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Discovery through Synthesis



State of the Art Yesterday - Discovery

* The Scientific Method ~ 1638
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State of the Art Today - Discovery

* The Scientific Method ~ 2010’s
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New Approach — Discovery + Synthesis

* The Scientific Method ~ 2020’s
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Falsification + Verification

Discovery in complex systems requires
increased intervention - synthesis

Read nature, but also write nature.
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New Approach — The Inner Loop

» A model is refined by testing mechanisms within systems _ - TN

Model fl
» Today: publication does not accurately reflect execution / 7
System
* Model: poorly-maintained matlab script Q //:/
* Mechanism: poorly-described manual protocols in the lab MechanlsmI -
 System: poorly-characterized and hardly “resettable” —

« = (risis in biology: experiments are done once and are hard to reproduce
http://www.nature.com/news/reproducibility-1.17552




New Approach — The Inner Loop

» Tomorrow, automation Ealsification /,,_—_- .
* Model: unambiguous (mathematical) description (CompBio) o [ Model |
» Mechanism: standardized (engineered) parts and protocols (SynthBio) / “ /
 System: characterized (biological) organism and foundries (SysBio) System |
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» Verification: simulation / analysis / model checking / theorem proving Svnthesis Mechanisn}‘l
Synthesis:  exponential technological growth — sit back and enjoy y —

« Falsification: lab automation / statistical inference / model reduction

Arcs
[ ]

» Performance evaluation/optimization:  of model+protocol+system combined
« Management: version control, equipment monitoring, data storage

Lifecycle



Getting around the inner loop

Nodes

Arcs

Lifecycle

Models (mathematical): [Oxford]

*  We work on understanding the intrinsic computational capability of matter,
as expressed by the “language” of chemical reaction networks

Mechanisms (technological): [Oxford Physics, MSRC] [previously: Caltech, UW]
* We engineer nanotechnology constructs that perform computation and control Falsification

emical Reaction

Systems (biological): [King's College, MSRC] -5 Model ’
*  We search for computational mechanisms in natural systems g \w\
g | System Verlflcatlon
Veerification: [Oxford, MSRC] S \5_5___;_ N
*  We develop software tools and algorithms for the analysis and simulation of biochemical models. 8‘ Mech anisnﬁ

N\

* We integrate new algorithms and model classes into our (MSRC) tool suites. Synthesis

Synthesis: [Oxford Physics, MSRC] [previously: Caltech, UW] [MSR, Technion?]
*  We develop techniques to “compile” chemical programs into (e.g. DNA) molecules.

Falsification: [IMT Lucca]

* We work on advanced algorithms for model reduction of very complex data sets

Performance evaluation/optimization: [Oxford, MSRC]

*  We plan to apply hybrid (probabilistic+continuous) modelchecking techniques that we are developing,
to verify properties and error bounds of integrated models + lab protocols



Synthesis through Chemical Reactions



Why are chemical reactions interesting?

X+Y > /+W

- A fundamental model of kinetics (i.e. “behavior”) in the
natural sciences

- A fundamental mathematical structure, rediscovered in
many forms

- Vector Addition Systems, Petri Nets, Bounded Context-Free Languages, Population Protocols,

: Amprogramming language (coded up in the genome) by
which living things manage the processing of matter and
information

10




#1 Discrete (-state) Semantics

- A state of the system is a finite multiset of molecules;
each molecule belongs to one of a finite set of species.

- A fixed finite set of reactions over species performs
multiset-rewriting over those states.

- Reactions have rates: the state space is a Continuous-
Time Markov Chain (a labeled transition system where
[abels are transition speeds).

- Hence the semantics is discrete and stochastic
= atomic theory of matter.

11




Programming Examples

spec program
Y = 2X X->Y+Y
Y = | X/2] X + X ->Y
Y = X1+ X2 X1->Y
X2 ->Y

Y = min(X1, X2) X1+ X2->Y




Advanced Programming Examples

Spec
Y = max(X1, X2)

Approximate Majority

X,Y) =
if X=Y then (X+Y, 0)
if Y>X then (0, X+Y)

program

X1->LT+Y
X2 ->12+Y
LT+ L2 ->K
Y +K->0

X+Y->Y+B
Y+ X->X+B
B+ X->X+X
B+Y->Y+Y

Max(X1,X2)=

(XT+X2)-min(X1,X2)

(but is not computed
"sequentially”)

13




A Consensus Algorithm
- Approximate Majority (AM) Algorithm

- Uses a third "undecided” population b
- Disagreements cause agents to become undecided
- Undecided agents agree with any non-undecided agent
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Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority
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inhibition =4

_X.--

AM

14




A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch

(HMT) (HDAC)
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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What can we compute this way?

- The semilinear functions

- Those whose graph is a finite union of linearly-bounded regions

f(x1, X2)=x2 if x1>x; and 0 otherwise f(x) = X2

T T— 10

OS2ty oo <

123 45X

{n1-(1, 1,00+ ny-(0,1,0) | n,n2 eN}JU not semilinear
{(1,0,0) + n1-(1,1,1)+ nz - (1,0,0) | n1,n2 €N}

Chen, Doty, Soloveichik, "Deterministic Function Computation with Chemical Reaction
Networks" (201 3)




But also Register Machines (almost...)
i: INCRy; JMP j DCi -> R1 + PCJ
i: DEC R;; JMP ] DCi + R1 -> PCJ

i IF R,>0 {INC R;; JMP j} DCi +R,-> R, + R + PCJ

it IF R,=0 ... ??? Whatever trick we use will have some error

- Turing-complete up to an arbitrarily small error

- The error bound is set in advance uniformly for any computation of arbitrary length
(because we cannot know how long the computation will last), and the machine will
progressively “slow down” to always stay below that bound.

m David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, "Computation with Finite Stochastic Chemical Reaction Networks".
[ Natural Computing, (online Feb 2008), or Technical Report: CaltechPARADISE:2007.ETR085: .pdf ] 17




Programming Discrete Distributions

CME solution for A,,; :

Consider the following CRN:
1

1. /12 —6 /11'1

1
( % if y =2 T2t Az 23 Az
- 1
i 2, ify=5 T3: Az 22 A33
T = . ’
(y) 9 %7 if Yy = 10 Tyq: Al + /11,1 - l1,1 + lout
L0, otherwise Tpot Ag + A5, = Ayo + Apye

T33: A3 + A33 = A33 + Agus

With initial configuration x;:
xO(/lz) = 1,xO(/11) = 2,xO(;Lz) = 5, xO(/lg) = 10,
xO(Al,l) = xo()lz,z) = Xo(/ls,s) =0,

Programming Discrete Distributions with Chemical Reaction Networks.
Luca Laurenti, Luca Cardelli, Marta Kwiatkowska.

Natural Computing Journal 18




Calculus for Distributions

P:= (P+ P)|min(P,P)|k-P|(P)p: P|one|zero
D:=plp-ci+D

where k € Q>o, p € Q.11 are rational and V' = {c1,...,cn} is a set of variables
with values i N.

* P is a pmf, obtained as composition of zero and one

Tone(y) = {07 otherwise mzero(y) {O, otherwise

*  (P1)p: P, is the convex combination of P; and P,.That is, P is equal to P;
with probability p and to P, with probability 1 —p

« V ={cy,...,c,} are called environmental variables.They model external
inputs that can influence the probability of the formulas

19




Computing with DNA walkers

- Walkers walk along tracks

- Taking discrete stochastic steps NOR () NOT (x) AND (x,y)
- Blocking other walkers

Xy X

1 %% END 1 » END X »” END

AND (x,Y) = NOR(NOR(x,x),NOR(y,y)) OR (x,y)
11 1
X—>% Ry X
X—>% By "y
1 ”®—n END 1 ”» END

- It is envisioned that DNA walkers would carry along other chemicals to specific
locations, where they would cause them to interact in a precise sequence, therefore
implementing a precisely programmed assembly line of chemical reactions.

Logic on the tracks would make this assembly process conditional on e.g.
environmental inputs. 20




Computing with DNA walkers

- We model these walkers with stochastic Petri nets

- |.e. the same mathematical model (CTMC) as chemical reactions

O——0O0—f—0O0—31—0O—1—0
S

& & 7 &

Figure 5: Two tracks, green and blue, with a blocking junction on the third anchorage of each track
(G3 and B3). If the blue walker arrives at the junction first, it can block the green track by using
up the token of the shared node (shown in red). Blocking is not symmetric: the blue walker can
block the track for the green walker, but not vice versa.

The Formal Language and Design Principles of Autonomous DNA Walker Circuits.
Michael A. Boemo, Alexandra E. Lucas, Andrew J. Turberfield, Luca Cardelli.
ACS Synthetic Biology.




#/2 Continuous (-state) Semantics

- A state of the system is a (real-valued) concentration for each
species.

- A fixed finite set of reactions act (continuously) on such states.

- The Law of Mass Action describes how the system evolves in
continuous time.

- Each reaction acts with a “speed” that is proportional to the product of the concentrations on its left-hand-
side, multiplied by its rate.

- Each species concentration increases or decreases according to the sum of the effects of all the reactions.

- Computing Kinetics (outcomes over time)
- Computing Equilibria (steady-state outcomes)

22




Sniffers, buzzers, toggles and blinkers

* Sigmoidal (buzzer)
» Perfectly adapted (sniffer)
« Positive feedback

- — Mutual activation (one way switch)
- — Mutual inhibition (toggle switch)

* Negative feedback

- — homeostasis Tyson JJ - Sniffers, buzzers, toggles and blinkers.
- — oscillations (Blinker) Curr Opin Cell Biol. 2003 Apr;15(2):221-31.

http://www.inf.ed.ac.uk/teaching/courses/csb/CSB_lectu
re_dynamic_signalling_and_gene_expression.pdf

23




Making Waves

How to produce a symmetric wave?

A+B ->B+B
B+C -> C+C

dA/dt = -AB
dB/dt = AB-BC
dC/dt = BC

Synthesizing programs such as this from specifications

Syntax-Guided Optimal Synthesis for Chemical Reaction Networks. Luca Cardelli, Milan Ceska,
Martin Franzle, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, Max Whitby.
Computer Aided Verification, CAV'17.

24




Making Clocks

- Large literature going back to Lotka in the 1920
- Minimal oscillators still a topic of interest

+ How many species? How many reactions? How symmetrical?
-+ How sensitive to parameters?
- Free running or self-regulating (limit-cycle)?

- Ex: one built with DNA strand displacement

1 A+B ->B+B

- B + C -> C + C Niranjan Srinivas, James Parkin, Georg Seelig, Erik Winfree, David

b Soloveichik, "Enzyme-free nucleic acid dynamical systems".

N C+A -> A+A [ Preprint: bioRxiv: .pdf paper and .pdf supplementary information ]

25




Making Handshakes X )

- Muller C-Element Y

- When x = y then z = x =y, otherwise z remembers its last state.

X, Y 1_.; ) h—ij
iy L (L
Y Xio "_I I:H:
cf. AM with external e
Core C-Element set/reset inputs |_”

Full C-Element with output

Chemical Reaction Network Designs for Asynchronous Logic Circuits. rectified by another AM 26
Luca Cardelli, Marta Kwiatkowska, Max Whitby.
Natural Computing Journal.




Steady-State Multiply (and Divide

Ay i
e A+B & A+B+ X,
[X] := [A]*[B] (at steady state)

)
e
X —.
N o= /élﬂ/? - /égx,
H. J. Buisman et al. Computing Algebraic Functions with Biochemical Reaction Networks whose solution is

/ / — kot
kragby — (kraghy — kaxg)e™™

A B
) 1 2

with stable steady state

A B
A_é)_. X L
@ & k2 (b

Figure 2. Catalytic reaction networks for (a) multiplication and (b) division.
&y

X o= Iim x = —— /7() .
1S

t— o0 20




Computing Algebraic Functions

H. J. Buisman et al. Computing Algebraic Functions with Biochemical Reaction Networks

4 A
44AC —~
B B+ VB?2_44C 2
O T] 24

> S g VBT -

B
—é—> B—- VB?—-44C —~

Figure 8. The quadratic formula for finding (the positive real parts of) the roots of ax’ — bx + ¢ = 0. Each of the species in
the network has been given a name that represents its steady state concentration. The output species of the computation
are highlighted with a black border.

28




Solving Algebraic Equations

Golden Ratio (-conjugate)
L +Y->Y+ W

W+ X->X+/
/+W->W+ W

Init x=y=w=1.0
Init z = 0.0
all rates 1.0

Then (we can easily show analytically by the
mass action ODEs that) at steady state:

1/w=w-—1
hence W = (P = 0.61803...
|1/(P - (p_1 |

|
All algebraic equations can be solved [Ref]

0
1

) —

Golden Ratio
Yy




Finding CRN steady states
- "CRNT" Chemical Reaction Network Theory

+ Martin Feinberg

- "Static analysis” techniques (on the structure of reactions) based on linear algebra
for determining weather a CRN has one or many “positive steady states”.

- Tutorial:
https://www.math.wisc.edu/~anderson/RecentTalks/2014/BIRS _TutorialPublic.pdf

30




Invariance from Initial COnd|t|ons

Z

X+Y->Y+Y Li_f - Xo=2, Yo=]
% X =1
Y -> X >
Will produce some X-Y equilibrium, which £ ~

usually depends on initial values.
Xo=

But here, for any initial values of X and Y
(above /I) the va|ue Of X gets .ﬁxed to 1 CEﬁ"';\;"[‘]\;"f‘]l;‘":I;"'!"':\v"':\“l":lr‘“':I;"'j

(in general to the ratio of the second reaction rate over the first) ] iw

L] X,=6, Y,=3
There is a static analysis that will tell you that: X =1

k oo

Structural Sources of Robustness in
Blochemlcal Reactlon Networks

nnnnnnnnnnnnnnnnnnnnnnnnn
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Finding CRN mor
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Morphisms of Reaction Networks that Couple

Structure to Function @mc systems Biology'14)

Comparing Chemical Reaction Networks: A
Categorical and Algorithmic Perspective (css

32




Some Bad and Very Bad Programs

X ->X+ X

Violates "only” conservation of mass. (No biggie.)

X+ X->X+ X+ X

Violates "finite density”. (This is bad.)

x(t)=c, €

x(t) =
Cl—t

33




#3 Wait there are two semantics?

- In a given volume are there

- (A) A finite number of molecules? or
- (B) A continuous concentration of <something>?

- Does it make a difference?

- Related by Avogadros number: #molecules = concentration * Avogadro

- But finite density issues: concentration is not unbounded in the discrete model:
the program 2X -> 3X will stop when there is no more “space” for molecules

34




Are these programs equivalent? (YES!)

AM with 4 reactions AM with 3 reactions

X+Y->Y+B X+Y->B+B
Y+ X->X+B B+ X->X+X
B+ X->X+X B+Y->Y+Y
B+Y->Y+Y

Same (dentical ODEs => EQUIVALENT

dx/dt = -XY + BX
dY/dt = -YX + BY
dB/dt = 2XY - BX - BY




Are these programs equivalent? (NO!)

- With 3 reactions: LV s o B
- {X, Y} -> {B, B} in one step, then stop B+ X->X+X
B =

- With 4 reactions:
- X, Y} -> ({X, By or {Y, B}) -> ({X, X} or {Y, Y}), then stop X+Y->Y+B
. (no {B, B} final state) Y+ X->X+8
B+X->X+X
B =

- Different final states => NOT EQUIVALENT

- The 3-reaction version fails the requirement that in the end one of the outputs
should be the sum of the inputs.




Who is right?

- #7: Believe the discrete nature of atoms (and cells):
there are no continuous concentrations

- #2: Believe the analytical power of calculus:
a useful approximation in appropriate conditions

- Biology has (quite recently) discovered that #1
must be taken seriously, because of advances in
laboratory equipment that allow examining single
molecules and single cells.

37




Chemical Reactions
One programming language
with two (or three) target architectures

Stochastic Systems
+ CME — chemical master equation
- The clock ticks but randomly!

Dynamical Systems
- ODE - ordinary differential equations
- The clock doesn't tick, it swooshes!

(The original AM population protocol
was in discrete time, with a proper clock.)

Approximate Majority

I\
N

3-reaction
CME with s.d.

4-reaction
CME with s.d.

3/4-reaction
ODE

Initially Initially Initially
X0=2,X2=1 x0=x2 =1 x0=x2=3

38




Current Collaborators

Oxford University - Computer SC|ence MSR Cambridge - Biological Computation King’s College London - Biology
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Computation Group.

’ t\ﬁy / Jw . ' __________________________ N :
Marta Luca Laurenti Max Whitby Algorlthms & Tools Attila Csikasz- Rosa Hernansaiz Ballesteros
Kwiatkowska Royal Society PhD PhD Student Nagy MSR PhD Scholarship ‘15
Professor Student / Senior Lecturer
What/how can we compute with chemical networks and DNA? How do biological switches and oscillators work?
How can we verify the properties of engineered molecular systems? \ What are the algorithms and how did they evolve?

Oxford University - Physics Lucca Instltute for Advanced Studies

L4

Andrew Turberfield Michael Boemo Mirco Tribastone Andrea Vandin Max Tschaikowski
Professor Postdoc Associate Assistant Assistant
Professor Professor Professor
How can we perform logic with DNA walkers? How can we automatically simplify large molecular networks,

natural or synthetic, exactly or approximately?



A platform for programming biology

Domain
Specific
" : : . : Languages
Programming DNA Programming Genetic Devices Reprogramming Cells guag
(Nature Nanotechnology 2013) (Molecular Systems Biology 2016) (Science 2014)
-
DNA \ 2 Genetic & Symbolic Regulatory
Domains R Circuit T, Network
v v v
DNA %)%« Chemical Reaction Labelled Transition bt o
Sequences T Y | Network ‘ System N } Abstractions,
v v Compilers,
DNA Ordinary Differential Ao Continuous Time Verification
Biophysics ] Equations A JU, Markov Chain
Cell Partial Differential
Biophysics Equations
Biological experiments as programs SYNTHACE IM Bayesian Inference; Machine Learning AUtomat,lon
& Analytics

Lab robotics (B8, = Microsoft Azure 59
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