeated species

\[2b \rightarrow c + d \]

Reactants but no products

\[a \rightarrow \emptyset \]

Products but no reactants

\[\emptyset \rightarrow a + b \]

Catalyst

\[b + a \rightarrow a + c \]

Catalyst but no reactants

\[a \rightarrow a + c \]

Catalyst but no products

\[a + c \rightarrow c \]

Autocatalyst

\[a \rightarrow 2a \]
Writing Models Compositionally

- Functional-monadic approach
 - Functions take data as parameters and produce data as results
 - Networks take data as parameters and produce effects as results
 - Data is numbers, species, functions, networks, flows, etc.
 - Effects are species creation, reaction definitions, and sample handling
 - A program execution produces both a final result and a sequence of effects

- (Temporal) Flows
 - Flows are functions of time (mostly real-valued)
 - Can be assembled programmatically (as a data structure)
 - Can be used as rates (leading to programmable kinetics)
 - Can be observed at specific times (leading to protocol observations)
 - Can be plotted over time (leading to chart series and legends)
Ex: Predatorial

```plaintext
function Predatorial(number n) {
    if n = 0 then
        define species prey @ 1 M
        prey -> 2 prey // prey reproduces
        report prey
        yield prey
    else
        define species predator @ 1/n M
        species prey = Predatorial(n-1)
        prey + predator ->{n} 2 predator // predator eats
        predator -> Ø // predator dies
        report predator
        yield predator
    end
}

species apexPredator = Predatorial(5)
equilbrate for 50
```
Describing a Protocol

- **Samples** (e.g. test tubes)
 - Are characterized by a volume and a temperature
 - Contain a specified set of species
 - Evolve according to reactions that operates on those species

- **Protocol Operations** (e.g. liquid handling)
 - Accept and produce samples
 - Accepted samples are *used up* (they can only be operated-on once)
Samples

- Samples contain concentrations of species, acted over by reactions.
- Each sample has a fixed volume and a fixed temperature through its evolution.
- Sample concentrations are in units of molarity $M = \text{mol/L}$.
- The default implicit sample is called the **vessel** $\{1 \text{ mL, 20C}\}$

```
species {c} // a species for multiple samples
sample A $\{1\mu\text{L, 20C}\}$ // volume and temperature
species a @ 10mM in A // species local to A
amount c @ 1mM in A // amount of c in A
a + c -> a + a

sample B $\{1\mu\text{L, 20C}\}$
species b @ 10mM in B // species local to B
amount c @ 1mM in B // amount of c in B
b + c -> c + c
```

An amount can also be given in grams (if molar mass is specified). The resulting concentration is then relative to sample volume.

```
species {NaCl#58.44}

sample C $\{1\text{mL, 20C}\}$
amount NaCl @ 8g in C
```

Reactions can be specified with Arrhenius parameters {collision frequency, activation energy}. The reaction kinetics is then relative to sample temperature T.

```
a + c ->\{2, 5\} a + a
// rate is $2e^{(-5/(R*T))}$
```
Liquid Handling

Mix two samples into one
mix A = B, C

Split a sample into two
split B, C = A by 0.5

Let a sample evolve by its reactions
equilibrante A = B for 3

Throw away a sample
dispose C

Change sample temperature (heat or cool)
regulate A = B to 37°C

Change sample volume (concentrate or dilute)
concentrate A = B to 1mL
Ex: Sample Manipulation

Multiple equilibration steps

species \{c\}

sample A
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 = A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 = B for 1

split C, D = A1 by 0.5
dispose C

mix E = D with B1
a + b -> b + b
equilibrate F = E for 20
dispose F

"Protocol step graph"

"Protocol state graph"

PDMP ("System Equations")
Ex: Phosphate-buffered saline (PBS)

species {NaCl#58.44, KCl#74.5513, Na2HPO4#141.96, KH2PO4#136.086}
report NaCl, KCl, Na2HPO4, KH2PO4

function Autoclave(sample PBS, number t) {
define
 // increase temperature, preserve volume:
 regulate hot = PBS to 121C
 // bake
 equilibrate hot for t
 // decrease temperature, preserve volume:
 regulate PBS = hot to 20C
yield PBS
}

function MakePBS() {
define
 sample PBS {800mL, 20C}
amount NaCl @ 8g in PBS
amount KCl @ 0.2g in PBS
amount Na2HPO4 @ 1.44g in PBS
amount KH2PO4 @ 0.24g in PBS

 sample topup {200mL, 20C}
 mix PBS = PBS,topup
yield Autoclave(PBS, 20*60)
}
sample PBS = MakePBS()
network SerialDilution(number count, sample s, network f) {
 if count > 0 then
 sample solvent {9*observe(volume,s) L, observe(kelvin,s) K}
 mix s = s, solvent
 split s, dilution = s by 0.1, 0.9
 f(dilution)
 SerialDilution(count-1, s, f)
 end
}

initial sample to be diluted:

sample init {1mL, 25C}
species A @ 1M in init
species B @ 1M in init
A + B ->{20} A
A -> Ø

apply this network to each dilution; note that this invokes a simulation
each time in each solution

network test(sample s) {
 equilibrate s for 10
 dispose s
}

dilute 4 times
SerialDilution(4, init, test)

Prepare a series of increasingly diluted solutions and apply a network f to each (f can add species and reactions to the solutions)

RESULT:
sample init {1mL, 298.2K} {A = 1M, B = 1M}
sample s2 {1mL, 298.2K} {A = 100mM, B = 100mM}
sample s4 {1mL, 298.2K} {A = 10mM, B = 10mM}
sample s7 {1mL, 298.2K} {A = 1mM, B = 1mM}
sample s10 {1mL, 298.2K} {A = 100uM, B = 100uM}
Extracting the Model and the Protocol

From the script:

species {c}

sample A
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrater A1 = A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrater B1 = B for 1

split C,D = A1 by 0.5
dispose C

mix E = D with B1
a + b -> b + b
equilibrater F = E for 20
dispose F

The protocol

The (final) model (sample E)

STATE_5
sample E {1.5mL, 293.2K} {
 a = 354.5mM
 c = 178mM
 b = 0.5674M
 consumed
 a + c -> a + a
 b + c -> c + c
 a + b -> b + b
}

KINETICS for STATE_5 (sample E) for 20 time units:
\[\frac{\partial a}{\partial t} = a \cdot c - a \cdot b \]
\[\frac{\partial c}{\partial t} = c \cdot b - a \cdot c \]
\[\frac{\partial b}{\partial t} = a \cdot b - c \cdot b \]
Extracting the Hybrid Transition System

From the script

species \{c\}

sample A
species a \@ 1M in A
amount c \@ 0.1M in A
a + c \rightarrow a + a
equilibrates A1 = A for 1

sample B
species b \@ 1M in B
amount c \@ 0.1M in B
b + c \rightarrow c + c
equilibrates B1 = B for 1

split C, D = A1 by 0.5
dispose C
mix E = D with B1
a + b \rightarrow b + b
equilibrates F = E for 20
dispose F

The full story (Hybrid system)
Executing the protocols

• We have seen that reactions can be executed by DNA

• But how can we execute the protocols, so that we can execute the whole thing together?

• -> Digital Microfluidics Compiler
Digital Microfluidics

- https://www.youtube.com/watch?v=ncfZWqPm7-4

Speed test
https://www.youtube.com/watch?v=pSls9L_h3Q0
Digital Microfluidics

• A general, *programmable*, platform to execute the main liquid-handling operations

• To close the cycle, it can support many automated observation techniques on-board or off-board via peripheral pumps (sequencing, mass spec, ...) although these are all very hardware-dependent.
Digital Microfluidics Compiler

- Mix, split, equilibrate, dispose
- Automatic routing – no geometrical information
- Hot/cold zones

sample A {3μL, 20C}
split B,C,D,E = A
mix F = E,C,B,D
dispose F
Other features

• Timeflows
 • General kinetic rates (fractions, rational powers, exponentials, trigonometry) work with both deterministic and stochastic simulation and equation-extraction
 • Programmable plot reports (e.g. var(2*a - 3*b))
 • Capture timeflow outputs to combine (e.g. avg) and re-plot/export them later

• Mass action compiler
 • Turn any elementary ODE system (with fractions, rational powers, exponentials, trigonometry) into an equivalent system of pure mass action reactions.

• Programmable random numbers and distributions
 • As in the Omega probabilistic language, with rejection sampling.
Conclusions

Bridging culture gaps
We can have more sophisticated modeling languages than chemical reactions
And we can have more sophisticated protocols than liquid handling
But it is good to find an intersection where we can get them into an automated loop

Chemical reaction networks
An interface between engineering (algorithms, programming, verification)
and science (dynamical and stochastic systems in nature, laboratory protocols)

Closed-loop models and protocols
Unified description of the scientific cycle

Automation (programmability)
Generating networks of parametric size and complexity
Scripting protocols