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Comparing Networks
� High-value activity:

� 2001 Nobel prize in Physiology for the discovery of “Key regulators of the cell cycle … they 
have identified key molecules that regulate the cell cycle in all eukaryotic organisms, including 
yeast, plants, animals, and human.”

� These are not the same molecules in all organisms, but it is still “the same network”

� Network differences expose evolution
� Tracing back ancestral networks from current ones

� Networks are algorithms
� Algorithms fall in different performance classes (is nature “optimal”?)

� Different networks for the same function may or may not be in the same class
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Morphing networks
� How can we compare different networks?

� Different number of species

� Different number of reactions

� Apparently unrelated connectivity

� So that we can compare their function?
� Does antagonism (in network structure) guarantee bistability (in function)?

� We do it by mapping networks onto one another
so that they emulate each other (‘s traces)
� Deterministic version of simulation of reactive systems
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Mapping one network into another
� A formal notion was strangely missing from the literature

� Seen in Biology: single-network analysis (e.g. structure of feedback loops) and network reduction 
(e.g. while preserving steady states). Study of common or frequent subnetworks.

� Seen in C.S.: comparing network behaviors (e.g. morphisms of event structures).

� Nothing much resembling (bi)simulation “on the syntax” (structure) of whole biochemical networks.

� Model reduction is unavoidable and pervasive, but
� Often criticized/ignored by biologists when it leads to quantities that are “not biologically 

meaningful”. E.g. a fusion or change a variables in the ODEs where the new variables do not 
correspond to biological parts. The reduced model should “inform” the original one.

� Science’s ethos
� The “truth” is the big network, not the small one!

If you depart from the truth in any way, you have to explain how you can get back to it.

� The point is not to reduce the size of the network (although that’s neat), 
but to understand aspects of the big network by reference to a smaller one.

� The mapping is more important than either networks.
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Norbert Wiener
Pioneer of stochastic processes 

and inventor of Cybernetics.

“The best material model of a 
cat is another, or preferably the 
same, cat”



Chemical Reaction Networks
A + C →α C + E

B + C →α C + E

C →β A 

D →β B

6
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Behavior
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directive sample 3.0 100
directive simulation deterministic
directive plot A; B; C; D; E

rate a = 1;
rate b = 2;

init A 1 |
init B 3 |
init C 1 |
init D 3 |
init E 0 |

A + C ->{a} C + E |
B + C ->{a} C + E |
C ->{b} A |
D ->{b} B



Network Bisimulation



A Bisimulation Approach
� For discrete transition systems

� Nondeterministic: If two systems are in “equivalent” states, and one system can step from one state to 
another, then the other system can make a similar step and end up  in an “equivalent” state. And vice-versa.

� Stochastic: If two systems are in “equivalent” states, and one system can step from one state to an 
equivalence class of states (with some collective probability), then the other system can make a similar step 
and end up again in an “equivalent” equivalence class of states. And vice-versa.

� Syntactic characterizations (bisimulation is definable over Process Algebras rather than their state spaces). 

� For continuous transition systems
� Continuous: If two systems are in “equivalent” states (e.g. identical states (BB), or up to sum of variables 

(FB)), and one system takes an infinitesimal step into another state, then the other system can take a similar 
infinitesimal step and end up in the “equivalent” state. And vice-versa.

� Defined on traces: no syntactic characterization.

� What we contribute:
� We define bisimulation (actually two of them) over a syntax for continuous transition systems, where the 

syntax is that of CRNs.

� This allows us to both compare and minimize CRNs, via fast algorithms based on partition refinement 
(Tarjan - CONCUR) or theorem proving (Tarski - POPL). 9



Forward Bisimulation
� Consider a partition (lumping) of species:

{{A, B}, {C}, {D}, {E}}

� It may induce a collapse of the CRN:

AB + C →α C + E

C →β AB 

D →β AB

In the sense that AB represents A+B
10



Reduction works for that partition
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directive sample 3.0 100
directive simulation deterministic
directive plot AB; C; D; E

rate a = 1;
rate b = 2;

init AB 4 |
init C 1 |
init D 3 |
init E 0 |

AB + C ->{a} C + E |
C ->{b} AB |
D ->{b} AB

directive sample 3.0 100
directive simulation deterministic
directive plot sum(A; B); C; D; E

rate a = 1;
rate b = 2;

init A 1 |
init B 3 |
init C 1 |
init D 3 |
init E 0 |

A + C ->{a} C + E |
B + C ->{a} C + E |
C ->{b} A |
D ->{b} B

Original CRN, 
plotting A+B

Reduced CRN
with AB0 = A0 + B0



Because it works on the ODEs
� We can consider AB = A + B and express the system 

just in terms of AB, dropping A and B

� And these are the ODEs of the reduced CRN
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When does it work, in general?
� A partition H of the ODE (variables) is an (ordinary-) lumping if one can derive an ODE for the partition 

from the ODE of the original system, in terms of sums of the variables in the partition.

� Thm: A partition of CRN species that is a Forward Bisimulation is an ordinary lumping of the 
corresponding ODEs.

� A partition of CRN species is a Forward Bisimulation if the fluxes of the CRN match up in a certain way 
(checkable just by looking at the CRN, not its ODEs):
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Forward and Backward Bisimulations for Chemical Reaction Networks.
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [CONCUR’15]

Comparing Chemical Reaction Networks: A Categorical and Algorithmic Perspective. 
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [LICS’16]



Backward Bisimulation
� Consider a partition (lumping) of species:

{{A, B}, {C, D}, {E}}

� It may induce a collapse of the CRN:

AB + CD →α CD + 2E

CD →β AB 

In the sense that AB represents A and B equally
14



Reduction works for that partition

15

directive sample 3.0 100
directive simulation deterministic

rate a = 1;
rate b = 2;

init AB 1 |
init CD 3 |
init E 0 |

AB + CD ->{a} CD  + 2 E |
CD ->{b} AB

directive sample 3.0 100
directive simulation deterministic
directive plot A; B; C; D; E

rate a = 1;
rate b = 2;

init A 1 |
init B 1 |
init C 3 |
init D 3 |
init E 0 |

A + C ->{a} C + E |
B + C ->{a} C + E |
C ->{b} A |
D ->{b} B

Original CRN, 
setting A0=B0, C0=D0

Reduced CRN
with AB0=A0=B0, CD0=C0=D0



Because it works on the ODEs
� If

then

� And these are the ODEs of the reduced CRN
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When does it work, in general?
� A partition H of the ODE (variables) is an (exact-) lumping if the derivatives are equal in each partition 

whenever the concentrations are equal in each partition.

� Thm: A partition of CRN species that is a Backward Bisimulation is an exact lumping of the 
corresponding ODEs.

� A partition of CRN species is a Backward Bisimulation if the fluxes of the CRN match up in a certain way 
(checkable just by looking at the CRN, not its ODEs):
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Forward and Backward Bisimulations for Chemical Reaction Networks.
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [CONCUR’15]

Comparing Chemical Reaction Networks: A Categorical and Algorithmic Perspective. 
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin. [LICS’16]



Applications of Bisimulation
� Model Reduction

� Find reduced networks

� Compute quotient CRNs

� Find network symmetries 
that may be of biological interest

� Morphism Generation
� Find morphisms between networks

(e.g. all the ones for a fixed rate assignment)

18
Concur 2015

Aggregation
reduction

Emulation
reduction



How does it work?
� Partition refinement!

� Start from the coarsest partition: {{A, B, C, D, E}}

� Thm: There is always a coarsest FB or BB partition

� Find a reason why that partition is not an FB or BB (e.g., ask Z3)

� Split the partition: {{A, B, C}, {D, E}}  (this is the clever part)

� Iterate

� In the worst case we end up with {{A}, {B}, {C}, {D}, {E}}

� Customizable
� If we know that we want to observe A separately, we can start the algorithm e.g. 

with the partition {{A}, {B, C, D, E}}
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Finding Network Bisimulations
by Theorem Proving

for “general” kinetics



Differential Equations
� Linear ODE systems

� Control theory

� Electrical engineering

� Kolmogorov equation for Continuous Time Markov Chains 
a.k.a. the Chemical Master Equation for discrete (-molecule count) chemistry

� Nonlinear ODE systems
� Quantitative models of computing: 

(continuous) Petri Nets, (mean-field) PEPA, ...

� Chemical Reaction Networks for continuous (-concentration) chemistry
(with Mass Action or with Hill kinetics)
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IDOL: Intermediate Drift-Oriented Language

� Each IDOL program is a list of variable drifts

� The semantics is:

� where    is the full program,                     is the time horizon and initial conditions.

and     is the vector of all the     . 

� Provided there is a unique solution (there are sufficient conditions for that).
22



We <3 Tarski
� IDOL is within Tarski’s decidable fragment of reals

� The Law of Mass action has drifts like 

� Hill kinetics has drifts like 

� PEPA uses drifts like 

where                     = 

� No trigonometry, no exponentials, etc. in our ODEs.

� Bisimulations over CRNs [CONCUR’15]

� Are also formulas within Tarski’s fragment.
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Differential Equivalence Relations
� We encode equivalences over IDOL programs

� As first-order logic formulas containing IDOL terms.

� Z3 has a solver for them

� We use Z3 to minimize ODE (IDOL) systems
� And, indirectly, to minimize Chemical Reaction Networks

� On biological networks, Z3 is often faster than specialized polynomial algorithms!

� For Backward Bisimulation in particular:
� We use a counter-example guided partition refinement algorithm.

� The IDOL solver uses Z3 as a subroutine
� Possibly iteratively, e.g. for counter-example guided partitioning 24



Benchmarks
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Automated model reduction for

� Continuous Time Markov Chains
� By their forward Kolmogorov equation

� Chemical Reaction Networks
� By their nonlinear ODE mass action kinetics

� Stochastic Process Algebra
� Including PEPA, which has a min-based interaction law

� Chemical Master Equation
� By the (linear) Kolmogorov equation

� Linear Control Systems
� They are “just” linear ODEs

� Electronic Circuits
� Kirchhoff’s laws …

26

Just compile 
them to IDOL

Symbolic Computation of Differential Equivalences.
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin [POPL’16]



Further improvements
� General theorem proving is very appealing

� We can leave some model components undefined or underconstrained, 
and let Z3 “figure them out”.

� Still, specialized algorithms can do better
� By using a version of Tarjan’s Partition Refinement algorithm, we are getting 

amazing speedups in the computation of bisimulations for bimolecular CRNs.
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Efficient Syntax-Driven Lumping of Differential Equations.
Luca Cardelli, Mirco Tribastone, Max Tschaikowski, Andrea Vandin [TACAS’16]



Morphisms of Antagonistic 
Networks



Bisimulations (partitions) of 1 network, vs.
Morphisms (mappings) between 2 networks

� A morphism between two CRNs that preserves 
traces can be understood as a (backward) 
bisimulation over the species of a “union CRN”.

� Conversely, from a (many-to-one, backward) 
bisimulation we can reconstruct a canonical 
morphism between two networks.

� Such a bisimulation is called an emulation 
morphism: one network can exactly reproduce all 
the traces of the other network.
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Antagonistic Networks
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1 vs. 1 

Mutual Inhibition &
Self Activation

1 vs. 1 

Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks

Septation Initiation

3 vs. 3

The “new” cell cycle switch

MI SI

NCC

2 vs. 2

activation
inhibition

Delta-Notch



� Approximate Majority (AM) Algorithm
� Uses a third “undecided” population b

� Disagreements cause agents to become undecided

� Undecided agents agree with any non-undecided agent

A Consensus Algorithm

31

x yb

x + y →r y + b
y + x →r x + b
b + x →r x + x
b + y →r y + y

catalysis

chemical
reaction
network

x=y=5000
b=0

x=5500
y=4500
b=0

activation
inhibition

AM



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

2007 2007



Network Emulation MI emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of MIMIMIMI such that the (6) trajectories of MIMIMIMI retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 33

(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)



Network Emulation: NCC emulates MI

� For any rates and initial conditions of MIMIMIMI we can find some rates and initial 
conditions of NCC NCC NCC NCC such that the (18) trajectories of NCC NCC NCC NCC retrace those (6) of MIMIMIMI

34

(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC

MI



Emulations Compose

35

� The (18) trajectories NCCNCCNCCNCC can always retrace those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y

The new cell cycle switch 
can emulate AM exactly.

For any initial conditions 
of AM.

And for any rates of AM.



Emulations are Modular
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How to check for emulation
� How do we check a potential emulation morphism for all 

possible initial conditions of the target?
� Statically! Check conditions on the joint stoichiometric matrices of the two 

networks under the mapping.

� How do we check a potential emulation morphism for all 
possible rates of the target? 
� Can’t; but if one emulation is found, then the rates of the target network 

can be changed arbitrarily and a related emulation will again exist.
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Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

emulation (transitive)

r ⇢ x

~s ⇢ x

AMs

AMr



Biological Corollaries
� By checking only static network and 

morphism properties we can learn that:

� All these networks are (at least) bistable

� (We do not have to reanalyze the steady 
states of all these dynamical systems)

� All these networks can perform exactly
as fast as AM

� (We do not have to reprove the complexity 
bounds for all these networks)
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Network Emulation Morphism FAQ
� What guarantees emulation?

� Reactant morphism + stoichiomorphism: static, state-independent (structural) conditions

� How do you find them?
� Emulation Theorem => they do not depend on initial conditions

� Change of Rates Theorem => can look for rate-1 morphisms

� E.g. test all possible rate-1 homomorphism between two networks to see if they are stoichiomorphisms

� How common are they?
� Likely relatively rare, but still many useful ones => richness of networks space

� How useful are they?
� Establish structural, algorithmic, (non-accidental) reasons for kinetic similarity

� Explain simple behavior “facets” of complicated networks

� Investigate evolutionary paths (maybe)

� How brittle are they?
� Will a perturbed trajectory of the source network converge to a trajectory of the target network?

� What about other reaction kinetics?

� What about stochastic?
� Is there a CME Emulation Theorem? 40



Network Morphisms as 
Evolutionary Paths



Network Evolution

42

Across species: Ortholog genes Within species: Paralog genes

“same function”

“new function”



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Walks in Network Space
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr

Neutral paths 
in network space

Side
jumps



Noise Reduction 
in Biochemical Switches



Basic Switches (deterministic)
(A) (A) (A) (A) Influence network diagrams

(B) (B) (B) (B) Chemical reaction network diagrams and feedback loops

(C) (C) (C) (C) Numerical solutions of the deterministic kinetics of the networks:
Horizontal axis is time
Vertical axis is species concentration

First some arbitrary initial conditions are chosen for AM. 

Then the initial conditions of the other networks are chosen in such a 
way that each trace of each of the other networks retraces exactly one 
trace of AM. 

This can be done for any initial conditions chosen for AM, and 
indicates the potential of each of the other networks to operate as a 
simpler switch.

47(To appear.)



Basic Switches (stochastic)
Horizontal axes is time

Vertical axes is number of molecules. 

(A) (A) (A) (A) Influence networks. 

(B) (B) (B) (B) Chemical Master Equation solution: probability distribution, 
with color (in 10 bands from light = 0 to dark = 1) indicating the 
probability that at time t there are y molecules of the single 
indicated species. 

(C) (C) (C) (C) Chemical Master Equation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the network.

(D) (D) (D) (D) Central Limit Approximation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the

network.

Disentangle the contribution of 
complexity to stochasticity

Compare network noise on the baseline 
of deterministic emulation, across 
networks of different size and structure

48



More Complex Switches

Horizontal axes are time, vertical axes are number of molecules. 

(A) (A) (A) (A) Influence networks. 

(B) (B) (B) (B) ODE solutions for comparison

(C) (C) (C) (C) Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network. 

(D) (D) (D) (D) Central Limit Approximation solution: mean (black lines) and standard deviation (color bands) for the species in the network.
49



Intrinsic Noise

50

Complexity improves overall performance of the cell cycle switch. Complexity improves overall performance of the cell cycle switch. Complexity improves overall performance of the cell cycle switch. Complexity improves overall performance of the cell cycle switch. The performance of different networks was

evaluated by calculating the standard deviation of the main molecular states over time.

Standard deviations are calculated via numerical integration of the chemical master equation (CME) using the Visual GEC

software, and via numerical integration of the central limit approximation (CLA) in Matlab.



Extrinsic Noise

Complexity Complexity Complexity Complexity cancancancan confer robustness to extrinsic noise. confer robustness to extrinsic noise. confer robustness to extrinsic noise. confer robustness to extrinsic noise. 

Extrinsic noise is introduced by randomly perturbing all the reaction rates (separately but from the same distribution) of each model. (So the total 
variation in more complex models is actually higher.)

Variations in network behaviour is assessed in comparison to the default parameters, in which allr eaction rates are set equal to 1. 

Network variation is quantified using the summed Wasserstein metric over the whole probability distribution over time. 51

MI and SI have the same number MI and SI have the same number MI and SI have the same number MI and SI have the same number 

of species and reactions.of species and reactions.of species and reactions.of species and reactions.



Noise vs. Complexity
� With corresponding initial conditions, all studied networks show the 

same mean behavior

� CCr emulating AM is the simplest explanation of the core cell cycle 
switching function

� Many other biological switches can be so reduced to an algorithm 
with well-understood properties

� On the basis of kinetic similarity of mean behavior, we show 
variations in noise behavior (both intrinsic and extrinsic).

� Noise tends to decrease with complexity, but this also depends on 
network structure and not directly on total molecular counts

52



Conclusions



Computational Methods

54

� Comparing Networks
� Explanation of network structure (how functionality is achieved)

� Network Bisimulations (and Morphisms)
� Feasible for large networks by partition refinement algorithms

� Finding Bisimulations by Theorem Proving
� Also feasible for large networks by “magical” theorem proving

� Supports kinetics other than mass action



Systems Biology

� Morphisms of Antagonistic Networks
� Entail deep properties of complex networks (bistability, optimality)

� Network Morphisms as Evolutionary Paths
� Neutral paths in network space

� Noise Reduction in Complex Biochemical Switches
� Deterministic morphisms as a baseline for making 

stochastic comparisons between networks of different sizes
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