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Objectives
� The promises of Molecular Programming:

� In Science & Medicine

� In Engineering

� In Computing

� The current practice of Molecular Programming
� DNA technology

� Molecular languages and tools

� Example of a molecular algorithm



Molecular Programming:

The Hardware Aspect
Smaller and smaller things can be built



Smaller and Smaller
First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit
Jack Kilby, Sep. 1958.

Single molecule transistor
Observation of molecular orbital gating 
Nature, 2009; 462 (7276): 1039

50 years later

25nm NAND flash
Intel&Micron, Jan. 2010. ~50atoms

Molecules on a chip

~10 Moore’s Law cycles left!
Placement and orientation of individual DNA shapes on lithographically 
patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).



Moore’s Law

Race to the Bottom
Moore’s Law is approaching the single-
molecule limit

Carlson’s Curve is the new exponential 
growth in technology

In both cases, we are now down to molecules



Building the Smallest Things

www.youtube.com/watch?v=Ey7Emmddf7Y

� How do we build structures that are by definition smaller than your tools? 

� Basic answer: you can’t. Structures (and tools) should build themselves! 

� By programmed self-assembly



Molecular IKEA
� Nature can self-assemble. 

Can we?Can we?Can we?Can we?

� “Dear IKEA, please send me a chest 
of drawers that assembles itself.”

� We need a magical material where the pieces are 
pre-programmed to fit into to each other.

� At the molecular scale many such materials exist…

http://www.ikea.com/ms/en_US/customer_ser
vice/assembly_instructions.html

Add water



Wikimedia

Programmed Self-Assembly
Proteins DNA/RNA

Membranes



Molecular Programming: 

The Software Aspect
Smaller and smaller things can be programmed



We can program...
� Information

� Completely!
Computing

Information

Information



We can program...
� Forces

� Completely! 
(Modulo sensors/actuators)

Sensing

Actuating

Computing



We can program...
� Matter

� Completely and directly! By self-assembly.

� Currently: only DNA/RNA.

� But DNA is an amazing material

Constructing Actuating

Sensing

Computing

It's like a 3D printer without the printer!
[Andrew Hellington]



Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

G-C Base Pair
Guanine-Cytosine

T-A Base Pair
Thymine-Adenine



• DNA in each human cell:
� 3 billion base pairs
� 2 meters long, 2nm thick
� 750 megabytes
� folded into a 6µm ball,

140 exabytes (million terabytes)/��3

• A huge amount for a cell
� Every time a cell replicates it has to

copy 2 meters of DNA reliably.
� To get a feeling for the 

scale disparity, compute:

• DNA in human body
� 10 trillion cells
� 133 Astronomical Units long
� 7.5 octabytes

• DNA in human population
� 20 million light years long

Andromeda Galaxy
2.5 million light years

DNA wrapping into chromosomes

Structure



Function

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel processing)

In Bacteria: 1000 nucleotides/second 
(higher error rate)

DNA transcription in real time

RNA polymerase II: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.



What is special about DNA?
� There are many, many nanofabrication

techniques and materials

� But only DNA (and RNA) can:
� Organize ANY other matter [caveats apply]

� Execute ANY kinetics [caveats: up to time scaling]

� Assemble Nano-Control Devices

� Interface to Biology

H.Lodish & al. Molecular Cell Biology  4th ed.



Organizing Any Matter
� Use one kind of programmable

matter (e.g. DNA).

� To organize (almost) ANY 
matter through it.

"What we are really making are tiny DNA circuit boards 
that will be used to assemble other components." 

Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006) 

+

6 nm grid of 
individually 
addressable 
DNA pixels



Executing Any Kinetics
� The kinetics of any finite network of chemical reactions, can be 

implemented (physically) with especially programmed DNA 
molecules.

� Chemical reactions 
as an executable
programming
language for
dynamical systems!

5/31/2017



Building Nano-Control Devices
� All the components of nanocontrollers can already be built entirerly and solely 

with DNA, and interfaced to the environment

Sensing

Constructing Actuating

Computing

DNA Aptamers

DNA Walkers & TweezersSelf-assembling DNA Tiles

DNA Logical Gates



Constructing

Sensing

Constructing Actuating

Computing



Crosslinking



Crosslinking



Crosslinking



Crosslinking



Crosslinking
In nature, crosslinking is deadly 
(blocks DNA replication).

In engineering, crosslinking 
is the key to using DNA as 
a construction material.



DNA Tiling
crosslinking

4 sticky ends



2D DNA Lattices

Chengde Mao

Purdue University, USA N-point Stars



3D DNA Structures

AndrewTuberfield
Oxford

Ned Seeman
NYU

3D Cyrstal

Tetrahedron



CADnano

S.M. Douglas, H. Dietz, T. Liedl, B. Högberg, F. Graf and W. M. Shih 
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)

William Shih
Harvard https://www.youtube.com/watch?v=Ek-FDPymyyg



DNA Origami

Paul W K Rothemund 
California Institute of Technology

Paul Rothemund’s “Disc with three holes” (2006)

Folding long (7000bp) naturally occurring (viral) ssDNA
By lots of short ‘staple’ strands that constrain it

PWK Rothemund, Nature 440, 297 (2006) 

Black/gray: 1 long viral strand (natural)
Color: many short staple strands (synthetic)



DNA Circuit Boards
� DNA origami are arrays of uniquely-

addressable locations
� Each staple is different and binds to a unique location on 

the origami

� It can be extended with a unique sequence so that 
something else will attach uniquely to it.

� More generally, we can bind “DNA gates” 
to specific locations
� And so connect them into “DNA circuits” on a grid

� Only neighboring gates will interact

Some staples are 
attached to “green blobs” 
(as part of their synthesis)
Other staples aren’t

Dalchau, Chandran, Gopalkrishnan, Reif, Phillips. 2014



DNA has a data density of 140 exabytes (1.4×1020 bytes) per ��3

compared to state-of the art storage media that reaches ~500 
megabytes (5×108 bytes) per ��3

DNA has been shown to be stable for millions of years

DNA Storage (Read/Write)

We have machines that can read (sequence) and write 
(synthesize) DNA. The Carslon Curve of “productivity” is 
growing much faster than Moore’s Law.

Cost of sequencing is decreasing rapidly ($1000 whole human 
genome), while cost of synthesis is decreasing very slowly.
[Rob Carlson, www.synthesis.cc]



Sensing

Sensing

Constructing Actuating

Computing



Aptamers

Artificially evolved DNA molecules 

that stick to anything you like 
highly selectively



Pathogen Spotlights
• DNA aptamer binds to:

� A) a pathogen

� B) a molecule our immune system (when allergic) 
hates and immediately removes (eats) along with 
anything attached to it!

Kary Mullis (incidentally, also 
Nobel prize for inventing the 
Polymerase Chain Reaction)

• Result: instant immunity
o Mice poisoned with Anthrax plus 

aptamer (100% survival)

o Mice poinsoned with Anthrax 
(not so good)



Actuating

Sensing

Constructing Actuating

Computing



DNA Tweezers

Hybridization

Strand 
Displacement



DNA Walkers



Polymerization Motor
Rickettsia (spotted fever)



Hybridization Chain Reaction



Curing

Sensing

Constructing Actuating

Computing



Computational Drugs

Simplified (omitting the “no” pathway)

• An automaton sequentially reading the string PPAP2B, GSTP1, PIM1, HPS 
(known cancer indicators) and sequentially cutting the DNA hairpin until a 
ssDNA drug  (Vitravene) is released.

Based on restriction enzymes

Vitravene (GCGTTTGCTCTTCTTCTTGCG)



Interfacing to Biology

� A doctor in each cell



Molecular Programming: 

The Biological Aspect
Biological systems are already 
‘molecularly programmed’



H.Lodish & al. Molecular Cell Biology  4th ed.

Machine
Membrane Protein

Machine

Gene
Machine

Regulation

Metabolism, Propulsion
Signaling, Transport

Confinement, Storage
Bulk Transport

Enact fusion, fission

Hold receptors,
host reactions

Nucleotides

Aminoacids Phospholipids

(     )Glycan
Machine

Sugars

Surface and 
Extracellular Features

Abstract Machines of Biology



Nucleotides

Aminoacids Phospholipids

Gene
Machine

Protein
Machine Machine

Membrane 

P Q

C

A B
x

y

Molecular Interaction 
Maps

Gene Networks

Transport Networks

Biological Languages



But ...
� Biology is programmable, but (mostly) not by us!

� Still work in progress:
� Gene networks are being programmed in synthetic biology, but using existing ‘parts’

� Protein networks are a good candidate, but we cannot yet effectively design proteins

� Transport networks are being investigated for programming microfluidic devices that 
manipulate vesicles



Molecular Languages
... that we can execute



Our Programming Language: Chemistry
� A Lingua Franca between Biology, Dynamical Systems, 

and Concurrent Languages

� Chemical Reaction Networks
� A + B �r C + D (the program)

� Ordinary Differential Equations
� d[A]/dt = -r[A][B]  … (the behavior)

� Rich analytical techniques based on Calculus

� But prone to combinatorial explosion
� E.g., due to the peculiarities of protein interactions



Chemical Programming Examples

50

Y := max(X1, X2) X1 -> L1 + Y
X2 -> L2 + Y
L1 + L2 -> K
Y + K -> 0

max(X1,X2)=
(X1+X2)-min(X1,X2)

(but is not computed 
“sequentially”: it is a form 
of concurrent computation)

specification program

Y := min(X1, X2) X1 + X2 -> Y

chemical reaction network



How do we “run” Chemistry?
� Chemistry is not easily executable

� “Please Mr Chemist, execute me this bunch of reactions that I just made up”

� Most molecular languages are not executable
� They are descriptive (modeling) languages

� How can we execute molecular languages? 
� With real molecules? 

� That we can design ourselves? 

� And that we can buy on the web?



Action Plan
� Building a full software/hardware pipeline for a new fundamental technology 

� Mathematical Foundations [~ concurrency theory in the 80’s]

� Programming Languages [~ software engineering in the 70’s]

� Analytical Methods and Tools [~ formal methods in the 90’s]

� Device Architecture and Manufacturing [~ electronics in the 60’s]

� To realize the potential of Molecular Programming

� “With no alien technology” [David Soloveichik]

� This is largely a ‘software problem’ even when working on device design



Molecular Compilation

3-domain 
Signals

2-domain 
Signals

4-domain 
Signals

Strand
Algebra

Architecture

Petri
Nets

DSD
Intermediate

Language
…

Boolean
Networks

“High-Level”
Language

Chemical Reaction 
Networks

Devices

Sequences

Gates

Programs

Molecules



Towards High(er)-Level Languages
� Gene Networks

� Synchronous Boolean networks
� Stewart Kauffman, etc.

� Asynchronous Boolean networks
� René Thomas, etc.

� Protein Networks
� Process Algebra (stochastic π-calculus etc.)

� Priami, Regev-Shapiro, etc.
� Graph Rewriting (kappa, BioNetGen etc.)

� Danos-Laneve, Fontana & al., etc.

� Membrane Networks
� Membrane Computing

� Gheorghe Păun, etc.

� Brane Calculi
� Luca Cardelli, etc.

� Waiting for an architecture to run on...



Molecular Programming 
with DNA
Building the cores of programmable 
molecular controllers



The role of DNA Computing
� Non-goals

� Not to solve NP-complete problems with large vats of DNA

� Not to replace silicon

� Bootstrapping a carbon-based technology
� To precisely control the organization and dynamics of matter and information 

at the molecular level

� DNA is our engineering material

� Its biological origin is “accidental” (but convenient)

� It is an information-bearing programmable material

� Other such materials will be (are being) developed



Domains
� Subsequences on a DNA strand are called domains

� provided they are “independent” of each other

� Differently named domains must not hybridize
� With each other, with each other’s complement, with subsequences of each 

other, with concatenations of other domains (or their complements), etc.

x zy

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA 
single strand



t

t
t

Reversible Hybridization

Short Domains

DNA double 
strand



Long Domains

x

x
x

Irreversible Hybridization



DNA Strand Displacement

Microsoft Research Outreach

Strand Displacement



Strand Displacement

t x

xt

“Toehold Mediated”



Strand Displacement

xt

Toehold Binding



Strand Displacement

xt

Branch Migration



Strand Displacement

xt

Displacement



Strand Displacement

xt

x

Irreversible release



t

Bad Match

x

x

y

zt



t

Bad Match

x y

z
x



t

Bad Match

x y

z
x



xt

Bad Match

y

z

Cannot proceed
Hence will undo



Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gate 
operation



Transducer



t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input



Transducer x→y

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!



Transducer x→y

x

t a

t t a t a x t y t a t

y t



Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste



Transducer x→y

xt t a t a x t y t a t

y t

x t



Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer x→y

t axt a x t y t a t

y t

x t

t



Transducer x→y

t a

a tt axt a x t y

y t

x t

t



Transducer x→y

t a

a tt axt a x t y t

x t

t



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t



Transducer x→y

t y

t a

a tt axt a x y tt

Output

t



Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t



Transducer x→y

x

t y

t a tt axt a y tx t

Output



Transducer x→y

a x

t y

t a a tt axt y tx t

Output



a x

t a a tt axt y tx t

Transducer x→y

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

t y

Output







Strand Algebra
• Simple exercise, but forced focus on garbage collection

� Otherwise algebraic equalities would not hold

� Led to the two-domain strategy

• Previous proposals for strand displacement 
� Emulate chemical reactions by “overhang” structures. Three-domain:

� They require fewer steps, but garbage collection is more complex 
than in two-domain

� Moreover, the overhang strands can be experimentally problematics

• Accidentally enabled a new implementation technology
� Plasmid-produced DNA gates (as opposed to synthetic DNA gates)

� Because 2-domain structures are “flat”



Plasmidic Gate Technology
� Synthetic DNA is 

length-limited
� Finite error probability at each 

nucleotide addition, 
hence ~ 200nt max

� Bacteria can replicate 
plasmids for us
� Loops of DNA 1000’s nt, with 

extremely high fidelity

� Practically no structural limitations 
on gate fan-in/fan-out

Only possible with 
two-domain architecture



Correctness
• Eventually the two-domain implementation of chemical reactions 

(after fixing some bugs) was proven correct

• This involves more than simple algebra: it’s a rather sophisticate 
proof of equivalence of concurrent systems



Large-scale Circuits (so far…)

93



A Molecular Algorithm
Running something interesting with DNA



Approximate Majority Algorithm
� Given two populations of agents (or molecules)

� Randomly communicating by radio (or by collisions)

� Reach an agreement about which population is in majority

� By converting all the minority to the majority
[Angluin et al., Distributed Computing, 2007]

� 3 rules of agent (or molecule) interaction
� X + Y → B + B

� B + X → X + X

� B + Y → Y + Y
“our program” 



Surprisingly good (in fact, optimal)

� Fast: reaches agreement in O(log n) time w.h.p.
� O(n log n) communications/collisions

� Even when initially #X = #Y! (stochastic symmetry breaking)

� Robust: true majority wins w.h.p.
� If initial majority exceeds minority by ω(√n log n)

� Hence the agreement state is stable

Stochastic simulation of worst-case 
scenario with initially #X = #Y



Circuit component X + Y→ 2B

97



DNA Implementation, at U.W.
� Programmable chemical controllers made from DNAProgrammable chemical controllers made from DNAProgrammable chemical controllers made from DNAProgrammable chemical controllers made from DNA

[Yuan[Yuan[Yuan[Yuan----JyueJyueJyueJyue Chen, Neil Dalchau, Chen, Neil Dalchau, Chen, Neil Dalchau, Chen, Neil Dalchau, NiranjanNiranjanNiranjanNiranjan SrinivasSrinivasSrinivasSrinivas, Andrew Phillips, Luca Cardelli, David , Andrew Phillips, Luca Cardelli, David , Andrew Phillips, Luca Cardelli, David , Andrew Phillips, Luca Cardelli, David 
Soloveichik and Georg Soloveichik and Georg Soloveichik and Georg Soloveichik and Georg SeeligSeeligSeeligSeelig]]]]



Execution
A wetlab pipeline for Molecular Programming



Output of Design Process
� Domain structures

� (DNA sequences to be determined)

“Ok, how do I 
run this for real”



Thermodynamic 
Synthesis

From Structures to Sequences

DSD Structure

Output Sequences

“Ok, where do I 
buy these?”

www.nupack.org

“Dot-Paren” representation



“DNA Synthesis”



From Sequences to Molecules
� Copy&Paste

from nupack



Molecules by FedEx

“Ok, how do I 
run these?”



Add Water



Execute (finally!)
� Fluorescence is your one-bit ‘print’ statement

Windows XP!



Output



Debugging
� A core dump



Delivery!



Final Remarks



A Brief History of DNA

DNA, -3,800,000,000

Systematic
manipulation 
of information

Computer 
programming  

20th century

Systematic 
manipulation

of matter

Molecular 
programming

21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994 

Structural DNA Nonotech, 1982 
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Questions?



Resources
� Biological Computation Group at MSR

https://www.microsoft.com/en-us/research/group/biological-computation/

� Molecular Programming Project at Caltech
http://molecular-programming.org/

� Georg Seelig’s DNA Nanotech Lab at U.W. CS&E
http://homes.cs.washington.edu/~seelig/

� “DNA Computing and Molecular Programming” 
Conference Proceedings
http://www.dna-computing.org/


