Molecular Programming
The systematic manipulation of matter

Luca Cardelli

Microsoft Research & University of Oxford

IMT Lucca, 2015-11-25
Objectives

• The promises of Molecular Programming:
  • In Science & Medicine
  • In Engineering
  • In Computing

• The current practice of Molecular Programming
  • DNA technology
  • Molecular languages and tools
  • Example of a molecular algorithm
Nanotechnology and the Double Helix: How it all started.

Ned Seeman, now at New York University, pioneered the field of structural DNA nanotechnology when he realized in 1979 that covalent phosphate linkages that connect two DNA duplex strands upon homologous recombination during cell division (so-called Holliday junctions) and that usually freely slide along the two connected DNA double helices can be immobilized and thus be used to create a spatially fixed connection between the two DNA duplex molecules—such feat is an elementary requirement for all kind of constructions. Furthermore, he was the first to show that one can and other discover a new field of applied sciences that deals with building things using DNA as construction material. The article also

Universal computing by DNA origami robots in a living animal

Yaniv Amir1, Eldad Ben-Ishay2, Daniel Levner3, Shmulik Ittah4, Almogit Abu-Horowitz5 and Ido Bachelet*
The Hardware Argument

Smaller and smaller things can be built
Smaller and Smaller

First working transistor
John Bardeen and Walter Brattain, Dec. 23, 1947

First integrated circuit

50 years later

25nm NAND flash
Intel&Micron, Jan. 2010. ~50 atoms

Single molecule transistor
Observation of molecular orbital gating
Nature, 2009; 462 (7276): 1039

Molecules on a chip

~10 Moore’s Law cycles left!

Building the *Smallest* Things

- How do we build structures that are by definition smaller than your tools?
- Basic answer: you can’t. Structures (and tools) should build themselves!
- By *programmed self-assembly*

[YouTube Video](https://www.youtube.com/watch?v=Ey7Emmdf7Y)
Molecular IKEA

- Nature can self-assemble. Can we?
- “Dear IKEA, please send me a chest of drawers that assembles itself.”
- We need a magical material where the pieces are pre-programmed to fit into each other.
- At the molecular scale many such materials exist...

Programmed Self-Assembly

Proteins

Membranes

DNA/RNA
The Software Argument
Smaller and smaller things can be programmed
We can program...

- Information
  - Completely!
We can program...

- Forces
  - Completely!
  (Modulo sensors/actuators)
We can program...

- **Matter**
  - Completely and directly!
  - Currently: only DNA/RNA.

*It's like a 3D printer without the printer!*
[Andrew Hellington]
DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labo/minchin/tutorials/dna.html)

Sequence of Base Pairs (GACT alphabet)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine
Robust, and Long

- DNA in each human cell:
  - 3 billion base pairs
  - 2 meters long, 2nm thick
  - folded into a 6μm ball
  - 750 MegaBytes

- A huge amount for a cell
  - Every time a cell replicates it has to copy 2 meters of DNA reliably.
  - To get a feeling for the scale disparity, compute:

- DNA in human body
  - 10 trillion cells
  - 133 Astronomical Units long
  - 7.5 OctaBytes

- DNA in human population
  - 20 million light years long
Zipping Along

- DNA can support structural and computational complexity.

DNA replication in real time
- In Humans: 50 nucleotides/second
  Whole genome in a few hours (with parallel processing)
- In Bacteria: 1000 nucleotides/second (higher error rate)

DNA transcription in real time
- RNA polymerase II: 15-30 base/second

Drew Berry
http://www.wehi.edu.au/wehi-tv
What can we do with “just” DNA?

- Organize ANY matter  [caveats apply]
- Execute ANY kinetics  [caveats: up to time scaling]
- Build Nano-Control Devices
- Interface to Biology
Organizing Any Matter

- Use one kind of programmable matter (e.g. DNA).
- To organize (almost) ANY matter through it.

“What we are really making are tiny DNA circuit boards that will be used to assemble other components.”
Greg Wallraff, IBM

Executing Any Kinetics

- The kinetics of any finite network of chemical reactions, can be implemented (physically) with especially programmed DNA molecules.

- Chemical reactions as an executable programming language for dynamical systems!
Building Nano-Control Devices

- All the components of nanocontrollers can already be built entirely and solely with DNA, and interfaced to the environment.

- DNA Aptamers
- DNA Logical Gates
- DNA Walkers & Tweezers
- Self-assembling DNA Tiles
- Sensing
- Constructing
- Computing
- Actuating
Constructing
Crosslinking
Crosslinking
Crosslinking
Crosslinking
In nature, crosslinking is deadly (blocks DNA replication).

In engineering, crosslinking is the key to using DNA as a construction material.
DNA Tiling

4 sticky ends

crosslinking

36 nt, 12.6 nm

Construction and manipulation of DNA tiles in free space

Praktali
2D DNA Lattices

Chengde Mao
Purdue University, USA

N-point Stars
3D DNA Structures

Ned Seeman
NYU

Andrew Tuberfield
Oxford

3D Crystal

Tetrahedron
CADnano

William Shih
Harvard

S.M. Douglas, H. Dietz, T. Liedl, B. Höberg, F. Graf and W. M. Shih
Self-assembly of DNA into nanoscale three-dimensional shapes, Nature (2009)
DNA Origami

*Folding* long (7000bp) naturally occurring (viral) ssDNA
By lots of short ‘staple’ strands that constrain it

Paul W K Rothemund
California Institute of Technology

Paul Rothemund’s “Disc with three holes” (2006)

Black: long viral strand
Color: short staple strands

DNA-Patterned Circuit Boards

"What we are really making are tiny DNA circuit boards that will be used to assemble other components."
--Greg Wallraff, IBM
Sensing
Aptamers

Artificially evolved DNA molecules that stick to anything you like highly selectively
Pathogen Spotlights

• DNA aptamer binds to:
  • A) a pathogen
  • B) a molecule our immune system already hates and immediately removes (eats) along with anything attached to it

• Result: instant immunity
  o Mice poisoned with Anthrax plus aptamer (100% survival)
  o Mice poisoned with Anthrax (not so good)

Kary Mullis (incidentally, also Nobel prize for inventing the Polymerase Chain Reaction)
Actuating
DNA Tweezers
DNA Walkers

A Synthetic DNA Walker for Molecular Transport

Department of Bioengineering and Applied Mathematics, California Institute of Technology

with kind permission of...
Hybridization Chain Reaction

Stable mixture of two hairpins

Triggered amplification by hybridization chain reaction
Robert M. Dirks and Niles A. Pierce"
Polymerization Motor

Rickettsia (spotted fever)
Curing
Computational Drugs

• An automaton sequentially reading the string PPAP2B, GSTP1, PIM1, HPS (known cancer indicators) and sequentially cutting the DNA hairpin until a ssDNA drug (Vitravene) is released.
Interfacing to Biology

- A doctor in each cell

*Fig. 1 Medicine in 2050: “Doctor in a Cell”*
The Biological Argument

Biological systems are already ‘molecularly programmed’
Abstract Machines of Biology

- **Gene Machine**
  - Nucleotides
  - Regulation
  - Make proteins
  - Send signals
  - Direct construction
  - Confinement and genome regulators

- **Protein Machine**
  - Amino acids
  - Hold receptors, host reactions
  - Metabolism, Propulsion
  - Signaling, Transport

- **Membrane Machine**
  - Phospholipids
  - Enact fusion, fission
  - Confinement, Storage
  - Bulk Transport

- **Glycan Machine**
  - Surface and Extracellular Features

Biological Languages

Molecular Interaction Maps

Gene Networks

Transport Networks

Gene Machine

Protein Machine

Membrane Machine
But ...

- Biology is programmable, but (mostly) not by us!

- Still work in progress:
  - Gene networks are being programmed in synthetic biology, but using existing ‘parts’
  - Protein networks are a good candidate, but we cannot yet effectively design proteins
  - Transport networks are being investigated for programming microfluidic devices that manipulate vesicles
Molecular Languages

... that we can execute
Our Assembly Language: Chemistry

- A Lingua Franca between Biology, Dynamical Systems, and Concurrent Languages

- Chemical Reaction Networks
  - $A + B \rightarrow, C + D$ (the program)

- Ordinary Differential Equations
  - $\frac{d[A]}{dt} = -r[A][B] \ldots$ (the behavior)

- Rich analytical techniques based on Calculus

- But prone to combinatorial explosion
  - E.g., due to the peculiarities of protein interactions
How do we “run” Chemistry?

• Chemistry is not easily executable
  • “Please Mr Chemist, execute me this bunch of reactions that I just made up”

• Most molecular languages are not executable
  • They are descriptive (modeling) languages

• How can we execute molecular languages?
  • With real molecules?
  • That we can design ourselves?
  • And that we can buy on the web?
Molecular Programming with DNA

Building the cores of programmable molecular controllers
The role of DNA Computing

• Non-goals
  • Not to solve NP-complete problems with large vats of DNA
  • Not to replace silicon

• Bootstrapping a carbon-based technology
  • To precisely control the organization and dynamics of matter and information at the molecular level
  • DNA is our engineering material
    • Its biological origin is “accidental” (but convenient)
    • It is an information-bearing programmable material
    • Other such materials will be (are being) developed
Domains

- Subsequences on a DNA strand are called **domains**
  - *provided* they are “independent” of each other

- Differently named domains must not **hybridize**
  - With each other, with each other’s complement, with subsequences of each other, with concatenations of other domains (or their complements), etc.
Short Domains

Reversible Hybridization

DNA double strand
Long Domains

Irreversible Hybridization
Strand Displacement

"Toehold Mediated"
Strand Displacement

Toehold Binding
Strand Displacement

Branch Migration
Strand Displacement

Displacement
Strand Displacement

Irreversible release
Bad Match
Bad Match
Bad Match
Bad Match

Cannot proceed
Hence will undo
Two-Domain Architecture

- Signals: 1 toehold + 1 recognition region

  \[ \text{t} \quad \text{x} \]

- Gates: “top-nicked double strands” with open toeholds

  \[ \text{t} \quad \text{x} \quad \text{t} \quad \text{y} \quad \text{t} \]

Garbage collection “built into” the gate operation

---

Two-Domain DNA Strand Displacement

Luca Cardelli

Plasmidic Gate Technology

- Synthetic DNA is length-limited
  - Finite error probability at each nucleotide addition, hence ~ 200nt max
- Bacteria can replicate plasmids for us
  - Loops of DNA 1000’s nt, with extremely high fidelity
  - Practically no structural limitations on gate fan-in/fan-out

Only possible with two-domain architecture
Transducer
Transducer $x \rightarrow y$
Transducer $x \rightarrow y$

Builder by self-assembly!

**ta** is a *private* signal (a different ‘a’ for each xy pair)
Transducer $x \rightarrow y$
Transducer $x \rightarrow y$

Active waste

\[\text{Active waste}\]
Transducer \( x \rightarrow y \)
So far, a **tx signal** has produced an **at cosignal**. But we want signals as output, not cosignals.
Transducer $x \rightarrow y$
Transducer $x \rightarrow y$
Transducer $x \rightarrow y$
Transducer $x \rightarrow y$

Here is our output **ty signal**.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).
Transducer $x \rightarrow y$

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)
Transducer $x \rightarrow y$
Join \( x+y \rightarrow z \)
Tools and Techniques

A software pipeline for Molecular Programming
Execution

A wetlab pipeline for Molecular Programming
Output of Design Process

- Domain structures
  - (DNA sequences to be determined)

“Ok, how do I run this for real”
From Structures to Sequences

DSD Structure → "Dot-Paren" representation

Output Sequences

Thermodynamic Synthesis

"Ok, where do I buy these?"
“DNA Synthesis”
From Sequences to Molecules

- Copy&Paste from nupack
Molecules by FedEx

“Ok, how do I run these?”
Add Water
Execute (finally!)

- Fluorescence is your one-bit ‘print’ statement
Output
Debugging

- A core dump

DNA strand length

Various processing stages

Calibration scale
Delivery!
A Molecular Algorithm
Running something interesting with DNA
Approximate Majority Algorithm

- Given two populations of agents (or molecules)
  - Randomly communicating by radio (or by collisions)
  - Reach an agreement about which population is in majority
  - By converting all the minority to the majority
  
  [Angluin et al., Distributed Computing, 2007]

- 3 rules of agent (or molecule) interaction
  - \( X + Y \rightarrow B + B \)
  - \( B + X \rightarrow X + X \)
  - \( B + Y \rightarrow Y + Y \)
  - “our program”
DNA Implementation, at U.W.

- Programmable chemical controllers made from DNA

[Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik and Georg Seelig]
Final Remarks
A Brief History of DNA

**20th century**

- Turing Machine, 1936
- Transistor, 1947
- Computer programming

**Systematic manipulation of information**

**21st century**

- Structural DNA Nonotech, 1982
- DNA Algorithm, 1994
- Molecular programming

**DNA, -3,800,000,000**

**Systematic manipulation of matter**
Acknowledgments

- Microsoft Research
  - Andrew Phillips, Biological Computation Group
- Caltech
  - Winfree Lab
- U.Washington
  - Seelig Lab
Questions?
Resources

- Visual DSD at MSR

- Molecular Programming Project at Caltech
  http://molecular-programming.org/

- Georg Seelig’s DNA Nanotech Lab at U.W. CS&E
  http://homes.cs.washington.edu/~seelig/