
Molecular
Programming

Luca Cardelli

Microsoft Research &
University of Oxford

2018-06-26, UPTEC Porto

Objectives
 The promises of Molecular Programming:
 In Science & Medicine
 In Engineering
 In Computing

 The current practice of Molecular Programming
 DNA technology
 Molecular languages and tools
 Example of a molecular algorithm

2

Molecular Programming:
The Hardware Aspect

Smaller and smaller things can be built

3

Smaller and Smaller
First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit
Jack Kilby, Sep. 1958.

Single molecule transistor
Observation of molecular orbital gating
Nature, 2009; 462 (7276): 1039

50+ years later
Jan 2010 25nm NAND flash
Intel&Micron. ~50atoms

Jun 2018 7nm (54nm pitch)
TSMC, Intel, Samsung, GlobalFoundries - mass production

Molecules on a chip
Placement and orientation of individual DNA shapes on lithographically
patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

Very few Moore’s cycles left!

4

Moore’s Law

Race to the Bottom
Moore’s Law is approaching the single-
molecule limit

Carlson’s Curve is the new exponential
growth curve in technology

In both cases, we are now down to molecules

Oxford Nanopore
5

Building the Smallest Things

www.youtube.com/watch?v=Ey7Emmddf7Y

 How do we build structures that are by definition smaller than your tools?
 Basic answer: you can’t. Structures (and tools) should build themselves!
 By programmed self-assembly

6

Molecular IKEA
 Nature can self-assemble.

Can we?

 “Dear IKEA, please send me a chest
of drawers that assembles itself.”

 We need a magical material where the pieces are
pre-programmed to fit into to each other.

 At the molecular scale many such materials exist…

http://www.ikea.com/ms/en_US/customer_ser
vice/assembly_instructions.html

Add water

7

Wikimedia

Programmed Self-Assembly
Proteins DNA/RNA

Membranes

8

Molecular Programming:
The Software Aspect

Smaller and smaller things can be programmed

9

We can program...
 Information
 Completely!

Computing

Information

Information

10

We can program...
 Forces
 Completely!

(Modulo sensors/actuators)

Sensing

Actuating

Computing

11

We can program...
 Matter
 Completely and directly! By self-assembly.

 Currently: only DNA/RNA.

 But DNA is an amazing material

Constructing Actuating

Sensing

Computing

It's like a 3D printer without the printer!
[Andrew Hellington]

12

Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

G-C Base Pair
Guanine-Cytosine

T-A Base Pair
Thymine-Adenine

13

• DNA in each human cell:
 3 billion base pairs
 2 meters long, 2nm thick
 750 megabytes
 folded into a 6mm ball,

140 exabytes (million terabytes)/𝑚𝑚3
=> all the data on the internet fits in a shoebox!

• A huge amount for a cell
 Every time a cell replicates it has to

copy 2 meters of DNA reliably.
 Or else!

• DNA in human body
 10 trillion cells
 133 Astronomical Units long
 7.5 octabytes

• DNA in human population
 20 million light years long

Andromeda Galaxy
2.5 million light years

DNA wrapping into chromosomes

Structure

14

Function

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase II: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.

15

What is special about DNA?
 There are many, many nanofabrication

techniques and materials

 But only DNA (and RNA) can:
 Organize ANY other matter [caveats apply]

 Execute ANY kinetics [caveats: up to time scaling]

 Assemble Nano-Control Devices
 Interface to Biology

H.Lodish & al. Molecular Cell Biology 4th ed.

16

Organizing Any Matter
 Use one kind of programmable

matter (e.g. DNA).
 To organize (almost) ANY

matter through it.

"What we are really making are tiny DNA circuit boards
that will be used to assemble other components."

Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006)

+

6 nm grid of
individually
addressable
DNA pixels

17

Executing Any Kinetics
 The kinetics of any finite network of chemical reactions, can be

implemented (physically) with especially programmed DNA
molecules.

 Chemical reactions
as an executable
programming
language for
dynamical systems!

2018-06-26
18

Building Nano-Control Devices
 All the components of nanocontrollers can already be built entirerly and solely

with DNA, and interfaced to the environment

Sensing

Constructing Actuating

Computing

DNA Aptamers

DNA Walkers & TweezersSelf-assembling DNA Tiles

DNA Logical Gates

19

Constructing

Sensing

Constructing Actuating

Computing

20

Crosslinking

21

Crosslinking

22

Crosslinking

23

Crosslinking

24

Crosslinking
In nature, crosslinking is deadly
(blocks DNA replication).

In engineering, crosslinking
is the key to using DNA as
a construction material.

25

DNA Tiling
crosslinking

4 sticky ends

26

2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars

27

3D DNA Structures

AndrewTuberfield
Oxford

Ned Seeman
NYU

3D Cyrstal

Tetrahedron

28

CADnano

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shih
Harvard https://www.youtube.com/watch?v=Ek-FDPymyyg

29

DNA Origami

Paul W K Rothemund
California Institute of Technology

Paul Rothemund’s “Disc with three holes” (2006)

Folding long (7000bp) naturally occurring (viral) ssDNA
By lots of short ‘staple’ strands that constrain it

PWK Rothemund, Nature 440, 297 (2006)

Black/gray: 1 long viral strand (natural)
Color: many short staple strands (synthetic)

30

DNA Circuit Boards
 DNA origami are arrays of uniquely-

addressable locations
 Each staple is different and binds to a unique location on

the origami
 It can be extended with a unique sequence so that

something else will attach uniquely to it.

 More generally, we can bind “DNA gates”
to specific locations
 And so connect them into “DNA circuits” on a grid
 Only neighboring gates will interact

Some staples are
attached to “green blobs”
(as part of their synthesis)
Other staples aren’t

Dalchau, Chandran, Gopalkrishnan, Reif, Phillips. 2014 31

Information-rich physical structures can be used for storage.

DNA has a data density of 140 exabytes (1.4×1020 bytes) per 𝑚𝑚3

compared to state-of the art storage media that reaches ~500
megabytes (5×108 bytes) per 𝑚𝑚3

DNA has been shown to be stable for millions of years

DNA Storage (Read/Write)

We have machines that can read (sequence) and write
(synthesize) DNA. The Carslon Curve of “productivity” is
growing much faster than Moore’s Law.

Cost of sequencing is decreasing rapidly ($1000 whole human
genome), while cost of synthesis is decreasing very slowly.
[Rob Carlson, www.synthesis.cc]

32

Sensing

Sensing

Constructing Actuating

Computing

33

Aptamers

Artificially evolved DNA molecules
that stick to anything you like
highly selectively

34

Pathogen Spotlights
• DNA aptamer binds to:

 A) a pathogen
 B) a molecule our immune system (when allergic)

hates and immediately removes (eats) along with
anything attached to it!

Kary Mullis (incidentally, also
Nobel prize for inventing the
Polymerase Chain Reaction)

• Result: instant immunity
o Mice poisoned with Anthrax plus

aptamer (100% survival)
o Mice poinsoned with Anthrax

(not so good)

35

Transcriptional Sensors
"One of the goals of synthetic
biology is to develop
programmable artificial gene
networks that can transduce
multiple endogenous molecular
cues to precisely control cell
behavior. "

36

Actuating

Sensing

Constructing Actuating

Computing

37

DNA Tweezers

Hybridization

Strand
Displacement

38

DNA Walkers

39

Polymerization Motor
Rickettsia (spotted fever)

40

Hybridization Chain Reaction

41

Curing

Sensing

Constructing Actuating

Computing

42

Computational Drugs

Simplified (omitting the “no” pathway)

• An automaton sequentially reading the string PPAP2B, GSTP1, PIM1, HPS
(known cancer indicators) and sequentially cutting the DNA hairpin until a
ssDNA drug (Vitravene) is released.

Based on restriction enzymes

Vitravene (GCGTTTGCTCTTCTTCTTGCG)

43

Interfacing to Biology
 A doctor in each cell

~2002 44

Molecular Programming:
The Biological Aspect

Biological systems are already
‘molecularly programmed’

45

H.Lodish & al. Molecular Cell Biology 4th ed.

Machine
Membrane Protein

Machine

Gene
Machine

Regulation

Metabolism, Propulsion
Signaling, Transport

Confinement, Storage
Bulk Transport

Enact fusion, fission

Hold receptors,
host reactions

Nucleotides

Aminoacids Phospholipids

()Glycan
Machine

Sugars

Surface and
Extracellular Features

Abstract Machines of Biology

46

Nucleotides

Aminoacids Phospholipids

Gene
Machine

Protein
Machine Machine

Membrane

P Q
C

A B
x

y

Molecular Interaction
Maps

Gene Networks

Transport Networks

Biological Languages

47

But ...
 Biology is programmable, but (mostly) not by us!

 Still work in progress:
 Gene networks are being programmed in synthetic biology, but using existing ‘parts’
 Protein networks are a good candidate, but we cannot yet effectively design proteins
 Transport networks are being investigated for programming microfluidic devices that

manipulate vesicles

48

Molecular Languages
... that we can execute

(more easily than what nature provides)

49

Our Programming Language: Chemistry
 A Lingua Franca between Biology, Dynamical Systems,

and Concurrent Languages

 Chemical Reaction Networks
 A + B r C + D (the program)

 Ordinary Differential Equations
 d[A]/dt = -r[A][B] … (the behavior)

 Rich analytical techniques based on Calculus
and more recently on stochastic models

50

Chemical Programming Examples

51

Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed
“sequentially”: it is a form
of concurrent computation)

specification program

Y := min(X1, X2) X1 + X2 -> Y

chemical reaction network
51

How do we “run” Chemistry?
 Chemistry is not easily executable
 “Please Mr Chemist, execute me this bunch of reactions that I just made up”

 Most molecular languages are not executable
 They are descriptive (modeling) languages

 How can we execute molecular languages?
 With real molecules?
 That we can design ourselves?
 And that we can buy on the web?

52

Molecular Programming
with DNA
Building the cores of programmable
molecular controllers

53

The role of DNA Computing
 Non-goals
 Not to solve NP-complete problems with large vats of DNA
 Not to replace silicon

 Bootstrapping a carbon-based technology
 To precisely control the organization and dynamics of matter and information

at the molecular level
 DNA is our engineering material
 Its biological origin is “accidental” (but convenient)
 It is an information-bearing programmable material
 Other such materials will be (are being) developed

54

Domains
 Subsequences on a DNA strand are called domains
 provided they are “independent” of each other

 Differently named domains must not hybridize
 With each other, with each other’s complement, with subsequences of each

other, with concatenations of other domains (or their complements), etc.

x zy
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA

single strand

55

t

t
t

Reversible Hybridization

Short Domains

DNA double
strand

56

Long Domains

x

x
x

Irreversible Hybridization

57

DNA Strand Displacement

Microsoft Research Outreach

Strand Displacement

58

Strand Displacement

t x

xt

“Toehold Mediated”

59

Strand Displacement

xt

Toehold Binding

60

Strand Displacement

xt

Branch Migration

61

Strand Displacement

xt

Displacement

62

Strand Displacement

xt

x

Irreversible release

63

t

Bad Match

x

x

y

zt

64

t

Bad Match

x y

z
x

65

t

Bad Match

x y

z
x

66

xt

Bad Match

y

z

Cannot proceed
Hence will undo

67

Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gate
operation

68

Transducer

69

t a

xt t a t a x t y t a t

y t

Transducer xy

t x

Input

70

Transducer xy

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

71

Transducer xy

x

t a

t t a t a x t y t a t

y t

72

Transducer xy

t a

xt t a t a x t y t a t

y t

x t

Active
waste

73

Transducer xy

xt t a t a x t y t a t

y t

x t

74

Transducer xy

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.

75

Transducer xy

t axt a x t y t a t

y t

x t

t

76

Transducer xy

t a

a tt axt a x t y

y t

x t

t

77

Transducer xy

t a

a tt axt a x t y t

x t

t

78

Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

79

Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

80

Transducer xy

t y

t a

a tt axt a x y tt

Output

t

81

Transducer xy

x

t y

t a

a tt axt a y tx t

Output

t

82

Transducer xy

x

t y

t a tt axt a y tx t

Output

83

Transducer xy

a x

t y

t a a tt axt y tx t

Output

84

a x

t a a tt axt y tx t

Transducer xy

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

t y

Output

85

86

87

Plasmidic Gate Technology
 Synthetic DNA is

length-limited
 Finite error probability at each

nucleotide addition,
hence ~ 200nt max

 Bacteria can replicate
plasmids for us
 Loops of DNA 1000’s nt, with

extremely high fidelity
 Practically no structural limitations

on gate fan-in/fan-out
Only possible with
two-domain architecture

88

Large-scale Circuits (so far…)

89

Scaling up: DNA Circuit Boards

The first computational circuit boards made of DNA
https://www.microsoft.com/en-us/research/blog/researchers-build-nanoscale-computational-circuit-boards-dna

90

Questions?

91

BREAK

92

Some kind of computation

93

A Molecular Algorithm
Running something interesting with DNA

94

Approximate Majority Algorithm
 Given two populations of agents (or molecules)
 Randomly communicating by radio (or by collisions)
 Reach an agreement about which population is in majority
 By converting all the minority to the majority

[Angluin et al., Distributed Computing, 2007]

 3 rules of agent (or molecule) interaction
 X + Y → B + B
 B + X → X + X
 B + Y → Y + Y

“our program”

95

Surprisingly good (in fact, optimal)

 Fast: reaches agreement in O(log n) time w.h.p.
 O(n log n) communications/collisions
 Even when initially #X = #Y! (stochastic symmetry breaking)

 Robust: true majority wins w.h.p.
 If initial majority exceeds minority by w(n log n)
 Hence the agreement state is stable

Stochastic simulation of worst-case
scenario with initially #X = #Y

96

Circuit component X + Y 2B

97

DNA Implementation of AM

98

Carbon-based Computing
How to get there

99

Action Plan
 Building a full software/hardware pipeline for a new fundamental technology
 Mathematical Foundations [~ concurrency theory in the 80’s]

 Programming Languages [~ software engineering in the 70’s]

 Analytical Methods and Tools [~ formal methods in the 90’s]

 Device Architecture and Manufacturing [~ electronics in the 60’s]

 To realize the potential of Molecular Programming

 “With no alien technology” [David Soloveichik]

 This is largely a ‘software problem’ even when working on device design

100

Chemistry as a Concurrent Language
 A connection with the theory of concurrency
 Via Process Algebra and Petri Nets

=

=
Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics
(Mass Action Kinetics)

Discrete-state Semantics
(Chemical Master Equation)

Nondeterministic
Semantics

Stochastic
Semantics

Combinatorial
Explosion

101

Molecular Compilation

3-domain
Signals

2-domain
Signals

4-domain
Signals

Strand
Algebra

Architecture

Petri
Nets

DSDIntermediate
Language

…

Boolean
Networks

“High-Level”
Language

Chemical Reaction
Networks

Devices

Sequences

Gates

Programs

Molecules

102

Towards High(er)-Level Languages
 Gene Networks

 Synchronous Boolean networks
 Stewart Kauffman, etc.

 Asynchronous Boolean networks
 René Thomas, etc.

 Protein Networks
 Process Algebra (stochastic p-calculus etc.)
 Priami, Regev-Shapiro, etc.

 Graph Rewriting (kappa, BioNetGen etc.)
 Danos-Laneve, Fontana & al., etc.

 Membrane Networks
 Membrane Computing

 Gheorghe Păun, etc.
 Brane Calculi

 Luca Cardelli, etc.

 Waiting for an architecture to run on...

103

A platform for programming biology

Bayesian Inference; Machine Learning

Domain
Specific
Languages

Automation
& Analytics

Biological experiments as programs

Abstractions,
Compilers,
Verification

Programming Genetic Devices
(Molecular Systems Biology 2016)

Programming DNA
(Nature Nanotechnology 2013)

Reprogramming Cells
(Science 2014)

DNA
Domains

DNA
Sequences

DNA
Biophysics

Genetic
Circuit

Chemical Reaction
Network

Continuous Time
Markov Chain

Ordinary Differential
Equations

Partial Differential
Equations

Symbolic Regulatory
Network

Labelled Transition
System

Cell
Biophysics

InfrastructureLab robotics Microsoft Azure

104

Algorithm Design
A software pipeline for Molecular Programming

105

Development Tools
MSRC Biological Computation Group

Visual DSD
A Development
Environment
for DNA Strand

106

A Language for DNA Structures
 Describe the initial

structures (not behavior)

107

Compute Species and Reactions
 Recursively computed from

the initial structures

108

Reaction Graph and Export

109

Simulation
 Deterministic
 Stochastic (Gillespie)
 Probabilistic (CME)
 Linear Noise Approximation
 “JIT”

110

State Space Analysis
CTMC

111

Modelchecking
 Export to PRISM probabilistic modelchecker

112

Verification
 Quantitative theories of system equivalence and

approximation.

113

Related Work Supporter by our Tools

Square root of a 4-bit number Associative memory

114

Algorithm Execution
A wetlab pipeline for Molecular Programming

115

Output of Design Process
 Domain structures
 (DNA sequences to be determined)

“Ok, how do I
run this for real”

116

Thermodynamic
Synthesis

From Structures to Sequences

DSD Structure

Output Sequences

“Ok, where do I
buy these?”

www.nupack.org

“Dot-Paren” representation

117

“DNA Synthesis”

118

From Sequences to Molecules
 Copy&Paste

from nupack

119

Molecules by FedEx

“Ok, how do I
run these?”

120

Add Water

121

Execute (finally!)
 Fluorescence is your one-bit ‘print’ statement

Windows XP!

122

Output

123

Debugging
 A core dump

124

Delivery!

125

Fun Applications

126

RNA Rewiring
 Using RNA gates to detect, intercept, and replace

messenger RNA
 to "hotwire" cells without changing their genetic code
 there is a similar natural process called RNA Interference,

used by cells to fight viruses

127

Cell Staining

http://www.moleculartechnologies.org/

 Using Hybridization Chain Reaction
 to simultaneously stain tissues in multiple colors

128

Live Clothing

129

Hacking Yoghurt
Tuur van Balen - Hacking Yoghurt
- genetically modify your yoghurt in your own kitchen

https://www.youtube.com/watch?v=Co8NOnErrPU

130

The iGEM Competition

The International Genetically Engineered Machine (iGEM) competition is a worldwide synthetic
biology competition that was initially aimed at undergraduate university students, but has since
expanded to include divisions for high school students, entrepreneurs, and community laboratories,
as well as 'overgraduates'. https://en.wikipedia.org/wiki/International_Genetically_Engineered_Machine

 The Hackaton of Synthetic Biology

 Don't like how E. coli smell? Make them smell like bananas!
 Fruit freshness detector
 Gold mining bacteria in Ghana
 etc.

131

Markets
Scientific Discovery
Molecular Computability

132

Synthetic Biology Market
Annual revenue from GMOs in the US
exceeds $324Bn

33 Programming Biology companies
raised $900M in 2016

Source: Rob Carlson, Nature Biotechnology, 2016

Source: SynBioBeta.com, 2016

133

Some (ongoing) successes stories

• ($4Bn) Reprogram a patient’s own blood cells to
recognise and destroy specific cancers.

• 90% remission in terminally ill leukemia patients

• ($300M) Reprogram yeast to synthesise chemicals
• Antimalarial drug in production (with Sanofi)
• Jet fuel used in commercial flights (with Total)

• Supply custom organisms for bio fabrication • Grow meat, leather ($100Bn market) in the lab
• Proofs of concept already in production

134

Scaling up Science
Developing these markets requires dramatically
scaling up scientific discovery

Because we know so very little about biology

And there are way too many proteins to study!

Fortunately, a new virtuous circle is developing.

135

Molecular Programming and
Scientific Discovery
As we learn to program physical and biological matter
the process of scientific discovery will be transformed

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.
136

The Scientific Method ~ 1638

1 Guy

Discovery through Observation

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

137

The Scientific Method ~ 2000’s

1 Lab

1 protein = 30 people / 30 years

Humans have >100,000 proteins 

Discovery through Collaboration

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

138

The Scientific Method ~ 2020’s

1 Program

while (true) {
predict();
falsify();

}

Discovery through closed-loop Automation

Robot scientist becomes
first machine to discover
new scientific knowledge

Ross King

Garland, Jr., Theodore. "The Scientific Method as an Ongoing Process". U C Riverside.

139

Scientific Method vs. Engineering Method

System

Engineering
Method

Model

Scientific
Method

C
on

st
ru

ct
io

n Verification D
is

co
ve

ry

Falsification

Direct Engineering
(Synthetic Biology)

Reverse Engineering
(Systems Biology)

System

Model

140

System

Verification

Falsification

System

N
ew

 C
on

st
ru

ct
io

n

N
ew

 D
is

co
ve

ry

Engineering
Method

Scientific
Method

Direct Engineering Reverse Engineering

Model Model

Scientific Method vs. Engineering Method

141

System

Verification

Falsification

System

N
ew

 C
on

st
ru

ct
io

n

N
ew

 D
is

co
ve

ry

Engineering
Method

Scientific
Method

Direct Engineering Reverse Engineering

Model Model

Scientific Method vs. Engineering Method

142

C
on

st
ru

ct
io

n Verification D
is

co
ve

ry

Falsification

Combined
Method

System

Model

The models that we
discover should be

suitable for construction

The systems that we build
should be suitable for

discovery

When the models and the
systems are both too

complex to either be the
full Truth

The model is always
somewhat wrong in its

predictions

The system is always
somewhat faulty in its

execution

The Truth is not something
you ever “have” but

something you “maintain”

Scientific Method vs. Engineering Method

(we need to "instrument the
model": change what we believe)

(we need to "instrument the
system": change what we study)

Now we are in
Feynman territory:

143

Those single closed-loop programs run "half in the computer" (the
controlling software) and "half in the organism" (the gene network).

In particular, we need to understand biochemical algorithms and
computability from a software engineering point of view.

Today, we fundamentally understand how to program digital computers
- Classical theory of algorithms and computability

Do we fundamentally understand how to program molecular systems?
- A different theory of algorithms and computability

(still being developed)
- To design new systems and understand what's there
- How biological systems can, might, and do compute

Theory of Molecular Computability

144

Programming with chemical reactions
X + Y ->r Z + W

 A fundamental model of kinetics (i.e. “behavior”) in the
natural sciences
 A fundamental mathematical structure, rediscovered in

many forms
 Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols,

…

 A programming language (coded up in the genome) by
which living things manage the processing of matter and
information

145

Chemical Reaction Networks:
Discrete-State Semantics

Programming Examples

146

Discrete (-state) Semantics
 A state of the system is a finite multiset of molecules; each molecule belongs to

one of a finite set of species.
 A fixed finite set of reactions over species performs multiset-rewriting over those

states.
 Reactions have rates: the state space is a Continuous-Time Markov Chain

(a labeled transition system where labels are transition speeds).
 Hence the semantics is discrete and stochastic = atomic theory of matter.

 Issues:
 Computing Kinetics (distribution of outcomes over time)
 Analyzing mean, variance, and other moments
 State reachability

147

Programming Examples

Y := 2X X -> Y + Y

Y := X1 + X2 X1 -> Y
X2 -> Y

Y := min(X1, X2) X1 + X2 -> Y

Y := X/2 X + X -> Y

spec program

148

Advanced Programming Examples

Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed
“sequentially”)

(X,Y) :=
if XY then (X+Y, 0)
if YX then (0, X+Y)

Approximate Majority

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

spec program

149

What can we compute this way?
 The semilinear functions
 Those whose graph is a finite union of linearly-bounded regions

150

But also Register Machines (almost…)
PCi -> R1 + PCj

PCi + R1 -> PCj

PCi + R2 -> R2 + R1 + PCj
??? Whatever trick we use will have some error

i: INC R1; JMP j

i: DEC R1; JMP j

i: IF R2>0 {INC R1; JMP j}

i: IF R2=0 …

 Turing-complete up to an arbitrarily small error
 The error bound is set in advance uniformly for any computation of arbitrary length

(because we cannot know how long the computation will last), and the machine will
progressively “slow down” to always stay below that bound.

Chemical Reaction Networks:
Continuous-State Semantics

Programming Examples

152

Continuous (-state) Semantics
 A state of the system is a (real-valued) concentration for each

species.
 A fixed finite set of reactions act (continuously) on such states.
 The Law of Mass Action describes how the system evolves in

continuous time.
 Each reaction acts with a “speed” that is proportional to the product of the concentrations on its left-hand-

side, multiplied by its rate.
 Each species concentration increases or decreases according to the sum of the effects of all the reactions.

 Issues:
 Computing Kinetics (outcomes over time)
 Analyzing Equilibria (steady-states, etc.)
 Model Reduction

153

Sniffers, buzzers, toggles and blinkers
• Sigmoidal response (buzzer)
• Perfect adaptation (sniffer)
• Positive feedback
 – Mutual activation (one way switch)
 – Mutual inhibition (toggle switch)

• Negative feedback
 – homeostasis
 – oscillations (Blinker)

Tyson JJ - Sniffers, buzzers, toggles and blinkers.
Curr Opin Cell Biol. 2003 Apr;15(2):221-31.

http://www.inf.ed.ac.uk/teaching/courses/csb/CSB_lectu
re_dynamic_signalling_and_gene_expression.pdf

154

Making Waves
How to program a symmetric wave?

Synthesizing programs such as this from specifications
Syntax-Guided Optimal Synthesis for Chemical Reaction Networks. Luca Cardelli, Milan Ceska,
Martin Fränzle, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Max Whitby.
Computer Aided Verification, CAV’17.

A+B -> B+B
B+C -> C+C

dA/dt = -AB
dB/dt· = AB-BC
dC/dt· = BC

time

co
nc

en
tra

tio
n

155

Making Clocks
 Large literature going back to Lotka in the 1920’s
 Minimal oscillators still a topic of interest
 How many species? How many reactions? How symmetrical?
 How sensitive to parameters?
 Free running or self-regulating (limit-cycle)?

 Ex: one built with DNA strand displacement

A+B -> B+B
B+C -> C+C
C+A -> A+A

Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David
Soloveichik, "Enzyme-free nucleic acid dynamical systems".
[Preprint: bioRxiv: .pdf paper and .pdf supplementary information]

156

Avoiding Clocks
 Muller C-Element
 A Boolean gate
 When x = y then z = x = y, otherwise z remembers its last state.

Core C-Element
(AM with external inputs)

Full C-Element with output
rectified by another AMChemical Reaction Network Designs for Asynchronous Logic Circuits.

Luca Cardelli, Marta Kwiatkowska, Max Whitby.
Natural Computing Journal.

157

Steady-State Arithmetic
Copy [X] := [A]

Multiply [X] := [A]*[B]

Divide [X] := [A]/[B]

Root [X] := sqrt[A]

Add

Subtract

[X] := [A]+[B]

[X] := [A]-[B] (or 0)

158

Computing Algebraic Functions

159

Solving Algebraic Equations

Then (we can easily show analytically by the
mass action ODEs that) at steady state:

1/w = w – 1
hence w =  = 0.61803…

160

Z + Y -> Y + W
W + X -> X + Z
Z + W -> W + W

Init x=y=w=1.0
Init z = 0.0
all rates 1.0

All algebraic equations can be solved [Ref]

Golden Ratio (-conjugate)

1/ =  – 1

160

Antithetic Integral Feedback Controller

p

p large

p small

The difference between Z1 and Z2
is proportional to the integral of the error.

setpoint ->

setpoint ->

161

From Electrical Circuits to Chemical Networks
Take any textbook electric circuit:
(or, technically, a linear Differential Algebraic Equation system)

And algorithmically produce a Chemical Reaction Network :

That does the same exact thing:

162

Finally, Some Bad Programs

163

X -> X + X
Violates conservation of mass.
(No biggie, assume there is inflow/outflow.)

X + X -> X + X + X
Violates finite density.
(This is really bad.)

X -> Y
Violates thermodynamics.
(Assume there is a tiny reverse reaction.)

163

Chemical Reaction Networks:
What do they mean?

164

Wait, there are two semantics?
 In a given volume are there
 (A) A finite number of molecules? or
 (B) A continuous concentration of <something>?

 Does it make a difference?
 Related by Avogadro’s number: #molecules = concentration * Avogadro
 But finite density issues: concentration is not unbounded in the discrete model:

the program 2X -> 3X will stop when there is no more “space” for molecules

165

Are these programs equivalent? (YES!)
AM with 4 reactions AM with 3 reactions

Same identical ODEs => EQUIVALENT

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

X + Y -> B + B
B + X -> X + X
B + Y -> Y + Y

dX/dt = -XY + BX
dY/dt = -YX + BY
dB/dt = 2XY - BX - BY

166

Are these programs equivalent? (NO!)
 With 3 reactions:
 {X, Y} -> {B, B} in one step, then stop

 With 4 reactions:
 {X, Y} -> ({X, B} or {Y, B}) -> ({X, X} or {Y, Y}), then stop
 (no {B, B} final state)

 Different final states => NOT EQUIVALENT
 The 3-reaction version fails the requirement that in the end one of the outputs

should be the sum of the inputs.

X + Y -> B + B
B + X -> X + X
B + Y -> Y + Y

X + Y -> Y + B
Y + X -> X + B
B + X -> X + X
B + Y -> Y + Y

167

Who is right?
 #1: Believe the discrete nature of atoms (and cells):

there are no continuous concentrations

 #2: Believe the analytical power of calculus:
a useful approximation in appropriate conditions

 Biologists have (quite recently) realized that #1 must be taken
seriously, because of advances in laboratory equipment that allow
examining single molecules and single cells.

168

Final Remarks

169

A Brief History of DNA
DNA, -3,800,000,000

Systematic
manipulation
of information

Computer
programming

20th century

Systematic
manipulation

of matter

Molecular
programming

21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994

Structural DNA Nonotech, 1982

170

Acknowledgments
 Microsoft Research
 Andrew Phillips, Biological Computation Group

 Caltech
 Winfree Lab

 U.Washington
 Seelig Lab

171

Biological Computation Group

Paul
Grant

Neil
Dalchau

Boyan
Yordanov

Carlo
Spaccasassi

Collaborators
Programming DNA
University of Washington: Georg Seelig (GS), Gourab Chatterjee (GC),
Suzie Pun (SP)
University of New Mexico: Matthew Lakin (ML)
Rice University: Dave Zhang (DZ)
University of Cambridge: Ulrich Keyser (UK), Elisa Hemmig (EH)
Microsoft Research: Karin Strauss (KS), Yuan Chen (YC), Alex Gaunt (AG),
Ryota Tomioka (RT), Ted Meeds (TM).
Caltech: Frits Dannenberg (FD)

Programming Genetic Devices
University of Cambridge: James Locke (JL), Niall Murphy (NM), Jim
Ajioka (JA), Jim Haseloff (JH), Om Patange (OP), Eugene Nadezhdin (EN)
UCL: Chris Barnes (CB), Luca Rosa (LR)

Reprogramming Stem Cells
University of Cambridge: Austin Smith (AS), Amy Li (AL), Brian Hendrich
(BH), Nicola Reynolds (NR), Bertille Montibus (BM)
University of Padova: Graziano Martello (GM)
Microsoft Research: Christoph Wintersteiger (CW)
Kings College London: Angela Oliveira Pisco (AOP), Fiona Watt (FW)
University of Toronto: Peter Zandstra (PZ)

Core Platform
Microsoft Research: Agile Projects Team (APT),
Industry: Horizon, Twist, Synthace.

Luca
Cardelli

Filippo
Polo

Colin
Gravill

Sara-Jane
Dunn

Microsoft Research Cambridge

Andrew
Phillips

172

Resources
 Biological Computation Group at MSR

https://www.microsoft.com/en-us/research/group/biological-computation/

 Molecular Programming Project at Caltech
http://molecular-programming.org/

 Georg Seelig’s DNA Nanotech Lab at U.W. CS&E
http://homes.cs.washington.edu/~seelig/

 “DNA Computing and Molecular Programming”
Conference Proceedings
http://www.dna-computing.org/

173

