Biochemical Systems as Reactive Systems

Luca Cardelli
Microsoft Research

Cambridge 2016-02-08
http://lucacardelli.name
Outline

• Processes and Functions
 - The π-calculus modeling language

• Processes and Chemistry
 - Biochemical modeling in π-calculus

• Modeling Combinatorialial Systems
 - Why π-calculus and other “agent-based” or “reactive” modeling languages are useful
Functions

\[f(x) = \sqrt{x} \]

"read input into \(x \); then write \(\sqrt{x} \) to output"

\[f = \text{?input}(x); \text{!output}(\sqrt{x}) \]

- function
- read
- write
- channels
- (binding) input variable
- output expression
- (bound) variable occurrence

\[x \rightarrow^k x + y \]
\[y + y \rightarrow^k y \]
\[[y]_{\infty} = \sqrt{[x]_0} \]
Composing Functions

\[g(x) = (f \circ f)(x) \quad (= f(f(x))) \]
Composing Functions

\[g(x) = (f \circ f)(x) \]

```

```
g = (ν temp)
?input(x); !temp(√x) ∣
?temp(y); !output(√y)```

“create a new channel and use it to compose two copies of f”

channel creation (restriction/hiding/boxing)

(parallel/process) composition
Many inputs and outputs

\[
P = \text{?}in_1(x); \text{?}in_2(y); \text{!}out_1(x+y); P \oplus \text{?}in_3(z); \text{!}out_2(\sqrt{z}); \text{!}out_1(2z); 0
\]

The ‘skeleton’ automaton
That’s π–calculus

• To compose processes P we need:

 o Composition: $P \mid P$ (with identity elem. 0)
 o Channel creation: $(\nu x) P$ (with x bound in P)
 o Recursion: $*P$ (equal to $P \mid *P$)

• To execute actions we need:

 o Channel reading: $?c(x); P$ (with x bound in P)
 o Channel writing: $!c(M); P$ (with message M)
 o Choice: $P \oplus P$ (with identity elem. 0)

• … and channels can be sent as messages!
Generalizing Functions and Automata

• Unlike functions…
 o Processes have multiple, explicitly named, input and output channels.
 o Processes can run in parallel, can deadlock on their inputs, and can be nondeterministic in their outputs.

• Unlike automata (FSA)…
 o Processes can transmit data (not just change state).
 o While automata ‘talk’ to input strings, processes ‘talk’ to other processes: processes are communicating automata.
 o Processes are not “finite state”; they can express unbounded computation in time (divergence) and space (proliferation).
Algebraic Properties

• Functions have one binder and one rule:
 o Function application:
 \[f(x) =_{\text{def}} M\{x\} \quad \text{then} \quad f(a) = M\{a/x\} \]

• Processes have two binders and two rules:
 o Communication (input ‘?’ binder)
 \[(?c(x);P\{x\}) \oplus P' \quad | \quad (!c(a);Q) \oplus Q' = P\{a/x\} \quad | \quad Q \]

 o Scope extrusion (new ‘ν’ binder)
 \[\text{If } x \text{ not occurring in } Q \quad \text{then} \quad ((\nu \ x)P) \quad | \quad Q = (\nu \ x)(P|Q) \]
Implementations

- **SPiM (Stochastic Pi Machine)**
 - Runs in a browser with Silverlight.
Processes and Chemistry
Continuous Chemical Systems

Reactions:

\[A \rightarrow^r B_1 + \ldots + B_n \]
\[A_1 + A_2 \rightarrow^r B_1 + \ldots + B_n \]
\[A + A \rightarrow^r B_1 + \ldots + B_n \]

Degradation
Asymmetric Collision
Symmetric Collision

Continuous reaction kinetics, respectively:

\[[A]^\cdot = -r[A] \]
\[[A_i]^\cdot = -r[A_1][A_2] \]
\[[A]^\cdot = -2r[A]^2 \]

Exponential Decay
Mass Action Law
Mass Action Law

(assuming \(A \neq B_i \neq A_j \) for all \(i,j \))
\(\pi\)-calculus for Chemistry

• Here we just need a *subset* of \(\pi\)-calculus
 o No new-channel (\(\nu\)) operator (except to define delays \(\tau_r\))
 o No value-passing (only synchronization/collision \(?/!\)).

• To compose *soups* \(P\) we need:
 o Stochastic channels: \(X_r\) \(r\) is the rate of an exponential distribution: the rate of communication on that channel
 o Composition: \(P | P\) (with identity elem. 0)
 o Recursion: \(*P\) (equal to \(P | *P\))

• To execute *species* we need:
 o Collision: \(?x_r; P\) (with no input variables)
 o Co-collision: \(!x_r; P\) (with no output messages)
 o Delay: \(\tau_r; P\) (\(= (\nu x_r) ?x_r; P | !x_r; 0\) for any \(x\) not in \(P\))
 o Choice: \(P \oplus P\) (with identity elem. 0)
Discrete Chemical Systems (1)

Reaction:
\[A \to^r B_1 + \ldots + B_n \]

Discrete reaction kinetics:
\[A = \tau_r; (B_1|\ldots|B_n) \]

The mathematical meaning of that is a Continuous Time Markov Chain (for a specific set of initial conditions, e.g. a single A molecule), here represented as a transition graph:

![Transition Graph](image)

Hence the \(\pi \)-calculus description abstracts from initial conditions (like ODEs). For each set of initial conditions, a CTMC can be systematically extracted from the stochastic \(\pi \)-calculus models.
Discrete Chemical Systems (2)

(Uniquely named) reaction:
\[c: \ A_1 + A_2 \rightarrow^r B_1 + \ldots + B_n \]

Discrete reaction kinetics:
\[A_1 = ?c_r; (B_1|\ldots|B_i) \] (the name of the reaction becomes the channel)
\[A_2 = !c_r; (B_i|\ldots|B_n) \] (splitting results is arbitrary: 1 ≤ i ≤ n)

With initial conditions \(A_1|A_2 \) (single molecules), the CTMC is:
\[
\begin{array}{c}
A_1|A_2 \\
\rightarrow^r \\
B_1|\ldots|B_n
\end{array}
\]
(Uniquely named) reaction:

\[c: \ A + A \rightarrow^r \ B_1 + \ldots + B_n \]

Discrete reaction kinetics:

\[A = ?c_{r/2}; (B_1|\ldots|B_i) \oplus !c_{r/2}; (B_i|\ldots|B_n) \quad 1 \leq i \leq n \]

With initial conditions A|A (two molecules), the CTMC is as follows; note that each copy of A can do an input or an output, so there are two possible paths to the outcome:

That is:

\[A|A \rightarrow^r B_1|\ldots|B_n \]
From Reactions to Processes

\[\begin{align*}
 v_1: & \quad A + B \rightarrow k_1 \quad C + C \\
 v_2: & \quad A + C \rightarrow k_2 \quad D \\
 v_3: & \quad C \rightarrow k_3 \quad E + F \\
 v_4: & \quad F + F \rightarrow k_4 \quad B
\end{align*} \]

Interaction Matrix

<table>
<thead>
<tr>
<th>Processes (1 per species)</th>
<th>channels (1 per reaction)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(v_{1(k1)})</td>
</tr>
<tr>
<td>(A)</td>
<td>(?;(C</td>
</tr>
<tr>
<td>(B)</td>
<td>(!;0)</td>
</tr>
<tr>
<td>(C)</td>
<td>(!;0)</td>
</tr>
<tr>
<td>(D)</td>
<td>(!;0)</td>
</tr>
<tr>
<td>(E)</td>
<td>(!;0)</td>
</tr>
<tr>
<td>(F)</td>
<td>(!;0)</td>
</tr>
</tbody>
</table>

Half-rate for symmetric reactions

Half-rate for symmetric reactions

Fill the matrix by columns:

- Degradation reaction \(v_i: X \rightarrow^{k_i} P_i \)
 add \(\tau;P_i\) to \(<X,v_i>\).
- Asymmetric reaction \(v_i: X+Y \rightarrow^{k_i} P_i \)
 add \(?;P_i\) to \(<X,v_i>\) and \(!;0\) to \(<Y,v_i>\).
- Symmetric reaction \(v_i: X+X \rightarrow^{k_i} P_i \)
 add \(?;P_i\) and \(!;0\) to \(<X,v_i>\).

Read out the processes by rows:

\[\begin{align*}
 A &= ?v_{1(k1)};(C|C) \oplus ?v_{2(k2)};D \\
 B &= !v_{1(k1)};0 \\
 C &= !v_{2(k2)};0 \oplus \tau_{k3};(E|F) \\
 D &= 0 \\
 E &= 0 \\
 F &= ?v_{4(k4/2)};B \oplus !v_{4(k4/2)};0
\]
That Chemical System in SPiM

\[
\begin{align*}
A &= \nu_{1}(k1);(C|C) \oplus \nu_{2}(k2);D \\
B &= !\nu_{1}(k1);0 \\
C &= !\nu_{2}(k2);0 \oplus \tau_{k3};(E|F) \\
D &= 0 \\
E &= 0 \\
F &= \nu_{4}(k4/2);B \oplus !\nu_{4}(k4/2);0
\end{align*}
\]

directive sample 10.0

directive plot A(); B(); C(); D(); E(); F()

val k1 = 0.001 new v1@k1:chan
val k2 = 0.001 new v2@k1:chan
val k3 = 1.0
val k4 = 0.001 new v4@k4/2.0:chan

let A() = do \nu1;(C)|C()) or \nu2;D()
and B() = !\nu1
and C() = do !v2 or delay@k3;(E)|F())
and D() = ()
and E() = ()
and F() = do \nu4;B() or !v4

run 300 of (A()|B()|C()|D()|E()|F())
Model Reduction Techniques

• That is a *systematic* way to translate reactions to processes.
• But there can be *better* ways to do it.
• That is, ways that produce *more compact and/or modular models*, but with the *same kinetics*.
Ex: Catalysis

- Two reactions, same catalyst C
 - According to the general scheme the catalyst uses one channel for each reaction it catalyzes:

 a: \[A + C \rightarrow^r C + B \quad C = \!a_r; C \oplus \!b_r; C \]

 b: \[D + C \rightarrow^r C + E \quad A = ?a_r; B \]
 \[D = ?b_r; E \]

 - Modularizing: the catalyst has its own catalysis channel c, used for all the reactions it catalyzes:

 \[A + C \rightarrow^r C + B \quad C = \!c_r; C \]

 \[D + C \rightarrow^r C + E \quad A = ?c_r; B \]
 \[D = ?c_r; E \]
Modeling Combinatorial (Biochemical) Systems
Molecules with State

- Explosion of species, reactions, and their state space.

\[n \text{ modification sites} = 2^n \]
\[n \text{ molecular states} = 2^n \]
\[n \text{ ‘species’} = 2^n \]
\[n \text{ ODEs} = 2^n \]
Connected Molecules

- Further combinatorial explosion

\[n \text{ states} \rightarrow m \text{ states} = nxm \text{ states} \]

\[2^{n_1} \times 2^{n_2} \times \ldots \times 2^{n_m} = \text{BIG} \]

Figure 6. An example of the process diagram for part of the fission yeast cell cycle process represented in Figure 3. Temporal sequence of biochemical processes are represented explicitly. Molecular species appear repeatedly along the interaction processes.

A graphical notation for biochemical networks
Hiroaki Kitano
Iterated Connections (Polymers)

• ‘Infinite’ explosion

An actually infinite number of species and ODEs

\[p_1 \] (polymer of length 1)
\[p_2 \] (polymer of length 2)
\[p_3 \] (polymer of length 3)
...

Copolymer equation

An alternating copolymer has the formula: -A-B-A-B-A-B-A-B-, or \(-\cdot\cdot\cdot\)in. The molar ratios of the monomer in the polymer is close to one, which happens when the reactivity ratios \(r_1 \) & \(r_2 \) are close to zero, as given by the Mayo-Lewis equation also called the copolymerization equation.\[\text{[11]}\]

\[
\frac{d[M_1]}{d[M_2]} = \frac{[M_1] (r_1 [M_1] + [M_2])}{[M_2] ([M_1] + r_2 [M_2])}
\]

where \(r_1 = k_{11}/k_{12} \) & \(r_2 = k_{22}/k_{21} \)
\(\pi\)-calculus for Biochemistry

- Biochemistry here means
 - *Direct* modeling of complexation and polymerization, which are fundamental biochemical features.
 - That is, a complex is not a “new species”: it is a structure formed by existing basic species, which can also break apart.

- We now need the *full* \(\pi\)-calculus
 - We need to create new channels to represent new *complexation bonds*.
 - We need value-passing so the components of a complex can operate on those bonds: we need to pass *channels over channels*.
Complexation

\[A + B \overset{s}{\leftrightarrow}^{r} A:B \]

There is no good notation for this reaction in chemistry: \(A:B \) is considered as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in \(\pi \)-calculus. Let there be a single public association channel \(a_r \) at rate \(r \), and many private dissociations channels \(d_s \) at rate \(s \), one for each complexation event (these are dynamically created by the new-channel operator \(\nu \)):

\[
\begin{align*}
A_{\text{free}} &= (\nu d_s) !a_r(d_s); A_{\text{bound}}(d_s) \\
A_{\text{bound}}(d_s) &= !d_s; A_{\text{free}} \\
B_{\text{free}} &= ?a_r(d_s); B_{\text{bound}}(d_s) \\
B_{\text{bound}}(d_s) &= ?d_s; B_{\text{free}}
\end{align*}
\]

More compactly:

\[
\begin{align*}
A &= (\nu d_s) !a_r(d_s); !d_s; A \\
B &= ?a_r(d_s); ?d_s; B
\end{align*}
\]

Note that we are describing \(A \) independently of \(B \): as in the catalysis example, \(A \) could form complexes with many different species over the \(a_r \) channel.
Polymerization

- Polymerization is iterated complexation
 - It can be represented in π-calculus \textit{finitely}, with \textbf{one process (definition) for each monomer}.
 - Note that polymerization cannot be described \textit{finitely} in chemistry (or ODEs) because there it needs one reaction for each \textit{length} of polymer.
 - The reason it works in π-calculus is because of the ν operator. It enables the finite representation of systems of potentially unbounded complexity.
 - Like in real biochemistry, where the structure of each monomer is coded in a finite piece of DNA, and yet unbounded-length polymers happen.
Conclusions
π–Calculus

- A solution to combinatorial explosion
 - Pi–calculus does not have the typical combinatorial problems, at least not when you are writing a model.
 - Models are exponentially (for phosphorylation/complexation) or infinitely (for polymerization) more compact.
 - The combinatorial explosion still happens at simulation time, but can be handled ‘on demand’.
 - The state space is explored incrementally, and even if the state space is actually infinite (as with polymers) we can still simulate it with standard techniques.

- Shared by any “agent–based” modeling language
 - Provided it is sufficiently powerful to directly represent biochemical situations like complexation
 - I.e. NOT shared by chemical reactions (or ODE) languages
In Summary

• π–calculus
 o A mathematical notation for reactive systems
 o In stochastic form, suitable for representing discrete chemistry, biochemistry, etc.
 o Some unique properties: ability to finitely express systems of unbounded complexity, like networks of complexing proteins.

• Further Reading
 o R. Milner: Communicating and Mobile Systems: The Pi Calculus
 o L. Cardelli: From Processes to ODEs by Chemistry. TCS 2008, DOI: http://dx.doi.org/10.1007/978-0-387-09680-3_18