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Objectives
TP

- The promises of Molecular Programmmﬁi
- In Science & Medicine L Lk

- In Engineering
- In Computing

- The current practice of Molecular Programming
- DNA technology

- Molecular languages and tools m\. "“B

- Example of a molecular algorithm »’\,, {'5 ‘4“*{6 v




ecular Programming;

\Yi[e
The Hardware Aspect

Smaller and smaller things can be built




Smaller and Smaller

First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit
Jack Kilby, Sep. 1958.

50+ years later
ian2010 25NmM NAND flash

Intel&Micron. ~50atoms

wn2018 7NM (54nm pitch)

TSMC, Intel, Samsung, GlobalFoundries - mass production

Single molecule transistor

Observation of molecular orbital gating
Nature, 2009; 462 (7276): 1039

Molecules on a chip

Very few Moore’s cycles left!

Scanning tunneling microscope image of =
a silicon surface showing 10nm is

Molecular Transistor

Placement and orientation of individual DNA shapes on lithographically
patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).




Human genome-sequencing costs

Race to the Bottom

Moore’s Law is approaching the single-
molecule limit

Moore’'s Law

Carlson’s Curve is the new exponential

growth curve in technology 001
2001 03 05 07 09 11 13 15

Source: National Human Genome Research Institute

| N bOt h case S, we are now d own tO mO[eCU[eS Proliferation of Biological Technologies

The SmidglON: A portable DNA
sequencer that runs on an Iphone

Oxford Nanopore




Building the Smallest Things—

+ How do we build structures that a%y_% smaller than yourtools?
+ Basic answer: you can't. Structures (@ S) shmw themséﬁés!

- By programmed self-assembl

www.youtube.com/watch?v=Ey7Emmddf7Y



Molecular IKEA

Nature can self-assemble.
Can we?

‘Dear IKEA, please send me a chest
of drawers that assembles itself"

We need a magical material where the pieces are
pre-programmed to fit into to each other.

Add water

At the molecular scale many such materials exist...

http://www.ikea.com/ms/en_US/customer_ser
vice/assembly_instructions.html




rogrammed Self-Assembly

Proteins DNA/RNA

Membranes
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The Software Aspect

Smaller and smaller things can be programmed




We can program...

- Information
- Completely!




We can program...
+ FOIces

- Completely!
(Modulo sensors/actuators)

Actuating




We can program...
- Matter

-+ Completely and directly! By self-assembly.

+ Currently: only DNA/RNA.

Actuating

It's like a 3D printer without the printer!

I i ; Andrew Hellingt
- But DNA is an amazing material [Andrew Hellington]




G-C Base Pair

Guanine-Cytosine

T-A Base Pair
Thymine-Adenine

Sequence of Base Pairs (GACT alphabet)

(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

wehi.edu.au




Structure

DNA in each human cell:

3 billion base pairs
- 2 meters long, 2nm thick
-+ 750 megabytes

- folded into a 6um ball,
140 exabytes (million terabytes)/mm3

=> gll the data on the internet fits in a shoebox!

A huge amount for a cell

- Every time a cell re}c\)llicates it has to

copy 2 meters of DNA reliably.

- Or else!

DNA in human body

- 10 trillion cells
- 133 Astronomical Units long
- 7.5 octabytes

DNA in human population
- 20 million light years long

DNA wrapping into chromosomes

Andromeda Galaxy
2.5 million light years




Function

DNA can support structural and computational complexity.

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase Il: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv




What is special about DNA?

- There are many, many nanofabrication
techniques and materials

- But only DNA (and RNA) can:

- Organize ANY other matter ..
- Execute ANY kinetics ...
- Assemble Nano-Control Devices
- Interface to Biology




Organizing Any Matter

Use one kind of programmable
matter (e.g. DNA).

To organize (almost) ANY
matter through it.

European Nanoelectronics Initiative Advisory Council

6 nm grid of

"What we are really making are tiny DNA circuit boards

|nd|v|dua||y g . e N n. JCT- that will be used to assemble other components."

Greg Wallraff, IBM
addressable

DNA pixels

PWK Rothemund, Nature 440, 297 (2006)




Executing Any Kinetics

- The kinetics of any finite network of chemical reactions, can be
implemented (physically) with especially programmed DNA
mO|eCU |eS' Powered by Sothink

Transducer x -y

- Chemical reactions
as an executable
efele]r=Inglngliple
language for
dynamical systems!

DNA as a universal substrate for

chemical kinetics PNAS

1 b1 c1
David Soloveichik : , Georg Seelig - + , and Erik Winfree -




Building Nano-Control Devices

- All the components of nanocontrollers can already be built entirerly and solely
with DNA, and interfaced to the environment

DNA Aptamers

DNA Logical Gates

Actuating

Self-assembling DNA Tiles DNA Walkers & Tweezers




gether were somehow broken.
nd I built an-
tahedron, which is
[see illustration on page

DNA backbone
Base pairs

SCIENTIFIC AMERICAN 69
COPYRIGHT 2004 SCIENTIFIC AMERICAN, INC.

Constructing




Crosslinking




@)

Crosslinkin
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Crosslinkin




Crosslinking




Crosslinking

In nature, crosslinking is deadly
(blocks DNA replication).

In engineering, crosslinking
is the key to using DNA as
a construction material.




DNA Tiling

4 sticky ends

crosslinking




2D DNA Lattices

Chengde Mao
Purdue University, USA




3D DNA Structures

Oxford

Tetrahedron
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William Shih
Harvard https://www.youtube.com/watch?v=Ek-FDPymyyg

S.M. Douglas, H. Dietz, T. Liedl, B. Hogberg, F. Graf and W. M. Shih
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)




DNA Origami

Folding long (7000bp) naturally occurring (viral) ssDNA
By lots of short ‘staple’ strands that constrain it

Paul W K Rothemund
California Institute of Technology

PWK Rothemund, Nature 440, 297 (2006)

Black/gray: 1long viral strand (natural) Paul Rothemund's “Disc with three holes” (2006)
Color: many short staple strands (synthetic)




DNA Circuit Boards

- DNA origami are arrays of uniquely-

addressable locations

- Each staple is different and binds to a unique location on
the origami

- It can be extended with a unique sequence so that
something else will attach uniquely to it.

- More generally, we can bind "DNA gates”

to specific locations
+ And so connect them into “DNA circuits” on a grid
- Only neighboring gates will interact

Some staples are
attached to “green blobs”
(as part of their synthesis)
Other staples aren’t

Dalchau, Chandran, Gopalkrishnan, Reif, Phillips. 2014




° Next-Generation Digital Information
DNA Storage (Read/Write)

16

°
This work
Quantum
Holography

b Synthetic M. mycoides

-
-

Information-rich physical structures can be used for storage.

k)(e positioning
A

‘\2»atom’
memgry Encodings in E. coli Hard

Disk

DNA has a data density of 140 exabytes (1.4x 10?0 bytes) per mm3
compared to state-of the art storage media that reaches ~500
megabytes (5x 108 bytes) per mm?3

DNA has been shown to be stable for millions of years

—
(=]

Flash Memory® 3

Magnetic Tape ®

=]

Blu-Ray (QL)®
Blu-Ray (SL) ¢
DVD#®

6
Productivity in DNA Synthesis and Sequencing ¢ Commercial Che
Using Commercially Available Instruments A Demonstration
1.0E+11 Rob Carison, February 2013, www.synthesis.cc i ® Biological

g Number of transistors per chip
LOEH10 | " psucorty Wit b 9 2 A 6 8 A0 12 14
¢ Logo bits encoded in production or demo

Information Density (log1o bits / mm3)

www.sciencemag.org on August 17, 2012

1.0E+09
1.0E+08

1.0E+07

oeos We have machines that can read (sequence) and write
108405 (synthesize) DNA. The Carslon Curve of “productivity” is
T growing much faster than Moore's Law.

1.0E+03

Number of transistors per chip.

1.0E+02

10401 Cost of sequencing is decreasing rapidly ($1000 whole human

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 . . . .
genome), while cost of synthesis is decreasing very slowly.
[Rob Carlson, ]

Synthesis and Sequences Productivity [hase:s ! person / day]

The Pace and Proliferation of Biological Technologies

Iarck ob Carlson




Sensing




Aptamers

Artificially evolved DNA molecules wh

that stick to anything you like
highly selectively




Pathogen Spotlights

. DNAaptamerbmdsto D |

- A) a pathogen
B) a molecule our immune system (when allergic)

Aptamer will

hates and immediately removes (eats) along with bind o paihogen P00 eplope

anything attached to it! — ‘O.m .

Result: instant immunity

O Mice poisoned with Anthrax p|US with BAS and Treated with a-gal PAA-12 Aptamer and Doxycycline
aptamer (100% survival)
Mice poinsoned with Anthrax
(not so good)

Survival Curve of A/J Mice Immunized with Human Serum, Challenged

Pefrent Survival

Kary Mullis (incidentally, also
Nobel prize for inventing the
Polymerase Chain Reaction)

7TH 9101112 1514151617 181920 2128

Time (days)




Transcriptional Sensors

“One of the goals of Synthetic Cell Reports Orthogonalintercellular signaling for programmed
b | (o) | Ogy |S to d eve | (o) p Synthetic Biology Platform for Sensing and spatial behavior

Integrating Endogenous Transcriptional Inputs in

programmable A . Goyamordincy;om e Ak SR S et
networks that can transduce " T e R

multiple endogenous molecular T ) Foodback, o ysems porty G010 12 56

cues to precisely control cell

behavior. "

o
o o © °
9 30-C12-HSLg ®30-C6-HSL @
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Input o0

Response

AND gate X
-~ L3 L

- @D + @B

« ¥ Open Loop

g
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Synergistic Promoter TF RE [TATAK= @

o
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DED OV = )
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DBD: DNA Binding Domain
AD: Activation Domain




Actuating




DNA Tweezers

Set strand
‘Open’
v/\\../ B

/' Hybridization

\

)\
~§trand
Displagement

._\\\ .5 (P

(

Unset strand

DNA nanomachines

Jonathan Bath & Andrew J. Turberfizld
Nsture Nanotechnology 2, 275 - 284 (2007)
doi:10.1038/nnanc.2007.104




DNA Walkers

Walker

-

AICIS

A Synthetic DNA Walker for Molecular Transport
Jong-Shik Shinf and Niles A. Pierce* 1.t

Deparments of Bioengineering an ‘ s, California Institute of Technology
ol




Polymerization
| &T—g%? 1 (A TaR)

Biotin

Bead

+099 3 (AR) + 1,000 x H1 and H2

Competitive
polymenization

An autonomous polymerization motor
powered by DNA hybridization

SUVIR VENKATARAMAN', ROBERT M. DIRKS', PAUL W. K. ROTHEMUND?3,
ERIK WINFREE®® AND NILES A. PIERCE™*

Triggered amplification by hybridization
chain reaetion

o
Robert M. Dirks? and Niles A Plercet: &

Actin Pol; izati iated with Spotted
Fever Group Rickettsia Infection of Vero Cells
ROBERT A. HEINZEN, STANLEY F. HAYES, MARIUS G. PEACOCK, Axp TED HACKSTADT"




Hybridization Chain Reaction

Stable mixture
of two hairpins

g

Triggered amplification by hybridization
chain reaetion

a1 M, Dirks? and Niles A, Flerce

Initiator

T







Computational Drugs

Yes, PPAP28LGSTPIL PIMTT  HPNT

wehi.edu.au

00 000000Mmnonn. 1T T T T T T T W St
art

Yes, GSTP1L PMIT  HPNT

ves PPAP2BL

Yes

Yes

v Based on restriction enzymes
Yes

B
S0-abab
Yes 0250

So-bab

lYeS—b il

Positive diagnosis S i @ S &
active drug ' i (50, w’ﬁsj;
Negative diagnosis PO, Tone "

Vitravene @Gcermectcriermcriaes) ee, .  —

» An automaton sequentially reading the string PPAP2B, GSTP1, PIM1, HPS
(known cancer indicators) and sequentially cutting the DNA hairpin until a
ssDNA drug (Vitravene) is released.

An autonomous molecular computer

for logical control of gene expression - - —
Yasko Bennsa”,Soanin i, Ut 8o, ik Ao Stochastic computing with biomolecular automata

& Ehud Shapiro’ Rivka Adar=", Yaakov Benenson*, Gregory Linshiz**, Amit Rosner?, Naftali Tishby#?, and Ehud Shapiro**




Interfacing to Biology

- A doctor in each cell

Molecular
Output

Programmable

Computer
Ehud Shapiro I MO'ecu‘es and
Rivka Adar
Kobi Benenson

ey computation
Fig. 1 Medicine in 2050: “Doctor in a Cell” Sepy o

Aviv Regev
William Silverman




ecular Programming;

\Y[e
The Biological Aspect

Biological systems are already
‘molecularly programmed’




Abstract Machines of Biology

Regulation

H.Lodish & al. Molecular Cell Biology 4t ed.

Hold receptors,
host reactions

Enact fusion, fission

Metabolism, Propulsion . Confinement, Storage
Signaling, Transport Surface and Bulk Transport

Extracellular Features




Biological Languages

IV —
Molecular Interaction .

Maps

Gene Networks

Transport Networks

@P




But ...

- Biology is programmable, but (mostly) not by us!

- Still work in progress:

- Gene networks are being programmed in synthetic biology, but using existing ‘parts’
- Protein networks are a good candidate, but we cannot yet effectively design proteins

- Transport networks are being investigated for programming microfluidic devices that
manipulate vesicles




Molecular Languages

.. that we can execute
(more easily than what nature provides)




Our Programming Language: Chemistry

- A Lincqua Franca between Biology, Dynamical Systems,
and Concurrent Languages

- Chemical Reaction Networks
- A+B>.C+D (the program)

- Ordinary Differential Equations

- d[A]/dt = -r[A][B] ... (the behavior)

- Rich analytical techniques based on Calculus
and moreé recently on stochastic models




Chemical Programming Examples

specification

Yo

min(X1, X2)

max (X1, X2)

program

X1+ X2 ->Y

X1->1L1+Y max(X1,X2)=
XD o> [2 4y (XT+X2)-min(X1X2)

LT+ L2 ->K (but is not computed

Y +K->0 ‘sequentially”: it is a form
of concurrent computation)

chemical reaction hetwork




How do we “run” Chemistry?

- Chemistry is not easily executable

- "Please Mr Chemist, execute me this bunch of reactions that | just made up”

- Most molecular languages are not executable

- They are descriptive (modeling) languages

- How can we execute molecular languages?

- With real molecules?
- That we can design ourselves?
- And that we can buy on the web?




Molecular Programming
with DNA

Building the cores of programmable
molecular controllers




The role of DNA Computing

- Non-goals

- Not to solve NP-complete problems with large vats of DNA
- Not to replace silicon

- Bootstrapping a carbon-based technology

- To precisely control the organization and dynamics of matter and information
at the molecular level

+ DNA is our engineering material
- Its biological origin is “accidental” (but convenient)
- It is an information-bearing programmable material
- Other such materials will be (are being) developed




Domains

- Subsequences on a DNA strand are called domains

- provided they are "independent” of each other

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAAE O ri e n t e d D N A
X y ~ single strand

- Differently named domains must not hybridize

- With each other, with each other’s complement, with subsequences of each
other, with concatenations of other domains (or their complements), etc.




Short Domains

DNA double
strand

Reversible Hybridization




Long Domains

A
X

A
X
F

X
—

Irreversible Hybridization







Strand Displacement

A
X

A
X

“Toehold Mediated”




Strand Displacement

/

X

Toehold Binding




Strand Displacement

Branch Migration




Strand Displacement

A
X

Displacement




Strand Displacement

A
X

A
X

Irreversible release




Bad Match

—
X y4
—
“




Bad Match

/

D, CE—i—




Bad Match




Bad Match

D, CE—i—

Cannot proceed
Hence will undo




Two-Domain Architecture

« Signals: 1toehold + 1 recognition region

A
X

» Gates: "top-nicked double strands” with open toeholds

Garbage collection
“built into” the gate
operation

Two-Domain DNA Strand Displacement
Luca Cardelli
In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):

Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.




Transducer




Transducer x—y

Input
pﬂ

X




Transducer x—y

Input
pﬂ

X

— [—
X d X

I _— I

Built by self-assembly!

ta is a private signal (a different ‘a’ for each xy pair)




Transducer x—y

—




Transducer x—y

Active
* WENTS

X




Transducer x—y

e

X

d X
—— —

— i
d




Transducer x—y

e

X a a X a

___— I

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.




Transducer x—y

e

[—
X d d X

___—




Transducer x—y

e

——
X d d X

___—




Transducer x—y

e S

—— ——
X a a X y a

I 4N 0 ———




Transducer x—y

e

X d d X d
— I
Here is our output ty signal.
But we are not done yet:

1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).




Transducer x—y

e e

— e
X d d X d

___— I




Transducer x—y

e

X d d

d

— —
<~




Transducer x—y

= o I

X d d X d




Transducer x—y

—
X

X d

X d

— S S
d




Transducer x—y

X d




Transducer x—y

Dle]al=}

N.B. the gate Is consumed: it is the energy source

(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)




Powered by Sothink

Transducer x —> vy




Powered by Sothink

Join xty — z
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Plasmidic Gate Technology

. Synthetic DNA IS a DNA GATE PRODUCTION

length-limited
- Finite error probability at each
nucleotide addition,

hence ~ 200nt max

- Bacteria can replicate

plasmids for us

- Loops of DNA 1000's nt, with
extremely high fidelity

- Practically no structural limitations
on gate fan-in/fan-out

CLONING Ny, AMPLIFICATION &
::.-_::-' QUALITY CONTROL
¥ # l_PIasmid' # ﬂ ﬂ p
Synthesized  Insert W __# | Transform @ Sequence M'_.If\
femplate  templates  aias colonies AACT
G 2
ENZYMATIC PROCESSING @ § g’
— g ==
Nicked dsDNA-gates ) P
e
Nick top strands
]:E:E:E: « ::.:: h [ h
Nb_BsrDI Release Pvull-HF ./ Extract
dsDNA gates plasmid
Programmable chemical controllers made from DNA
Yuan-Jyue Chen®, Meil Dalchau®, Niranjan Srinivaf Andrew Ph\lilpsz. Luca Carde:li{ David Solovacmk"/
and Georg Seeligh?

Only possible with
two-domain architecture



Large-scale Circuits (so far..

3 JUNE 2011 VOL 332 SCIENCE 368 | NATURE | VOL 475 | 21 JULY 2011
Scalin g Up Di g ital Circuit Neural network computation with DNA strand
displacement cascades

- -
Computation with DNA Strand et e e
-
D I s p I a c e m e nt c a S c a d e S A simple DNA motif A DNA artificial neuron A four-neuron DNA associative memory
- 2710 0110 4
2 os - =

Lulu Qian® and Erik Winfreel2:3* , \

0

x‘—<w,
e
|
@




Scaling up: DNA Circuit Boards

ARTICLES ature

PUBLISHED ONLINE: 24 JULY 2077 | DOI: 10.1038/NNANQ.2017.127 anote Ch n 010(

A spatially localized architecture for fast and
modular DNA computing

Gourab Chatterjee’, Neil Dalchau?, Richard A. Muscat?, Andrew Phillips?* and Georg Seelig?“*

The first computational circuit boards made of DNA

https://www.microsoft.com/en-us/research/blog/researchers-build-nanoscale-computational-circuit-boards-dna



Questions?




DNA

< J| <prev i Ranoow Jl Nexr> J§ >

BIOLOGY' 1S LARGELY SOLVED,
DNA 15 THE SOURCE CODE
FOR OUR BODIES, NOW THAT
GENE SERUENCING IS ERSY,
WE JUST HAVE. T0 READ IT.

IT'SNOT JUST “SOURCE

BUT EVEN IF IT WERE, DNA I5THE
RESULT OF THE MOST AGBRESSIVE
OPTIMIZATION PROCESS IN THE
UNIVERSE, RUNNING I PARALLEL.
AT EVERYLEVEL, IN EVERY UVING
THING, FOR FOUR BILLION YEARS.

ITS STILL JUST CODE.

? Fur

OK, TRY OPENING GOOGLE .COM
AND CLICKING *VIEW) SOURCE.

] OK, ... O Y GO,

THATS JUST A FEwW YEARS OF

OPTIMIZATION BY GOOGLE. DEVS,
DNA 1S THOUSANDS OF TIMES
LONGER AND WAY, 4LAY LIORSE..

Wou, BIOLOGY
IS IMPOSSIBLE.

ooy

Ci< ] <prev [ Ravoow 55

PERMANENT LINK TO THIS COMIC: HTTP://XKCD.COM/1605/
IMAGE URL (FOR HOTLINKING/EMBEDDING): HTTP://IMGS.XKCD.COM/COMICS/DNA.PNG

View Source




Some kind of computation




A Molecular Algorithm

Running something interesting with DNA




Approximate Majority Algorithm

- Given two populations of agents (or molecules)

-+ Randomly communicating by radio (or by collisions)
- Reach an agreement about which population is in majority

- By converting all the minority to the majority
[Angluin et al., Distributed Computing, 2007]

- 3 rules of agent (or molecule) interaction
- X+Y—>B+B
"B+ X—->X+X
-B+Y—>Y+Y

‘our program”




Surprising\y gOOd (in fact, optimal)

- Fast: reaches agreement in O(log n) time w.h.p.

+ O(n log n) communications/collisions
- Even when initially #X = #Y! (stochastic symmetry breaking)

- Robust: true majority wins w.n.p.
- If initial majority exceeds minority by o(¥n log n)
- Hence the agreement state is stable

Stochastic simulation of worst-case
scenario with initially #X = #Y







DNA Implementation of AM

nature
nanotechnology

Programmable chemical controllers made
from DNA

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David

Soloveichik ™ & Georg Seelig
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Carbon-based Computing

How to get there




Action Plan

- Building a full software/hardware pipeline for a new fundamental technology
- Mathematical Foundations
-+ Programming Languages
- Analytical Methods and Tools
- Device Architecture and Manufacturing

concurrency theory in the 80's]
software engineering in the 70's]

formal methods in the 90's]

[N
[N
[N
[N

electronics in the 60's]
- To realize the potential of Molecular Programming
- "With no alien technology” [David Soloveichik]

- This is largely a 'software problem’ even when working on device design




Chemistry as a Concurrent Language

- A connection with the theory of concurrency
+ Via Process Algebra and Petri Nets

Continuous-state Semantics
(Mass Action Kinetics)

ODE = ODE

Continuous
Chemistry
Process Nondeterministic

Algebra :
Combinatorial Discrete & Semantics

Explosion Chemistry Stochasti
ochastic

CTMC — CTMC Semantics

Discrete-state Semantics
(Chemical Master Equation)




Molecular Compilation

“High-Level” Boolean Chemical Reaction

Programs
9 Language Networks Networks

Intermediate -
Language

4-domain i 2-domain

Sequences Architecture Sk : Signals

Devices Molecules




Towards High(er)-Level Languages

Gene Networks

- Synchronous Boolean networks
- Stewart Kauffman, etc.

- Asynchronous Boolean networks
- René Thomas, etc.

Protein Networks

- Process Algebra (stochastic n-calculus etc.)
- Priami, Regev-Shapiro, etc.

- Graph Rewriting (kappa, BioNetGen etc.)
- Danos-Laneve, Fontana & al., etc.

Membrane Networks

- Membrane Computing
- Gheorghe Paun, etc.

- Brane Calculi
- Luca Cardelli, etc.

- Waiting for an architecture to run on...




A platform for programming biology

Domain
Specific
Languages

e ..
Programming DNA Programming Genetic Devices Reprogramming Cells
(Nature Nanotechnology 2013) (Molecular Systems Biology 2016) (Science 2014)

/ ¢

DNA i Genetic Symbolic Regulatory
Domains : Circuit REDY. Network

v

DNA Chemical Reaction {REN, Labelled Transition
Sequences Network | System Abstractions,
v Compilers,
Verification

DNA Ordinary Differential Continuous Time
Biophysics ) Equations Markov Chain

i

Cell Partial Differential
Biophysics Equations

Automation
& Analytics

Biological experiments as programs SYNTHACE I¥ Bayesian Inference; Machine Learning

Lab robotics ;@b g Microsoft Azure m Infrastructure




Algorithm Design

A software pipeline for Molecular Programming




Development Tools

MSRC Biological Computation Group
e eV ISUQ| DSD

Code DNA Input Compilation | sSimulation Analysis

il (B13) [8 lalx (9] Specss | Reacvons | crapn Romeica A Deve | opme Nt

= kt*1.8e-9 (* /nM/s %)
def unbind = kt*exp_DeltaG_over_RT (* /

E o ’ Environment
caCE * for DNA Strand
i B Displacement

| (1.5*N)

.
-
| (2.8%N) =
| (2.8*N) *

def Rep(N,x,f1 . P
((3.0%N) * e *:[xXI<FLM>)

( onex * <Calibration>
| Cat(onex,X,Y,B)

| Rep(onex,B,fl1}

| onex * <t X>

| onex = <tr¥>

}

Interface
A programming language for composable DNA circuits

Andrew Phillips and Luca Cardelli

Calibratian

e taacd tasar el
150 soo0




A Language for DNA Structures

Describe the initial
structures (not behavior)

Code DNA Input

J & (AR ($]5RaX 9~ (=

directive duration 10988.8 points 186
directive plot <t x»; (b0 y:; <tr Z>
new t

def T(N,x,y) =
new a
{ N * «<t* a>
| N* gy £5%
| W.* t4%:[x £~ ]:[a t"]:[a] {* Input g%te i |
N * [x]:[th w]:[t* a]:t"* (* Output gate ¥)

<t x| T(L,x,¥) )




Compute Species and Reactions

Compilation | Simulation | Analysis

- Recursively computed from
the initial structures

Compilation | Simulation = Analysis

Species Reactions Graph Text Domains

a

t
—J
=

a




Reaction Graph and Export

Compilation | Simulation Analysis

Species Reactions Graph Domains
| Save as XML

<?xml version="1.0" encoding="UTF-8"7>
<sbml xmlns="http://www.sbml.org/sbml/level2/version1” level="2" version="1">
<model>
<listofCompartments:
<compartment id="c" size="1"/>
</listOfCompartments>
«<listOfSpecies>
i “5_id0"” name="8&lt;t" x>" compartment="c" initialAmount="1" constant="false"/>
name="&lt:t~ a>" compartment: initialAmoun! " constant="false"/>
<species i wol name="8lt;y t"~>" compartment="c" initialAmoun “false”/=
<species i name="{t~*}[x t~]:[a t~]:[a]" compartment="c" initialAmount="1" constant="false"/>
name="[t" x]:&lt;x>[t~]:[a t~]:[a]" compartment="¢’ tialAmount="0" constant="false"/>
name="[t"~ x]{t~*}:[a t~]:[a]" compartment="c" initialAmount="0" constant="false"/>
<species id="s_id6" name="[t~ x]:[t~ a]:&lt;a=[t"~]:[a]" compartment="c" initialAmount="0" constant="false"/>
<species id="5_id7" name="[t" x]:[t" al{t~*}:[a]" compartmeant="c" initial Amount="0" constant="false"/>
<species W] name="[t~ x]:[t* a]:[t~ a]" compartment="c" initialAmount="0" constant="false"/>
<species i i "8lt;a>" compartment="c" initialAmount="0" constant="false"/>
<spe i &lt;a t*>" compartment="c" initialAmount="0" constant="false"/>
<species i i &lt;x t~>" compartment="c" initialAmount="0" constant="false"/>
{{ [x]:[t™ yl:[t™ al{t~*}" compartment="c" initialAmount="1" constant="false"/>
<species i [x]:[t™ y1:[t~ al:&lt;a>[t~]" compartment: initial Amoun onstant="false"/>
<species id="s_id14" name="[x]:[t" y]{t~*}:[a t**]" compartment="c" initialAmount="0" constant="false"/>
1t yl:&dt;y=[t~]:[a t~]" compartment="c" initialAmount="0" constant="false"/>
Ht~* 3y t~]:[a ©~]" compartmen " inith "false”/ >
[x t~]:[y t~]:[a t~]" compartment="c constant="false"/>
&lt;x>" compartment: initi
&lt;t™ y>" compartment="c" il
< [listOfSpecies>
<listOfReactions>
<reaction id="r_id20" reversible="false">
<listOfReactants>
<speciesReference species="s_id3"/>
<speciesReference species="s_id0"/>




Simulation

- Deterministic
- Stochastic (Gillespie)
- Probabilistic (CME)

- Linear Noise Approximation g
T




Compilasion | Simulation Analysis

Graph Test PRISM Visuslise

INITIAL STATE:

(1)
(1)




Modelchecking
- Export to PRISM probabilistic modelchecker

Z
=
[::]
£
[=]
=4
(-

0.5

1.0 1.5 2.0
T (s) [x 1074]

2.5

3.0

====Terminate
Error

—Success

JOURNAL
ecbusto-ip

e INterface

Design and analysis of DNA strand
displacement devices using probabilistic
model checking

Matthew R. Lakinl:3:7, David Parker?:”, Luca Cardellil,
1,

Marta Kwiatl and illip:




Verification

- Quantitative theories of system equivalence anad
approximation.

CONTINUOTUS MARKOVIAN LOGICS
AXTOMATIZATION AND QUANTIFIED METATHEORY




Related Work Supporter by our Tools

3 JUNE 2011 VOL 332 SCIENCE 368 | NATURE | VOL 475 | 21 JULY 2011
Scaling U p Digita| Circuit Neural network computation with DNA strand
displacement cascades

co mp Utatl Dn Wlth D N A Stran d Lulu Qian’, Erik Winfree'>* & Jehoshua Bruck**
Asimple DNAmotit | [ A DNA artficial neuron Atour-neuron DNA associative memory
Displacement Cascades
: =

00110 s Tho st (3

Lulu Qian® and Erik Winfree®?*

Mumber of molecules

Square root of a 4-bit number Associative memory




Algorithm Execution

A wetlab pipeline for Molecular Programming




Output of Design Process

- Domain structures

- (DNA sequences to be determined)

“Ok, how do |
run this for real”




From Structures to Sequences

nucleic acid package

Design

www.nupack.org

DSD Structure “Dot-Paren” representation

Nucleic acid type: © RNA @ DNA Temperature: °C Number of designs: [1 [+]

Target structure: [¢¢¢¢ e

Output Sequences Thermodynamic

.
Ensemble Normalized ~ GC content  Sequence Syn t h e S I S
defect (nt) ensemble (%)

defect (%)
02 03 575

e b
AA+GCGAUCARGCCCCUCUU .
UUUCC+GGGCUUGAUCGCGG
GUAUCGCAGCUGCGC
/]
Ok, where do |

buy these?”

Augeqoid wnuayinba




@\ "DNA Synthesis”

dna synthesis Search |

About 8510,000 resutts (0.24 seconds)

» Custom DNA Synthesis

www.Biomatik.com High Quality Custom Gene Synthesis, Best Price Guaranteed! Get A
Quote.

Order Gene at GenScript

www_GenScript.com $0.2%bp. Any Gene in ANY Vector Proven increase protein
BXpression

Gene Synthesis $0.35/bp

www_epochlifescience.com Dependable Semvice @ Low Price: Come on Down and Save
Your Budgets!

DNA synthesis - Wikipedia, the free encyclopedia 7z

DNA synthesis commanly refers to: DMA replication - DNA biosynthesis (in vive DNA
amplification); Polymerase chain reaction - enzymatic DNA synthesis (in ...
en.wikipedia.org/wiki/DNA_synthesis - Cached - Similar

DNA replication - Wikipedia, the free encyclopedia 77
DNA replication, the basis for bi al inheritance, is a fundamental ...
- Cached - Similar

s - May 24
s lodifications. Purifications. Gene
COligos ...




From Sequences to Molecules

- Copy&Paste -
fr O m n U p a CI( INTEGRATED DNA

|-*Products. | » Order.| » Support | * Services | * SciTools

Order Oligos

Change Form: 1 Bxpand to this = pley [ paste @l

many items

25 nmole DNA Oligo= 15-60 100 nmole DNA oligo= 10-90 bases 250 nmole DNA oligo= 5-100 bases

S pmolz DNA oligo=  5-50 bases 10 ymole DNA olige=  5-50 bases
4 nmole Ultramer DNA Oligo=60-200 bases  BAGE Ultramer DNA Oligo =60-200 bases

ADD TO ORDER
Sequence Name

S ADD TO WISH LIST
5'-ACT GCA CCA TAA GCA ACT T

Preparative

| LabReady (more detail} €2,82 EUR

Customized Labels (more
detail}

Stock IDT Label FREE ~




Molecules by FedEx

Custom
Oligonud
Synthesis

Innovation and

"Ok, how do |







Execute (finally!)

- Fluorescence is your one-bit ‘print’ statement




Liamn




Debugging

y Acore dump 18 29 3R 4956 78910‘11121‘3‘143

sl it
. .-!'l"".ri

40
0
0

Calibration
scale

S

Various processing stages




Delivery!

Engineering Entropy-Driven Reactions and
Networks Catalyzed by DNA

David Yu Zhang, et al.

Science 318, 1121 (2007);

DOI: 10.1126/science. 1148532
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Fun Applications




RNA Rewiring

- Using RNA gates to detect, intercept, and replace
messenger RNA

- to "hotwire" cells without changing their genetic code
- there is a similar natural process called RNA Interference,

used by cells to fight viruses




Cell Staining

- Using Hybridization Chain Reaction

- to simultaneously stain tissues in multiple colors

http://www.moleculartechnologies.org/




|_. C ‘ h | Scientists Sew Genetically
|Ve Ot |ng Modified E. Coli into Living

Clothing

Harnessing the hygroscopic and biofluorescent
behaviors of genetically tractable microbial cells to
design biohybrid wearables

Wen Wang'-2, Lining Yao?, Chin-Yi Cheng®3, Teng Zhang*, Hiroshi Atsumi®, Luda Wang“, Guanyun Wang?, Oksana Anilionyte...

+ See all authors and affiliations




Hacking Yoghurt

Tuur van Balen - Hacking Yoghurt
- genetically modify your yoghurt in your own kitchen

> Ml o) 7:29/733

https://www.youtube.com/watch?v=Co8NOnErrPU




ne IGEM Competition NG
'he Hackaton of Synthetic Biology

The International Genetically Engineered Machine (iGEM) competition is a worldwide synthetic
biology competition that was initially aimed at undergraduate university students, but has since
expanded to include divisions for high school students, entrepreneurs, and community laboratories,
as well as 'overgraduates'. https:/en.wikipedia.org/wiki/International_Genetically Engineered_Machine

- Don't like how E. coli smell? Make them smell like bananas!
- Fruit freshness detector

+ Gold mining bacteria in Ghana

- etc.




Markets
Scientific Discovery

Molecular Computability




Synthetic Biology Market

Annual revenue from GMOs in the US
exceeds $324Bn

i i N Kets $1B
BID|DgICS ew mar$ets $1
éBiofuels 9.7B
$91 B / Food and ag $12B

. Biologics feedstocks $16B
Industrial

>$105B

Biochemicals $66B

Source: Rob Carlson, Nature Biotechnology, 2016

33 Programming Biology companies
raised $900M in 2016

Intellia Therapeutics
Ginkgo Bioworks
Editas Medicine
Twist Biostience
Autolus

Boit Threads
Vedanta Biostiences
Ambrx

Synlogic

Modern Meadow
Cell Design Labs
Calysta

Caribou Bioscignces

!?F?i-i‘a Qs‘mm“ eadltas TwisT Autelus O?ﬁ;l::ud;.
Mveeas Ambrx syrioge [Gtedsrn oo CALYSTA
RFARIBOY R science Agrivida A mo g% p e
BT Synth®rx .%Ipu_’l‘f.rfs ,\. lewaor, aco?;ava Eﬂljl:ll:n[!
ELEMENTAL = Mefabolix G Si=acEs ©y st

Grusto aviies TAXA €@lta

Pivat Bio
Global Bioenergies

Sphere Fluidics
Teewinat Life Sciences
Ecovative

Enobrag

Cxford Genetics
Elemental Machines
Metabolix

Deskiop Genstics
BioBots

TAXA

Alta Biostience
CustoMem

il 30,000,000 40,000,000 90,000,000 120,000,000

Source: SynBioBeta.com, 2016
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Some (0ngoing) successes stories

JUNO
THERAPEUTICS
 ($4Bn) Reprogram a patient’s own blood cells to

recognise and destroy specific cancers.
* 90% remission in terminally ill leukemia patients

GINKGO
BIOWORKS™

THE ORGANISM COMPANY

* Supply custom organisms for bio fabrication

A AMYRIS

+ ($300M) Reprogram yeast to synthesise chemicals
 Antimalarial drug in production (with Sanofi)
+ Jet fuel used in commercial flights (with Total)

@ \Odern
= Meadow

» Grow meat, leather ($100Bn market) in the lab
* Proofs of concept already in production
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Scaling up Science

Developing these markets requires dramatically
scaling up scientific discovery

Because we know so very little about biology
And there are way too many proteins to study!

Fortunately, a new virtuous circle is developing.

The Interactome

1,443 documented
interactions

Homo sapiens Gut microbiome
19 proteins 100,000 9 million unique
proteins genes

PMID: 19025396
PMID (image): 19815776

Human immunodeficiency virus type 1, human protein
interaction database at NCBI.

10” interactions

Homo sapiens
100,000
proteins




Molecular Programming and

Scientific Discovery

As we learn to program physical and biological matter
the process of scientific discovery will be transformed

Develop Make Think of
General Observations , Interesting
1 What do | i 7 1
Theories Thi s b fromonw's Questions
General thearies must be own experiences, thoughts Why does that \
consistent with most or all ar reading. pattern ocour ?
vailable data and with other
current theories. ’
Refine, Alter,
Expand or Reject Formulate
Gather Data to /v Hypotheses Hypotheses
Test Predictions B
Relevant data can come from the phencmenon 1 am
literature, new chservations ar l wendariy] shout?
formal experimants. Thorough
tasting qul_JIras raplication o
vartly camili; Develop Testable /
Predictions
¥ my hypothesis is correct,
then lexpect a, b, c. ...

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

136



Discovery through Observation

The Scientific Method ~ 1638

biscorst |
DIMOSTRAZIONI

MATEMATICHE

Appto gl

-

1 l
consisient with most or il
avalistle data and with other
current thearnes.

— This can be from one's ———,
own experences. thoughts, .
Deve|op \ of readig Think of
eneral Theories — Interesting
Ganaral haories mus! be Quastlons

/ Maka

What do | see in nature?

\

)
Wiby does et /
padiern oucur?
/Raﬂne Alh

(Expand, or Raject |

Hypothes N :
ather Data to ormulale\
[ Test Predictions Hypotheses
¥ Recemmwmmo from the | ‘Whast are the general )
B Wtaeaturs, new obsarvations, of Gaases of the /
] T formal expaniments  Thomgh phencmenon | am
1 T S Iiﬂﬁ) r::u';n’:r:':ulm w0 wandefing sbout?
H el Th— Develop I
S im
i F lo|; Testable
E Predictions
A K f revy hypotesis s cmm
] l e | enpect o, u < o]
c ¥ I —— '\‘
I X i Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside. P <
X
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Discovery through Collaboration

The Scientific Method ~ 2000’s

i What do | see in nature? '
e This can be from one's —,
g Deve|op Q ‘:' ey ”’/&/" Think of _’},
~{General Theories Interesting

| l
Genral Taaries must be Questions /

consistent with most or ail i
svalistie data and with other Wby does Tt (T8
current thearies. petinen ovcur? =

>_ e /Raﬂne Alh

(Expand, or Raject |

Hypothes ;
ather Data to Formulale
[ Test Predictions ypotheses

1 protein = 30 people / 30 years T g e e ot | et e the geners

. e "\ | “itersture, new obssrvations, or ramualm
f X& . "?I'l.“l,’..‘.’;’u?.'."'.’.nl:‘"t?:‘.f wonde m,mn
M - o < warify results
Humans have >100,000 proteins ® e - Deulop e
2w . . e Testable 69'
-Q\\'_\ . : A= Pred:ctuons :J.':1 + T2 =Y
DN et 0= Q.:W:“" 2

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.
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Discovery through closed-loop Automation

High Throughput

T h e S C | e ﬂtlfl C M et h Od ~ 2 O 2 O IS sequencingj‘r g 2

1 Program

while (true) {
predict();
falsify();

Make e NS
)/ Observations = 3 \
n be Fomaney e // Y
Develop QY" Pt vt ""’”’Q/ Think of /
General Theories ; ,* Interesting
\  commienmmoca | Questions
\ alatie n u u m % mzo;;m / \\

Q /Refine Alter\ [ \
(Expand or Re’“” Robot scientist becomes

N Hypotheses/ first machine to discover
Gather Data to > Formulate \ new scientific knowledge
Test Predictions Hypothgsgs e s
o '\ e :  F el i

Develop \

Testable
Predictions

my vcw-u s s coerect
\rn\ npecta. b, c /

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

|
f
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Scientific Method vs. Engineering Method

Engineering Scientific

Method Method
Model Model
A A

S > > of
s 3. ] %)
= = S 5
@ ) S =
S o a S
() > ¢ 5

%
¢

Direct Engineering Reverse Engineering
(Synthetic Biology) (Systems Biology)
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Scientific Method vs. Engineering Method

Engineering Scientific
Method Method

Model L Model

New Construction
New Discovery

—————>

€mm—————

b

System
\=a\~\“-

Direct Engineering Reverse Engineering
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Scientific Method vs. Engineering Method

Engineering Scientific
Method Method
“—“u’t\'\” « AW \'S\Nro“%,
Model Model

New Discovery

New Construction

€mm—————

Direct Engineering Reverse Engineering
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Scientific Method vs. Engineering Method

When the models and the 1 .
e srebor oo Combined Nowwe are i
X either N
¢ Lo erthe Method yan terrltory
. ‘.0“9_:’
The model is always ) N\Na\ﬁ
somewhat wrong in its :  Model ¢ \
predictions [ \ \
S < o
= D) - & The Truth is not something
= = 3 = you ever “have” but
@ =] 2 2 something you “maintain”
o o o o
O 5 =
The system is always \ )
somewhat faulty in its \
execution
(we need to "instrument the The models that we The systems that we build (we need to "instrument the
model": change what we believe) discover should be should be suitable for ~ system": change what we study)
suitable for construction discovery
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Theory of Molecular Computability

ThOS@ Siﬂg'@ C|OS€d-|OOp programs run "/’)Glf[l’? the Computel’" (the Shaping bacterial population behavior through
computer interfaced control of individual cells

controlling software) and “half in the organism" (the gene Network). e s B e o

In particular, we need to understand biochemical algorithms and
computability from a software engineering point of view.

Today, we fundamentally understand how to program digital computers
- Classical theory of algorithms and computability

Do we fundamentally understand how to program molecular systems?
- A different theory of algorithms and computability
(still being developed)
- To design new systems and understand what's there
- How biological systems can, might, and do compute
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Programming with chemical reactions

X+Y > /+W

- A fundamental model of kinetics (i.e. “behavior”) in the
natural sciences

- A fundamental mathematical structure, rediscovered in
many forms

- Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols,

: Amprogramming language (coded up in the genome) by
which living things manage the processing of matter and
information

14




Chemical Reaction Networks:
Discrete-State Semantics

Programming Examples



Discrete (-state) Semantics

- A state of the system is a finite multiset of molecules; each molecule belongs to
one of a finite set of species.

- A fixed finite set of reactions over species performs multiset-rewriting over those
states.

- Reactions have rates: the state space is a Continuous-Time Markov Chain
(a labeled transition system where labels are transition speeds).

+ Hence the semantics is discrete and stochastic = atomic theory of matter.

- |ssues:

- Computing Kinetics (distribution of outcomes over time)
- Analyzing mean, variance, and other moments
- State reachability
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Programming Examples

spec program
Y = 2X X->Y+Y
Y= |X/2] X + X ->Y
Y = X1+ X2 X1->Y
X2 ->Y

Y ;= min(X1, X2) X1+ X2 ->Y




Advanced Programming Examples

spec program

Y := max(X1, X2) X1->L1+Y max(X1,X2)=
X2 o> 12 + VY (XT+X2)-min(X1,X2)
LT+ L2 ->K (but is not computed
Y +K->0 ‘sequentially”)

Approximate Majority

(X,Y) := X+Y->Y+B
if X=Y then (X+Y, O) Y+ X->X+B
if Y>X then (0, X+Y) B+ X->X+X

B+Y->Y+Y
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What can we compute this way?

- The semilinear functions

- Those whose graph is a finite union of linearly-bounded regions

f(x1, x2)=x2 if x1>x7 and 0 otherwise f(x) = X?

TTT——— 10

Ol oy —1o0o <

1 23 45X
(ng-(1,1,0)+ ng - (0,1,0) | n1,nz €N} U not semilinear
{(1,0,0) + ny-(1,1,1)+ nz-(1,0,0) | n1,nz2 €N}

Chen, Doty, Soloveichik, "Deterministic Function Computation with Chemical Reaction
Networks" (2013)
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But also Register Machines (almost...)
i INC Ry; JMP j DC] -> R1 4+ PCJ
i DEC R;; JMP ] DCI + R1 -> PCJ

i: IF R,>0 {INC Ry; JMP j} DCI 4+ RZ -> RZ 4+ R1 4+ PCJ

it IF R,=0 ... ??? Whatever trick we use will have some error

- Turing-complete up to an arbitrarily small error

- The error bound is set in advance uniformly for any computation of arbitrary length
(because we cannot know how long the computation will last), and the machine will
progressively “slow down” to always stay below that bound.

m David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, "Computation with Finite Stochastic Chemical Reaction Networks".

[ Natural Computing, (online Feb 2008), or Technical Report: CaltechPARADISE:2007.ETR085: .pdf |




Chemical Reaction Networks:
Continuous-State Semantics

Programming Examples



Continuous (-state) Semantics

- A state of the system is a (real-valued) concentration for each
species.

- A fixed finite set of reactions act (continuously) on such states.

+ The Law of Mass Action describes how the system evolves in
continuous time.

- Each reaction acts with a “speed” that is proportional to the product of the concentrations on its left-hand-
side, multiplied by its rate.

- Each species concentration increases or decreases according to the sum of the effects of all the reactions.

- Issues:
- Computing Kinetics (outcomes over time)
- Analyzing Equilibria (steady-states, etc.)
+ Model Reduction
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Sniffers, buzzers,

toggles and blinkers

« Sigmoidal response (buzzer)
* Perfect adaptation (sniffer)

* Positive feedback

- —Mutual activation (one way switch)

+ — Mutual inhibition (toggle switch)

* Negative feedback

- —homeostasis
- — oscillations (Blinker)

Tyson JJ - Sniffers, buzzers, toggles and blinkers.
Curr Opin Cell Biol. 2003 Apr;15(2):221-31.

http://www.inf.ed.ac.uk/teaching/courses/csb/CSB_lectu
re_dynamic_signalling_and_gene_expression.pdf
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Making Waves

-How to program a symmemc wave?

_ o A+B ->B+B
e B+C -> C+C
cH dA/dt = -AB
% dB/dt = AB-BC

time

Synthesizing programs such as this from specifications

Syntax-Guided Optimal Synthesis for Chemical Reaction Networks. Luca Cardelli, Milan Ceska,
Martin Franzle, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Max Whitby.
Computer Aided Verification, CAV'17.
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Making Clocks

- Large literature going back to Lotka in the 1920°
- Minimal oscillators still a topic of interest

+ How many species? How many reactions? How symmetrical?
- How sensitive to parameters?
- Free running or self-regulating (limit-cycle)?

- Ex: one built with DNA strand displacement

4
12
1
08
06
04
02
% o5 1 15 p 25

A+B ->B+B
B+C -> C+C
C+A -> A+A

Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David
Soloveichik, "Enzyme-free nucleic acid dynamical systems".
[ Preprint: bioRxiv: .pdf paper and .pdf supplementary information ]
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Avoiding Clocks

- Muller C-Element

- A Boolean gate

SO

- When x = y then z = x =y, otherwise z remembers its last state.

Xhi Yhi

1

=2, 22,
Zio — Zmde— Zhni

ylo Xlo

Core C-Element
(AM with external inputs)

Chemical Reaction Network Designs for Asynchronous Logic Circuits.

Luca Cardelli, Marta Kwiatkowska, Max Whitby.
Natural Computing Journal.

| &

Full C-Element with output
rectified by another AM
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Steady-State Arithmetic

Copy  XI:=[A

A % avwm

x &,

A11
A = A4+X,

Add [X] := [A]+[B] Sug R

pd
B — B+X,

Subtract [X] = [A]-[B] (or O) j—kr{f\—k.» A B ayx, x B

9 = B B paw, X+y 2.
: . ArE 5 AiBrx,
Multiply  [X] := [AJ[B] &

Divide [X] := [A]/[B] ; g A% A+vx,

B+ x Bp

Root [X] := sqrt[A] AN 4 B a4x,

k lrkz ko
' X+X — .

H. ]. Buisman et al. Computing Algebraic Functions with Biochemical Reaction Networks
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Computing Algebraic Functions

H. J. Buisman et al. Computing Algebraic Functions with Biochemical Reaction Networks

4 A
44C —~
B B+ VB2 _34C 2
A; . T 24

- J_'B+m+

B
—é—’ B— VB?—44C —~

Figure 8. The quadratic formula for finding (the positive real parts of) the roots of ax” — bx + ¢ = 0. Each of the species in
the network has been given a name that represents its steady state concentration. The output species of the computation
are highlighted with a black border.
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Solving Algebraic Equations

T/o=¢—1
Golden Ratio (-conjugate)
/+Y->Y+ W Init x=y=w=1.0
W+ X ->X+ 7 Initz = 0.0
all rates 1.0

/[ +W->W+ W

Then (we can easily show analytically by the 3
mass action ODEs that) at steady state: 0.0 k

Golden Ratio
Y

T/w=w-—1 =

hence W = (@ = 0.61803... “_

All algebraic equations can be solved [Ref] U{';",L :




Antithetic Integral Feedback Controller

Antithetic Integral Feedback Ensures Robust
Perfect Adaptation in Noisy Biomolecular Networks

Corentin Briat,"2 Ankit Gupta,’:? and Mustafa Khammash'*
Department of Biosystems Science and Engineering (D-BSSE), ETH-Zirich, Mattenstrasse 26, 4058 Basel, Switzerand

¢ B
X
0, [5) 7 large J
, Z:0 > setpoint -> -
¢ v—< d) X .
. &> ¢ T
277 [ x, ) m\: ©) > O
2 j :
6 S 220 !
o %
é
(ranscriptionl Zl. . T Sma”

il 2
antisigma70 67/ g ranseription of X setpoint -> .
[ sigma-70 1
\ dependent
G @ \ gene 2 housekeeping o
inactive M genes
[ ¢
sigma-70 @‘—> B

¢ S A j’

The difference between Z, and Z,
is proportional to the integral of the error.
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From Electrical Circuits to Chemical Networks

Take any textbook electric circuit:

And algorithmically produce a Chemical Reaction Network :

(or, technically, a linear Differential Algebraic Equation system)

o r—vVW

+ -

>

That does the same exact thing:

1/ cutoff freq.

90° phase shift

2T sec. 45‘0 variable differences

(i =1 =y = Vi) = = V)
1 in attenuation
O\ AT

20

Vi:/i+\.v+

out

@ )

Vin \l/' vout

g

From Electric Circuits to Chemical Networks
Luca Cardelli', Mirco Tribastone?, and Max Tschaikowski2

"Microsoft Research and University of Oxford
2IMT School for Advanced Studies Lucca
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Finally, Some Bad Programs
X->Y

Violates thermodynamics.
(Assume there is a tiny reverse reaction.)

X ->X+ X

Violates conservation of mass.
(No biggie, assume there is inflow/outflow.)

X+ X->X+X+X

Violates finite density.
(This is really bad.)

x(t)=c, €
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Chemical Reaction Networks:
What do they mean?



Wait, there are two semantics?

- In a given volume are there

- (A) A finite number of molecules? or
- (B) A continuous concentration of <something>?

- Does it make a difference?

+ Related by Avogadros number: #molecules = concentration * Avogadro

- But finite density issues: concentration is not unbounded in the discrete model:
the program 2X -> 3X will stop when there is no more “space” for molecules
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Are these programs equivalent? (YES!)

AM with 4 reactions AM with 3 reactions

X+Y->Y+B X+Y->B+B
Y+ X->X+B B+ X->X+X
B+ X->X+X B+Y->Y+Y
B+Y->Y+Y

Same identical ODEs => EQUIVALENT

dx/dt = -XY + BX
dY/dt = -YX + BY
dB/dt = 2XY - BX - BY




Are these programs equivalent? (NO!)

- With 3 reactions:

- {X, Y} -> {B, B} in one step, then stop

- With 4 reactions:

- {X, Y} -> ({X, By or {Y, B}) -> ({X, X} or {Y, Y}), then stop
- (no {B, B} final state)

X+Y->B+B
B+ X->X+X
B+Y->Y+Y

AR == N R B
Y+ X->X+B
B+X->X+X
B A

- Different final states => NOT EQUIVALENT

- The 3-reaction version fails the requirement that in the end one of the outputs

should be the sum of the inputs.
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Who is right?

- #7: Believe the discrete nature of atoms (and cells):
there are no continuous concentrations

- #2: Believe the analytical power of calculus:
a useful approximation in appropriate conditions

- Biologists have (quite recently) realized that #1 must be taken
seriously, because of advances in laboratory equipment that allow
examining single molecules and single cells.
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Final Remarks




A Briet History of DNA

Turlng Machine, 1936 Structural DNA Nonotech, 1982

DNA, -3,800,000,000

Computer Systematic Systematic Molecular
manipulation manipulation

programming of information of matter programming
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