
Integrated Scientific
Modeling and Lab
Automation

Luca Cardelli, University of Oxford
IWBDA Workshop, Cambridge, 2019-07-09

The Scientific Method ~ 1638

1 Guy

Discovery through Observation

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

The Scientific Method ~ 2000’s

1 Lab

1 protein = 30 people / 30 years

Humans have >250,000 proteins 

Discovery through Collaboration

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

The Scientific Method ~ 2020’s

1 Program

while (true) {
predict();
falsify();

}

Discovery through Automation

Robot scientist becomes
first machine to discover
new scientific knowledge

Ross King

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

The Inner Loop
• A model is refined by testing a (fixed) protocols against a systems
• A protocol is refined by testing a (fixed) model against a systems

• Today: publication does not accurately reflect execution

• Model: poorly-maintained matlab script
• Protocol: poorly-described manual steps in the lab
• System: poorly-characterized and hardly “resettable”

•  Crisis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility-1.17552

Model

Protocol

System

The Inner Loop
• Tomorrow, automation

• Model: unambiguous (mathematical) description (CompBio)
• Protocol: standardized (engineered) parts and procedures (SynthBio)
• System: characterized (biological) organism and foundries (SysBio)

• Verification: simulation / analysis / model checking / theorem proving
• Observation: lab automation
• Falsification: statistical inference / model reduction

• Performance evaluation/optimization: of model+protocol+system combined
• Management: version control, equipment monitoring, data storage

Model

Protocol

System

Falsification

Verification

Observation

N
od

es
Ar

cs
Li

fe
cy

cl
e

The Inner Loop
• Tomorrow, automation

• Model: unambiguous (mathematical) description (CompBio)
• Protocol: standardized (engineered) parts and procedures (SynthBio)
• System: characterized (biological) organism and foundries (SysBio)

• Verification: simulation / analysis / model checking / theorem proving
• Observation: lab automation
• Falsification: statistical inference / model reduction

• Performance evaluation/optimization: of model+protocol+system combined
• Management: version control, equipment monitoring, data storage

Model

Protocol

System

Falsification

VerificationN
od

es
Ar

cs
Li

fe
cy

cl
e

DNA Nanotechnology,
Synthetic Biology

Chemical Reaction
Networks

Observation

Why are chemical reactions interesting?
X + Y ->r Z + W

 A fundamental model of kinetics in the natural sciences
 A fundamental mathematical structure, rediscovered in many forms

 Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, …

 A description of mechanism rather than just behavior
 A way of describing and comparing biochemical algorithms
 Enabling addition analysis techniques, e.g. evolution of mechanism through unchanging behavior

 A programming language (coded up in the genome) by which
living things manage the processing of matter and information

8

Also, a formal language we can
implement with real (DNA) molecules
 ANY collection of abstract chemical reactions

can be implemented with specially designed DNA
molecules, with accurate kinetics (up to time scaling).

 A situation where we can "systematically compile"
(synthesize) a model, run an (automated) protocol,
and observe (sequence) the results in a closed loop.

9

Reaction x + y  z + w reactants
half

10

t y

xt t y

t x

t b

t a t a

input

a

b

link

early lock

lock fork garbage harmless harmless

lock join

input

"join" structure

Reaction x + y  z + w products
half

11

link

w t z t a t

z t

x t

w t

output output lock join

lock fork

c t

c t

anti-garbageharmless

"fork" structure

Reaction x + y  z + w garbage
collection

12

yt c t

anti-garbage garbage

harmless

DNA Implementation of the
Approximate Majority Algoithm

X + Y  2B
B + X  2X
B + Y  2Y

15

Experimental-Protocol Languages
for Chemical Reaction Networks

Automating “the whole thing”
 Protocols: sets of steps to direct lab machinery (or people)

 Published (possibly) in specialized journals. With varying accuracy.

 Models: sets of equations to predict the results of lab experiments
 Published (possibly) in Auxiliary Online Materials. With lots of typos.

 Protocols know nothing about models
 What hypothesis is the protocol trying to test? It is not written in the protocol.

 Models know nothing about protocols
 What lab conditions are being used to test the model? It is not written in the model.

 While presumably talking about the same system
 Through the experiment.

 Reproducibility crisis
 Experiments are hard to reproduce.
 Even models are hard to reproduce!

 Similar to a classical problem in C.S.
 Documentation (model) gets out of step from code (protocol) if their integration is not automated.

16

Model

Protocol

System

Falsification

Verification

Observation

A Protocol
For DNA gate assembly and activation in vitro

17

Protocol steps
(liquid handing)

A Model
A Chemical Reaction Network, provided explicitly or (in this case) generated from a
higher-level description of the initial strands, according to the DNA strand
displacement rules

18

An Integrated Description
This requires a language

19

The CRN can be computed from {Input1, Input2,
Output, Gate}, and its initial conditions and
evolution are determined by the protocol steps.

+

=

Language Semantics (deterministic)
The deterministic case is a warm-up exercise, but simple to explain
Each program denotes a final state <concentrations, volume, temperature>

20

is the final state produced by a protocol for a fixed CRN :

State produced by CRN at time t:

Language Semantics (stochastic)
Dispense has a volume uncertainty.
Equilibrate has a time uncertainty.
Reactions have rate uncertainty.

21

Each program now represents a Hybrid System with stochastic jumps between deterministic evolutions:

stochastic jump at time t
its probability depends state xtCRN deterministic

evolution from x0 to xt

CRN deterministic
evolution from yt to yusudden state change xt -> yt

e.g. due to Mix or Dispense

Which in turn denotes a Piecewise Deterministic Markov Process (PDMP)

Stochastic Analysis
 We can ask: what is the probability of a certain outcome given

uncertainties in both the protocol and the model?
 Conversely: which parameters of both the protocol and the model

best fit the observed result?

22

1500 executions including protocol uncertainty due timing
and pipetting errors (red).
1500 executions including only model uncertainty about
rates of the CRN (yellow).
1500 executions including both sources of uncertainty
(blue).

We may estimate by Statistic Model Checking, e.g. the
probability that Output will fall in a certain range, given
distributions over uncertain model and protocol parameters.

Kaemika
 A prototype language for

chemical models & protocols

 Android app:
Search "Kaemika" in the Play Store
https://play.google.com/store/apps/details?id=com.kaemika.Kaemika

23

Describing a Model
 Species and reactions
 Are characterized by a initial values and rates

 Kinetics
 Assume a model of matter (deterministic of stochastic) e.g. for simulations

 Programming abstractions
 Help assemble large models as compositions of modules

24

Species and Reactions

25

//======================================
// Lotka 1920, Volterra 1926
// (simplified with all rates = 1)
//======================================

number x1₀ =? uniform(0,1) // random x1₀
number x2₀ =? uniform(0,1) // random x2₀

species x1 @ x1₀ M // prey
species x2 @ x2₀ M // predator

x1 -> x1 + x1 {1} // prey reproduces
x1 + x2 -> x2 + x2 {1} // predator eats prey
x2 -> # {1} // predator dies

equilibrate for 40

0

0.5

1

1.5

2

2.5

3

0 10 20 30
Time (s)

x1
x2

Common action:
• Run simulations
• Vary parameters
• Inspect reaction graphs
• Extract equations
• Intrinsic noise (via LNA)

Writing Models Compositionally
 Functional-monadic approach
 Functions take data as parameters and produce data as results
 Networks take data as parameters and produce effects as results
 Data is numbers, species, functions, networks, flows, etc.
 Effects are species creation, reaction definitions, and sample handling
 A program execution produces both a final result and a sequence of effects

 (Temporal) Flows
 Flows are functions of time (mostly real-valued)
 Can be assembled programmatically (as a data structure)
 Can be used as rates (leading to programmable kinetics)
 Can be observed at specific times (leading to protocol observations)
 Can be plotted over time (leading to chart series and legends)

26

Ex: Ring Oscillator

27

First build a chain of reactions from a to b
with n intermediate species ci
a -> c0 -> c1 -> ... -> cn-1 -> b

network Erlang(species a b, number n) {
if n <= 0 then

a -> b // just one reaction from a to b
else

species c @ 0 M // new intermediate species c, initially 0
if n <= 3 then report c end // plot (report) at most 3 of those
Erlang(a, c, n-1) // make a chain from a to c with n-1 steps
c -> b // plus one reaction from c to b

end
}

a

t
o

b

b

t
o

a

Ex: Ring Oscillator

28

Then connect two such chains in a loop
to produce a dampened ring oscillator

network RingOscillator(species a b, number n) {
Erlang(a,b,n/2)
Erlang(b,a,n/2)

}

Initialize some species and activate the oscillator

species a @ 1 M
species b @ 0 M
RingOscillator(a, b, 10)

Simulate the reactions and produce a plot
Multiple 'c' species are distinguished by a suffix

equilibrate for 20

Describing a Protocol
 Samples (e.g. test tubes)
 Are characterized by a volume and a temperature
 Contain a specified set of species
 Evolve according to reactions that operates on those species

 Operations (e.g. liquid handling)
 Accept and produce samples
 Accepted samples are used up (they can only be operated-on once)

29

Samples (and their volume)
 Samples contain concentrations of species, acted over by reactions.
 Each sample has a fixed volume and a fixed temperature through its evolution.
 Sample concentrations are in units of M = mol/L.
 The default implicit sample is called the 'vessel' {1 mL, 20 C}

30

Create a new empty sample 's' with
given volume and temperature:

sample s {1mL, 20C}

Declare two new species, but do not
initialize them: they can be used in
several samples:

species {a, b}

The amount can also be given in
grams (if molar mass is specified) and
the resulting concentration is then
relative to sample volume.

sample t {1mL, 20C}

species {NaCl#58.44}

amount NaCl @ 8g in t

Initialize the amount of 'a' in 's'
at '1' (M), similarly for 'b'.

amount a @ 1 M in s
amount b @ 2 M in s

Samples (and their temperature)

31

Declare a new temperature-dependant reaction
(it can operate in any sample
where all its species initialized).

a + b -> {2, 5} c

'2' is collision frequency,
'5' (J*mol^−1) is activation energy
(default is '{1, 0}')

In each sample, the reaction rate is then
dependent on the sample temperature 'T' via
the activation energy and the gas constant 'R'
by Arrhenius' formula: 2*e^(-5/(R*T))

Samples (and their evolution)

32

The sample 's' evolves
according to the relevant reactions
resulting in a new sample 's1' after time '3'.

equilibrate s1 := s for 3

• Sample 's' can no longer be used after this: it has been consumed.
• Sample 's1' has the same volume and temperature as 's'.
• Sample 's1' contains the same species as 's'

in usually altered amounts.

'equilibrate s := s for 3'
reuses the old name for the new sample.

'equilibrate s for 3' is an abbreviation
for 'equilibrate s := s for 3'.

Samples (and their operations)

33

Mix two samples into one

mix A := B with C

Split a sample into two

split B,C := A by 0.5

Transfer a sample to a new volume, temperature

transfer A{1L, 20C} := B

Let a sample evolve

equilibrate A := B for 3

Throw away a sample

dispose C

These are based on our paper, but
now these are effects, not algebraic
operation. So they are used like
imperative statements (":=") rather
than expression.

 Flows are a powerful facility for representing time series, they can appear in rate expressions,
in report (plotting) expressions, and in protocol observation.

 A flow is a closed expression (essentially a data structure) representing
a value v(t,s) at a time t≥0 in sample s (or a distribution of values if LNA is active).

 I.e. a flow denotes a function λ(t,s) v(t,s).

time λ(t,s) t
3.5 λ(t,s) 3.5
kelvin λ(t,s) temperature(s)
a (a species) λ(t,s) a(t,s) concentration of a in the sample
op(f1,...,f2) λ(t,s) op(f1(t,s),...,f2(t,s)) e.g.: sin(time+1), 2*a - 3*b
cond(f1,f2,f3) λ(t,s) if f1(t,s) then f2(t,s) else f3(t,s) conditional flows, e.g. cond(a<b, a, b)
poisson(f) λ(t,s) poisson(f(t,s)) mean and variance equal to f(t,s)
cov(f1,f2) λ(t,s) cov(f1(t,s),f2(t,s)) covariance of any two linear combinations of species
∂f ∂t(λ(t,s) f(t,s)) first time deriviative (based on the mass action equations)

34

Flows

observe(f, s) observe a flow f in sample s (at the "current" time)

observe(kelvin,s) temperature of s
observe(volume,s) volume of s (L)
observe(a,s) concentration of a in s (mol/L)
observe((a-b)^2,s) combined observations
observe(time,s) e.g., observe the endtime of a simulation
observe(var(a),s) observe noise (requires LNA active)
observe(∂a,s) time derivative of a's concentration

• Conditional protocol execution
if (observe(a, s) > 3.5) then ... else ...

If the concentration of a in sample s > 3.5 ... (typically tested at a time between equilibrates)

• Protocol optimization
argmin(objectiveFunction, initialGuess, tolerance)
where objectiveFunction = fun(parameters) ... observe((objective - outcome)^2, s) ...

Compute an error that depends on a choice of parameters,
for the gradient descent minimization of an objective function 35

Observations

Ex: Sample Manipulation

36

species {c}

sample A
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 := A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 := B for 1

split C,D := A1 by 0.5
dispose C

mix E := D with B1
a + b -> b + b

equilibrate F := E for 20
dispose F

"Protocol step graph"
Multiple equilibration steps

"Protocol state graph"

PDMP ("System Equations")

Ex: Phosphate-buffered saline (PBS)

37

species {NaCl#58.44, KCl#74.5513, NA2HPO4#141.96, KH2PO4#136.086}
report NaCl, KCl, NA2HPO4, KH2PO4

function MakePBS() {
define

sample PBS {800mL, 20C}
amount NaCl @ 8g in PBS
amount KCl @ 0.2g in PBS
amount NA2HPO4 @ 1.44g in PBS
amount KH2PO4 @ 0.24g in PBS

sample topup {200mL, 20C}
mix PBS with topup

yield Autoclave(PBS, 20*60)
}

function Autoclave(sample PBS, number t) {
define

// increase temperature, preserve volume:
transfer hot { observe(volume,PBS)L, 121C } := PBS
// bake
equilibrate hot for t
// decrease temperature, preserve volume:
transfer PBS { observe(volume,hot)L, 20C } := hot

yield PBS
}

sample PBS = MakePBS()

..

http://cshprotocols.cshlp.org/content/2006/1/pdb.rec8247

Ex: Serial Dilution

38

network SerialDilution(number count, sample s, network f) {
if count > 0 then

sample solvent {9*observe(volume,s) L, observe(kelvin,s) K}
mix s with solvent
split s, dilution := s by 0.1
f(dilution)
SerialDilution(count-1, s, f)

end
}

initial sample to be diluted:

sample init {1mL, 25C}
species A @ 1M in init
species B @ 1M in init
A + B ->{20} A
A -> #

apply this network to each dilution;
note that this invokes a simulation
each time in each solution

network test(sample s) {
equilibrate s for 10
dispose s

}

dilute 4 times

SerialDilution(4, init, test)

Prepare a series of increasingly
diluted solutions and apply a
network f to each (f can add
species and reactions to the
solutions)

RESULT:
sample init {1mL, 298.2K} {A = 1M, B = 1M}
sample s2 {1mL, 298.2K} {A = 100mM, B = 100mM}
sample s4 {1mL, 298.2K} {A = 10mM, B = 10mM}
sample s7 {1mL, 298.2K} {A = 1mM, B = 1mM}
sample s10 {1mL, 298.2K} {A = 100uM, B = 100uM}

Extracting both Model and Protocol

39

species {c}

sample A
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 := A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 := B for 1

split C,D := A1 by 0.5
dispose C

mix E := D with B1
a + b -> b + b

equilibrate F := E for 20
dispose F

From the script The protocol The (final) model (sample E)

Extracting both Model and Protocol

40

species {c}

sample A
species a @ 1M in A
amount c @ 0.1M in A
a + c -> a + a
equilibrate A1 := A for 1

sample B
species b @ 1M in B
amount c @ 0.1M in B
b + c -> c + c
equilibrate B1 := B for 1

split C,D := A1 by 0.5
dispose C

mix E := D with B1
a + b -> b + b

equilibrate F := E for 20
dispose F

The full story (Hybrid system)From the script

Conclusions

41

422019-07-09Luca Cardelli 422019-07-09

Scientific Method vs. Engineering Method

System

Engineering
Method

Model

Scientific
Method

C
on

st
ru

ct
io

n Verification D
is

co
ve

ry

Falsification

Direct Engineering
(Synthetic Biology)

Reverse Engineering
(Systems Biology)

System

Model

432019-07-09Luca Cardelli 432019-07-09

Scientific Method vs. Engineering Method

System

Verification

Falsification

System

N
ew

 C
on

st
ru

ct
io

n

N
ew

 D
is

co
ve

ry

Engineering
Method

Scientific
Method

Direct Engineering Reverse Engineering

Model Model

442019-07-09Luca Cardelli 442019-07-09

Scientific Method vs. Engineering Method

System

Verification

Falsification

System

N
ew

 C
on

st
ru

ct
io

n

N
ew

 D
is

co
ve

ry

Engineering
Method

Scientific
Method

Direct Engineering Reverse Engineering

Model Model

452019-07-09Luca Cardelli 452019-07-09

Scientific Method vs. Engineering Method

C
on

st
ru

ct
io

n Verification D
is

co
ve

ry

Falsification

Closed Loop
Method

System

Model

When the models and the
systems are both too

complex to either be the
full Truth

The model is always
somewhat wrong in its

predictions

The system is always
somewhat faulty in its

execution

The Truth is not something
you ever “have” but

something you “maintain”

We need a closed-loop formalized
description of the whole method

