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Objectives
 The promises of Molecular Programming:
 In Science & Medicine
 In Engineering
 In Computing

 The current practice of Molecular Programming
 DNA technology
 Molecular languages and tools
 Example of a molecular algorithm
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Molecular Programming:
The Hardware Aspect

Smaller and smaller things can be built
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Smaller and Smaller
First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit
Jack Kilby, Sep. 1958.

Single molecule transistor
Observation of molecular orbital gating 
Nature, 2009; 462 (7276): 1039

50+ years later
Jan 2010 25nm NAND flash
Intel&Micron. ~50atoms

Jun 2018 7nm (54nm pitch)
TSMC, Intel, Samsung, GlobalFoundries - mass production

Molecules on a chip
Placement and orientation of individual DNA shapes on lithographically 
patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

Very few Moore’s cycles left!
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Moore’s Law

Race to the Bottom
Moore’s Law is approaching the single-
molecule limit

Carlson’s Curve is the new exponential 
growth curve in technology

In both cases, we are now down to molecules

Oxford Nanopore
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Building the Smallest Things

www.youtube.com/watch?v=Ey7Emmddf7Y

 How do we build structures that are by definition smaller than your tools? 
 Basic answer: you can’t. Structures (and tools) should build themselves! 
 By programmed self-assembly
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Molecular IKEA
 Nature can self-assemble. 

Can we?

 “Dear IKEA, please send me a chest 
of drawers that assembles itself.”

 We need a magical material where the pieces are 
pre-programmed to fit into to each other.

 At the molecular scale many such materials exist…

http://www.ikea.com/ms/en_US/customer_ser
vice/assembly_instructions.html

Add water
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Wikimedia

Programmed Self-Assembly
Proteins DNA/RNA

Membranes
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Molecular Programming: 
The Software Aspect

Smaller and smaller things can be programmed
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We can program...
 Information
 Completely!

Computing

Information

Information
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We can program...
 Forces
 Completely! 

(Modulo sensors/actuators)

Sensing

Actuating

Computing
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We can program...
 Matter
 Completely and directly! By self-assembly.

 Currently: only DNA/RNA.

 But DNA is an amazing material

Constructing Actuating

Sensing

Computing

It's like a 3D printer without the printer!
[Andrew Hellington]
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Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

G-C Base Pair
Guanine-Cytosine

T-A Base Pair
Thymine-Adenine
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• DNA in each human cell:
 3 billion base pairs
 2 meters long, 2nm thick
 750 megabytes
 folded into a 6mm ball,

140 exabytes (million terabytes)/𝑚𝑚3
=> all the data on the internet fits in a shoebox!

• A huge amount for a cell
 Every time a cell replicates it has to

copy 2 meters of DNA reliably.
 Or else!

• DNA in human body
 10 trillion cells
 133 Astronomical Units long
 7.5 octabytes

• DNA in human population
 20 million light years long

Andromeda Galaxy
2.5 million light years

DNA wrapping into chromosomes

Structure
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Function

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel processing)

In Bacteria: 1000 nucleotides/second 
(higher error rate)

DNA transcription in real time

RNA polymerase II: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.
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What is special about DNA?
 There are many, many nanofabrication

techniques and materials

 But only DNA (and RNA) can:
 Organize ANY other matter [caveats apply]

 Execute ANY kinetics [caveats: up to time scaling]

 Assemble Nano-Control Devices
 Interface to Biology

H.Lodish & al. Molecular Cell Biology  4th ed.
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Organizing Any Matter
 Use one kind of programmable

matter (e.g. DNA).
 To organize (almost) ANY 

matter through it.

"What we are really making are tiny DNA circuit boards 
that will be used to assemble other components." 

Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006) 

+

6 nm grid of 
individually 
addressable 
DNA pixels
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Executing Any Kinetics
 The kinetics of any finite network of chemical reactions, can be 

implemented (physically) with especially programmed DNA 
molecules.

 Chemical reactions 
as an executable
programming
language for
dynamical systems!

2018-06-26
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Building Nano-Control Devices
 All the components of nanocontrollers can already be built entirerly and solely 

with DNA, and interfaced to the environment

Sensing

Constructing Actuating

Computing

DNA Aptamers

DNA Walkers & TweezersSelf-assembling DNA Tiles

DNA Logical Gates
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Constructing

Sensing

Constructing Actuating

Computing
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Crosslinking
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Crosslinking
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Crosslinking
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Crosslinking
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Crosslinking
In nature, crosslinking is deadly 
(blocks DNA replication).

In engineering, crosslinking 
is the key to using DNA as 
a construction material.
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DNA Tiling
crosslinking

4 sticky ends
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2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars
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3D DNA Structures

AndrewTuberfield
Oxford

Ned Seeman
NYU

3D Cyrstal

Tetrahedron
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CADnano

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shih
Harvard https://www.youtube.com/watch?v=Ek-FDPymyyg
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DNA Origami

Paul W K Rothemund 
California Institute of Technology

Paul Rothemund’s “Disc with three holes” (2006)

Folding long (7000bp) naturally occurring (viral) ssDNA
By lots of short ‘staple’ strands that constrain it

PWK Rothemund, Nature 440, 297 (2006) 

Black/gray: 1 long viral strand (natural)
Color: many short staple strands (synthetic)
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DNA Circuit Boards
 DNA origami are arrays of uniquely-

addressable locations
 Each staple is different and binds to a unique location on 

the origami
 It can be extended with a unique sequence so that 

something else will attach uniquely to it.

 More generally, we can bind “DNA gates” 
to specific locations
 And so connect them into “DNA circuits” on a grid
 Only neighboring gates will interact

Some staples are 
attached to “green blobs” 
(as part of their synthesis)
Other staples aren’t

Dalchau, Chandran, Gopalkrishnan, Reif, Phillips. 2014 31



Information-rich physical structures can be used for storage.

DNA has a data density of 140 exabytes (1.4×1020 bytes) per 𝑚𝑚3

compared to state-of the art storage media that reaches ~500 
megabytes (5×108 bytes) per 𝑚𝑚3

DNA has been shown to be stable for millions of years

DNA Storage (Read/Write)

We have machines that can read (sequence) and write 
(synthesize) DNA. The Carslon Curve of “productivity” is 
growing much faster than Moore’s Law.

Cost of sequencing is decreasing rapidly ($1000 whole human 
genome), while cost of synthesis is decreasing very slowly.
[Rob Carlson, www.synthesis.cc]
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Sensing

Sensing

Constructing Actuating

Computing

33



Aptamers

Artificially evolved DNA molecules 
that stick to anything you like 
highly selectively
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Pathogen Spotlights
• DNA aptamer binds to:

 A) a pathogen
 B) a molecule our immune system (when allergic) 

hates and immediately removes (eats) along with 
anything attached to it!

Kary Mullis (incidentally, also 
Nobel prize for inventing the 
Polymerase Chain Reaction)

• Result: instant immunity
o Mice poisoned with Anthrax plus 

aptamer (100% survival)
o Mice poinsoned with Anthrax 

(not so good)
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Transcriptional Sensors
"One of the goals of synthetic 
biology is to develop 
programmable artificial gene
networks that can transduce 
multiple endogenous molecular 
cues to precisely control cell 
behavior. "
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Actuating

Sensing

Constructing Actuating

Computing
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DNA Tweezers

Hybridization

Strand 
Displacement
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DNA Walkers
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Polymerization Motor
Rickettsia (spotted fever)
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Hybridization Chain Reaction
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Curing

Sensing

Constructing Actuating

Computing
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Computational Drugs

Simplified (omitting the “no” pathway)

• An automaton sequentially reading the string PPAP2B, GSTP1, PIM1, HPS 
(known cancer indicators) and sequentially cutting the DNA hairpin until a 
ssDNA drug  (Vitravene) is released.

Based on restriction enzymes

Vitravene (GCGTTTGCTCTTCTTCTTGCG)
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Interfacing to Biology
 A doctor in each cell

~2002 44



Molecular Programming: 
The Biological Aspect

Biological systems are already 
‘molecularly programmed’

45



H.Lodish & al. Molecular Cell Biology  4th ed.

Machine
Membrane Protein

Machine

Gene
Machine

Regulation

Metabolism, Propulsion
Signaling, Transport

Confinement, Storage
Bulk Transport

Enact fusion, fission

Hold receptors,
host reactions

Nucleotides

Aminoacids Phospholipids

(     )Glycan
Machine

Sugars

Surface and 
Extracellular Features

Abstract Machines of Biology
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Nucleotides

Aminoacids Phospholipids

Gene
Machine

Protein
Machine Machine

Membrane 

P Q
C

A B
x

y

Molecular Interaction 
Maps

Gene Networks

Transport Networks

Biological Languages
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But ...
 Biology is programmable, but (mostly) not by us!

 Still work in progress:
 Gene networks are being programmed in synthetic biology, but using existing ‘parts’
 Protein networks are a good candidate, but we cannot yet effectively design proteins
 Transport networks are being investigated for programming microfluidic devices that 

manipulate vesicles
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Molecular Languages
... that we can execute 

(more easily than what nature provides)
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Our Programming Language: Chemistry
 A Lingua Franca between Biology, Dynamical Systems, 

and Concurrent Languages

 Chemical Reaction Networks
 A + B r C + D (the program)

 Ordinary Differential Equations
 d[A]/dt = -r[A][B]  … (the behavior)

 Rich analytical techniques based on Calculus
and more recently on stochastic models
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Chemical Programming Examples

51

Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”: it is a form 
of concurrent computation)

specification program

Y := min(X1, X2) X1 + X2 -> Y

chemical reaction network
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How do we “run” Chemistry?
 Chemistry is not easily executable
 “Please Mr Chemist, execute me this bunch of reactions that I just made up”

 Most molecular languages are not executable
 They are descriptive (modeling) languages

 How can we execute molecular languages? 
 With real molecules? 
 That we can design ourselves? 
 And that we can buy on the web?
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Molecular Programming 
with DNA
Building the cores of programmable 
molecular controllers
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The role of DNA Computing
 Non-goals
 Not to solve NP-complete problems with large vats of DNA
 Not to replace silicon

 Bootstrapping a carbon-based technology
 To precisely control the organization and dynamics of matter and information 

at the molecular level
 DNA is our engineering material
 Its biological origin is “accidental” (but convenient)
 It is an information-bearing programmable material
 Other such materials will be (are being) developed
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Domains
 Subsequences on a DNA strand are called domains
 provided they are “independent” of each other

 Differently named domains must not hybridize
 With each other, with each other’s complement, with subsequences of each 

other, with concatenations of other domains (or their complements), etc.

x zy
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA 

single strand
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t

t
t

Reversible Hybridization

Short Domains

DNA double 
strand
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Long Domains

x

x
x

Irreversible Hybridization
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DNA Strand Displacement

Microsoft Research Outreach

Strand Displacement
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Strand Displacement

t x

xt

“Toehold Mediated”
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Strand Displacement

xt

Toehold Binding
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Strand Displacement

xt

Branch Migration
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Strand Displacement

xt

Displacement
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Strand Displacement

xt

x

Irreversible release
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t

Bad Match

x

x

y

zt
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t

Bad Match

x y

z
x
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t

Bad Match

x y

z
x
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xt

Bad Match

y

z

Cannot proceed
Hence will undo
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Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gate 
operation
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Transducer
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t a

xt t a t a x t y t a t

y t

Transducer xy

t x

Input
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Transducer xy

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!
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Transducer xy

x

t a

t t a t a x t y t a t

y t
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Transducer xy

t a

xt t a t a x t y t a t

y t

x t

Active
waste
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Transducer xy

xt t a t a x t y t a t

y t

x t
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Transducer xy

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.
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Transducer xy

t axt a x t y t a t

y t

x t

t
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Transducer xy

t a

a tt axt a x t y

y t

x t

t
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Transducer xy

t a

a tt axt a x t y t

x t

t
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Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).
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Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t
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Transducer xy

t y

t a

a tt axt a x y tt

Output

t
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Transducer xy

x

t y

t a

a tt axt a y tx t

Output

t
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Transducer xy

x

t y

t a tt axt a y tx t

Output
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Transducer xy

a x

t y

t a a tt axt y tx t

Output
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a x

t a a tt axt y tx t

Transducer xy

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

t y

Output
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Plasmidic Gate Technology
 Synthetic DNA is 

length-limited
 Finite error probability at each 

nucleotide addition, 
hence ~ 200nt max

 Bacteria can replicate 
plasmids for us
 Loops of DNA 1000’s nt, with 

extremely high fidelity
 Practically no structural limitations 

on gate fan-in/fan-out
Only possible with 
two-domain architecture
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Large-scale Circuits (so far…)
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Scaling up: DNA Circuit Boards

The first computational circuit boards made of DNA
https://www.microsoft.com/en-us/research/blog/researchers-build-nanoscale-computational-circuit-boards-dna
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Questions?
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BREAK
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Some kind of computation
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A Molecular Algorithm
Running something interesting with DNA

94



Approximate Majority Algorithm
 Given two populations of agents (or molecules)
 Randomly communicating by radio (or by collisions)
 Reach an agreement about which population is in majority
 By converting all the minority to the majority

[Angluin et al., Distributed Computing, 2007]

 3 rules of agent (or molecule) interaction
 X + Y → B + B
 B + X → X + X
 B + Y → Y + Y

“our program” 
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Surprisingly good (in fact, optimal)

 Fast: reaches agreement in O(log n) time w.h.p.
 O(n log n) communications/collisions
 Even when initially #X = #Y! (stochastic symmetry breaking)

 Robust: true majority wins w.h.p.
 If initial majority exceeds minority by w(n log n)
 Hence the agreement state is stable

Stochastic simulation of worst-case 
scenario with initially #X = #Y
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Circuit component X + Y 2B
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DNA Implementation of AM
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Carbon-based Computing
How to get there
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Action Plan
 Building a full software/hardware pipeline for a new fundamental technology 
 Mathematical Foundations [~ concurrency theory in the 80’s]

 Programming Languages [~ software engineering in the 70’s]

 Analytical Methods and Tools [~ formal methods in the 90’s]

 Device Architecture and Manufacturing [~ electronics in the 60’s]

 To realize the potential of Molecular Programming

 “With no alien technology” [David Soloveichik]

 This is largely a ‘software problem’ even when working on device design
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Chemistry as a Concurrent Language
 A connection with the theory of concurrency
 Via Process Algebra and Petri Nets

=

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics 
(Mass Action Kinetics)

Discrete-state Semantics
(Chemical Master Equation)

Nondeterministic 
Semantics

Stochastic
Semantics

Combinatorial 
Explosion
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Molecular Compilation

3-domain 
Signals

2-domain 
Signals

4-domain 
Signals

Strand
Algebra

Architecture

Petri
Nets

DSDIntermediate
Language

…

Boolean
Networks

“High-Level”
Language

Chemical Reaction 
Networks

Devices

Sequences

Gates

Programs

Molecules
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Towards High(er)-Level Languages
 Gene Networks

 Synchronous Boolean networks
 Stewart Kauffman, etc.

 Asynchronous Boolean networks
 René Thomas, etc.

 Protein Networks
 Process Algebra (stochastic p-calculus etc.)
 Priami, Regev-Shapiro, etc.

 Graph Rewriting (kappa, BioNetGen etc.)
 Danos-Laneve, Fontana & al., etc.

 Membrane Networks
 Membrane Computing

 Gheorghe Păun, etc.
 Brane Calculi

 Luca Cardelli, etc.

 Waiting for an architecture to run on...
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A platform for programming biology

Bayesian Inference;   Machine Learning

Domain 
Specific 
Languages 

Automation
& Analytics

Biological experiments as programs

Abstractions,
Compilers,
Verification

Programming Genetic Devices
(Molecular Systems Biology 2016)

Programming DNA
(Nature Nanotechnology 2013)

Reprogramming Cells
(Science 2014)

DNA 
Domains

DNA 
Sequences

DNA 
Biophysics

Genetic 
Circuit

Chemical Reaction 
Network

Continuous Time 
Markov Chain

Ordinary Differential 
Equations 

Partial Differential 
Equations

Symbolic Regulatory 
Network

Labelled Transition 
System

Cell 
Biophysics

InfrastructureLab robotics Microsoft Azure
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Algorithm Design
A software pipeline for Molecular Programming
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Development Tools
MSRC Biological Computation Group

Visual DSD
A Development 
Environment 
for DNA Strand
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A Language for DNA Structures
 Describe the initial

structures (not behavior)
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Compute Species and Reactions
 Recursively computed from

the initial structures
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Reaction Graph and Export
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Simulation
 Deterministic
 Stochastic (Gillespie)
 Probabilistic (CME)
 Linear Noise Approximation
 “JIT”
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State Space Analysis
CTMC
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Modelchecking
 Export to PRISM probabilistic modelchecker

112



Verification
 Quantitative theories of system equivalence and 

approximation.
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Related Work Supporter by our Tools

Square root of a 4-bit number Associative memory
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Algorithm Execution
A wetlab pipeline for Molecular Programming
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Output of Design Process
 Domain structures
 (DNA sequences to be determined)

“Ok, how do I 
run this for real”
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Thermodynamic 
Synthesis

From Structures to Sequences

DSD Structure

Output Sequences

“Ok, where do I 
buy these?”

www.nupack.org

“Dot-Paren” representation
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“DNA Synthesis”
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From Sequences to Molecules
 Copy&Paste

from nupack
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Molecules by FedEx

“Ok, how do I 
run these?”
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Add Water
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Execute (finally!)
 Fluorescence is your one-bit ‘print’ statement

Windows XP!
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Output
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Debugging
 A core dump

124



Delivery!
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Fun Applications
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RNA Rewiring
 Using RNA gates to detect, intercept, and replace 

messenger RNA 
 to "hotwire" cells without changing their genetic code
 there is a similar natural process called RNA Interference, 

used by cells to fight viruses
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Cell Staining

http://www.moleculartechnologies.org/

 Using Hybridization Chain Reaction
 to simultaneously stain tissues in multiple colors
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Live Clothing

129



Hacking Yoghurt
Tuur van Balen - Hacking Yoghurt
- genetically modify your yoghurt in your own kitchen

https://www.youtube.com/watch?v=Co8NOnErrPU
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The iGEM Competition 

The International Genetically Engineered Machine (iGEM) competition is a worldwide synthetic 
biology competition that was initially aimed at undergraduate university students, but has since 
expanded to include divisions for high school students, entrepreneurs, and community laboratories, 
as well as 'overgraduates'.  https://en.wikipedia.org/wiki/International_Genetically_Engineered_Machine

 The Hackaton of Synthetic Biology 

 Don't like how E. coli smell? Make them smell like bananas!
 Fruit freshness detector
 Gold mining bacteria in Ghana
 etc. 
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Markets
Scientific Discovery
Molecular Computability
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Synthetic Biology Market
Annual revenue from GMOs in the US 
exceeds $324Bn

33 Programming Biology companies 
raised $900M in 2016

Source: Rob Carlson, Nature Biotechnology, 2016

Source: SynBioBeta.com, 2016
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Some (ongoing) successes stories

• ($4Bn) Reprogram a patient’s own blood cells to 
recognise and destroy specific cancers.

• 90% remission in terminally ill leukemia patients

• ($300M) Reprogram yeast to synthesise chemicals 
• Antimalarial drug in production (with Sanofi)
• Jet fuel used in commercial flights (with Total)

• Supply custom organisms for bio fabrication • Grow meat, leather ($100Bn market) in the lab 
• Proofs of concept already in production
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Scaling up Science
Developing these markets requires dramatically 
scaling up scientific discovery

Because we know so very little about biology

And there are way too many proteins to study!

Fortunately, a new virtuous circle is developing.
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Molecular Programming and
Scientific Discovery
As we learn to program physical and biological matter
the process of scientific discovery will be transformed 

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.
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The Scientific Method ~ 1638

1 Guy

Discovery through Observation

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.
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The Scientific Method ~ 2000’s

1 Lab

1 protein = 30 people / 30 years

Humans have >100,000 proteins 

Discovery through Collaboration

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.
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The Scientific Method ~ 2020’s

1 Program

while (true) {
predict();
falsify();

}

Discovery through closed-loop Automation

Robot scientist becomes 
first machine to discover 
new scientific knowledge

Ross King

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.
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Scientific Method vs. Engineering Method

System

Engineering 
Method

Model

Scientific 
Method

C
on

st
ru

ct
io

n Verification D
is

co
ve

ry

Falsification

Direct Engineering
(Synthetic Biology)

Reverse Engineering
(Systems Biology)

System

Model
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System

Verification

Falsification

System

N
ew
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on

st
ru

ct
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n

N
ew
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is

co
ve

ry

Engineering 
Method

Scientific 
Method

Direct Engineering Reverse Engineering

Model Model

Scientific Method vs. Engineering Method
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System

Verification

Falsification

System

N
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 C
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Engineering 
Method

Scientific 
Method

Direct Engineering Reverse Engineering

Model Model

Scientific Method vs. Engineering Method
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C
on

st
ru

ct
io

n Verification D
is

co
ve

ry

Falsification

Combined
Method

System

Model

The models that we 
discover should be 

suitable for construction

The systems that we build 
should be suitable for 

discovery 

When the models and the 
systems are both too 

complex to either be the 
full Truth

The model is always 
somewhat wrong in its 

predictions

The system is always 
somewhat faulty in its 

execution

The Truth is not something 
you ever “have” but 

something you “maintain”

Scientific Method vs. Engineering Method

(we need to "instrument the 
model": change what we believe)

(we need to "instrument the 
system": change what we study)

Now we are in 
Feynman territory:
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Those single closed-loop programs run "half in the computer" (the 
controlling software) and "half in the organism" (the gene network). 

In particular, we need to understand biochemical algorithms and 
computability from a software engineering point of view.

Today, we fundamentally understand how to program digital computers
- Classical theory of algorithms and computability

Do we fundamentally understand how to program molecular systems?
- A different theory of algorithms and computability 

(still being developed)
- To design new systems and understand what's there
- How biological systems can, might, and do compute

Theory of Molecular Computability
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Programming with chemical reactions
X + Y  ->r Z + W

 A fundamental model of kinetics (i.e. “behavior”) in the 
natural sciences
 A fundamental mathematical structure, rediscovered in 

many forms
 Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols, 

…

 A programming language (coded up in the genome) by 
which living things manage the processing of matter and 
information 
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Chemical Reaction Networks:
Discrete-State Semantics

Programming Examples
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Discrete (-state) Semantics
 A state of the system is a finite multiset of molecules; each molecule belongs to 

one of a finite set of species.
 A fixed finite set of reactions over species performs multiset-rewriting over those 

states.
 Reactions have rates: the state space is a Continuous-Time Markov Chain 

(a labeled transition system where labels are transition speeds).
 Hence the semantics is discrete and stochastic = atomic theory of matter.

 Issues:
 Computing Kinetics (distribution of outcomes over time)
 Analyzing mean, variance, and other moments
 State reachability
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Programming Examples

Y := 2X X -> Y + Y

Y := X1 + X2 X1 -> Y 
X2 -> Y

Y := min(X1, X2) X1 + X2 -> Y

Y := X/2 X + X -> Y

spec program

148



Advanced Programming Examples

Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”)

(X,Y) :=
if XY then (X+Y, 0) 
if YX then (0, X+Y)

Approximate Majority

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

spec program
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What can we compute this way?
 The semilinear functions
 Those whose graph is a finite union of linearly-bounded regions
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But also Register Machines (almost…)
PCi -> R1 + PCj

PCi + R1 -> PCj

PCi + R2 -> R2 + R1 + PCj
???  Whatever trick we use will have some error

i: INC R1; JMP j

i: DEC R1; JMP j

i: IF R2>0 {INC R1; JMP j}

i: IF R2=0 …

 Turing-complete up to an arbitrarily small error
 The error bound is set in advance uniformly for any computation of arbitrary length 

(because we cannot know how long the computation will last), and the machine will 
progressively “slow down” to always stay below that bound.



Chemical Reaction Networks:
Continuous-State Semantics

Programming Examples
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Continuous (-state) Semantics
 A state of the system is a (real-valued) concentration for each 

species.
 A fixed finite set of reactions act (continuously) on such states.
 The Law of Mass Action describes how the system evolves in 

continuous time.
 Each reaction acts with a “speed” that is proportional to the product of the concentrations on its left-hand-

side, multiplied by its rate.
 Each species concentration increases or decreases according to the sum of the effects of all the reactions.

 Issues:
 Computing Kinetics (outcomes over time)
 Analyzing Equilibria (steady-states, etc.)
 Model Reduction
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Sniffers, buzzers, toggles and blinkers
• Sigmoidal response (buzzer)
• Perfect adaptation (sniffer)
• Positive feedback
 – Mutual activation (one way switch)
 – Mutual inhibition (toggle switch)

• Negative feedback
 – homeostasis
 – oscillations (Blinker)

Tyson JJ - Sniffers, buzzers, toggles and blinkers.
Curr Opin Cell Biol. 2003 Apr;15(2):221-31.

http://www.inf.ed.ac.uk/teaching/courses/csb/CSB_lectu
re_dynamic_signalling_and_gene_expression.pdf
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Making Waves
How to program a symmetric wave?

Synthesizing programs such as this from specifications
Syntax-Guided Optimal Synthesis for Chemical Reaction Networks. Luca Cardelli, Milan Ceska, 
Martin Fränzle, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Max Whitby.
Computer Aided Verification, CAV’17.

A+B -> B+B
B+C -> C+C

dA/dt = -AB
dB/dt· = AB-BC
dC/dt· = BC

time

co
nc

en
tra

tio
n

155



Making Clocks
 Large literature going back to Lotka in the 1920’s
 Minimal oscillators still a topic of interest
 How many species? How many reactions? How symmetrical?
 How sensitive to parameters?
 Free running or self-regulating (limit-cycle)?

 Ex: one built with DNA strand displacement

A+B -> B+B
B+C -> C+C
C+A -> A+A

Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David 
Soloveichik, "Enzyme-free nucleic acid dynamical systems".
[ Preprint: bioRxiv: .pdf paper and .pdf supplementary information ] 
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Avoiding Clocks
 Muller C-Element
 A Boolean gate
 When x = y then z = x = y, otherwise z remembers its last state.

Core C-Element
(AM with external inputs)

Full C-Element with output
rectified by another AMChemical Reaction Network Designs for Asynchronous Logic Circuits. 

Luca Cardelli, Marta Kwiatkowska, Max Whitby. 
Natural Computing Journal.
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Steady-State Arithmetic
Copy [X] := [A]

Multiply [X] := [A]*[B]

Divide [X] := [A]/[B]

Root [X] := sqrt[A]

Add

Subtract

[X] := [A]+[B]

[X] := [A]-[B] (or 0)
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Computing Algebraic Functions
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Solving Algebraic Equations

Then (we can easily show analytically by the 
mass action ODEs that) at steady state:

1/w = w – 1
hence w =  = 0.61803…
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Z + Y -> Y + W
W + X -> X + Z 
Z + W -> W + W

Init x=y=w=1.0
Init z = 0.0
all rates 1.0

All algebraic equations can be solved [Ref ]

Golden Ratio (-conjugate)

1/ =  – 1
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Antithetic Integral Feedback Controller

p

p large

p small

The difference between Z1 and Z2
is proportional to the integral of the error.

setpoint ->

setpoint ->
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From Electrical Circuits to Chemical Networks
Take any textbook electric circuit:
(or, technically, a linear Differential Algebraic Equation system)

And algorithmically produce a Chemical Reaction Network :

That does the same exact thing:
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Finally, Some Bad Programs

163

X -> X + X
Violates conservation of mass. 
(No biggie, assume there is inflow/outflow.) 

X + X -> X + X + X
Violates finite density. 
(This is really bad.)

X -> Y
Violates thermodynamics. 
(Assume there is a tiny reverse reaction.) 

163



Chemical Reaction Networks:
What do they mean?
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Wait, there are two semantics?
 In a given volume are there
 (A) A finite number of molecules? or
 (B) A continuous concentration of <something>?

 Does it make a difference?
 Related by Avogadro’s number:  #molecules = concentration * Avogadro
 But finite density issues:  concentration is not unbounded in the discrete model:

the program 2X -> 3X will stop when there is no more “space” for molecules
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Are these programs equivalent? (YES!)
AM with 4 reactions AM with 3 reactions

Same identical ODEs  => EQUIVALENT

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

X + Y -> B + B
B + X -> X + X
B + Y -> Y + Y

dX/dt = -XY + BX
dY/dt = -YX + BY
dB/dt = 2XY - BX - BY
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Are these programs equivalent? (NO!)
 With 3 reactions:
 {X, Y} -> {B, B} in one step, then stop

 With 4 reactions:
 {X, Y} -> ({X, B} or {Y, B}) -> ({X, X} or {Y, Y}), then stop
 (no {B, B} final state)

 Different final states => NOT EQUIVALENT
 The 3-reaction version fails the requirement that in the end one of the outputs 

should be the sum of the inputs.

X + Y -> B + B
B + X -> X + X
B + Y -> Y + Y

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y
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Who is right?
 #1: Believe the discrete nature of atoms (and cells): 

there are no continuous concentrations

 #2: Believe the analytical power of calculus:
a useful approximation in appropriate conditions

 Biologists have (quite recently) realized that #1 must be taken 
seriously, because of advances in laboratory equipment that allow 
examining single molecules and single cells.
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Final Remarks
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A Brief History of DNA
DNA, -3,800,000,000

Systematic
manipulation 
of information

Computer 
programming  

20th century

Systematic 
manipulation

of matter

Molecular 
programming

21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994 

Structural DNA Nonotech, 1982 
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