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Introduction



Noise vs. Complexity
� Cells operate in noisy molecular environments

� Via complex regulatory networks produced by evolution

� For each network, we can analyze the noise

� But how does noise related to (growing) network complexity?

� For a fixed function, does complexity reduce noise?
� Beyond the mere increase of overall molecular counts?

� Complexity could provide and advantage counteracting its costs

3



Noise in Multistable Systems
� A little noise can lead to different outcomes

� We investigate biochemical switches – bistable systems

� In previous work
� The (classical) cell cycle switch implements an optimal(-speed) switching algorithm

� More recent and more complex models do the same

� All that with deterministic (ODE) semantics

� On that basis
� We can compare networks of different complexity “fairly”

� And investigate how they differ in terms of noise characteristics
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Comparing Networks
� For chosen initial conditions

� Certain networks of different complexity have identical output (trajectories)

� Hence they have compatible function

� Why would then evolution choose complexity?
� Likely many different reasons and tradeoffs

� We investigate reduction in noise levels

� Trying to separate it from other effects
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Methods
� Bounding the problem by different techniques

� Chemical Master Equation
� Slow and accurate at low molecular counts, unfeasible at high counts

� Linear Noise Approximation
� Fast and accurate “in the thermodynamic limit”, inaccurate at low counts

� The biological regime falls in the middle of the two
� Computationally (and analytically) inaccessible, but bounded by consistent results

� We observe that
� For equivalent (deterministic) function, more complex networks “tend to” exhibit a 

reduction in intrinsic noise. Both size and structure matter

� Not simply attributable to the larger molecular counts of the larger networks
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To carry this out we need
� A notion of “function”

� Many different networks of different size that all “do the same thing”

� A baseline for comparison
� Deterministic traces

� Ways of investigating noise
� Numerical simulations of exact or approximate kinetics

� The fundamentally non-linear aspect of chemical kinetics
prevent analytical methods for most examples of interest
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Biochemical Networks



Network model
� Influence networks

� Influence species: two main molecular states (high/low or modified/unmodified)

� High-low transitions are nonlinear (e.g. sigmoidal)

� Exact transition kinetics varies (but we fix one uniformly)
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Network Evolution
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Across species: Ortholog genes Within species: Paralog genes

“same function”

“new function”



Comparing Networks
� High-value activity:

� 2001 Nobel prize in Physiology for the discovery of “Key regulators of the cell cycle … they 
have identified key molecules that regulate the cell cycle in all eukaryotic organisms, including 
yeast, plants, animals, and human.”

� These are  not the same molecules in all organisms, but it is still “the same network”

� Network differences expose evolution
� Tracing back ancestral networks from current ones

� Networks are algorithms
� Algorithms fall in different performance classes (is nature “optimal”?)

� Different networks for the same function may or may not be in the same class

� How do we compare networks?
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Network Emulation
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How to model “Influence”
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“True” molecular interactions. “Equivalent” influence interactions.

Chemical Reaction Network Influence Network



The Triplet Model of Influence
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Consensus Networks



� Population Consensus
� Given two populations of x and y “agents”

� We want them to “reach consensus”

� By converting all agents to x or to y
depending on which population was in majority initially

� Population Protocols Model
� Finite-state identity-free agents (molecules) interact in 

randomly chosen pairs (⇒ stochastic symmetry breaking)

� Each interaction (collision) can result in state changes

� Complete connectivity, no centralized control (well-mixed solution)

A Consensus Problem
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specification

X,Y := X+Y, 0   if  X0 ≥ Y0

X,Y := 0, X+Y if  Y0 ≥ X0



� Approximate Majority (AM) Algorithm
� Uses a third “undecided” population b

� Disagreements cause agents to become undecided

� Undecided agents agree with any non-undecided agent

A Consensus Algorithm
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x yb

x + y →r y + b
y + x →r x + b
b + x →r x + x
b + y →r y + y

catalysis

chemical
reaction
network

x=y=5000
b=0

x=5500
y=4500
b=0

activation
inhibition

AM



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

2007 2007



Not always that simple
� The epigenetic switch seems a direct biological 

implementation of an algorithm
� Although we may have to qualify that with some notion of 

approximation of the (enzymatic) kinetics

� In most cases the biological implementation seems 
more indirect or obfuscated
� “Nature is subtle but not malicious - Einstein” Ha! think again!

� Other implementations of Approximate Majority seem more 
convoluted and approximate
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How to Build a Good Switch
� We need first a bistable system: one that has two distinct and stable

states. I.e., given any initial state the system must settle into one of 
two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs
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A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y

x y

catalysis



A Good Algorithm
� Approximate Majority (AM)

� Third, undecided, state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions before converging is O(n log n)

⇒ fast (optimal)

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)
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x=y

Worst-case scenario, 
starting with x=y, b=0:

activation
inhibition

AM



An “Ugly” Algorithm: Cell Cycle Switch

� Is it a good algorithm? Is it bad?

� Is it optimal or suboptimal?
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Nobel-prize 
winning network

Obfuscation of a 
distributed 
algorithm?

xy

activation
inhibition



Convergence Analysis   - CONSENSUS
� Switches as computational systems
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Steady State Analysis   - SWITCH
� Switches as dynamical systems
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Color: full probability distribution of small-size system



Antagonistic Networks
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1 vs. 1 
Mutual Inhibition &
Self Activation

1 vs. 1 
Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks

Septation Initiation

3 vs. 3

The “new” cell cycle switch

MI SI

NCC

2 vs. 2

activation
inhibition

Delta-Notch



Network Morphisms

When does a (complex) network

implement a (simpler) algorithm?



Comparing networks
� How can we compare different networks?

� Different number of species

� Different number of reactions

� Apparently unrelated connectivity

� So that we can compare their function?
� Does antagonism (in network structure) guarantee bistability (in function)?

� We do it by mapping networks onto one another
so that they emulate each other
� Deterministic semantics version of “simulation” of systems

� (Stochastic semantics was the starting point, but too difficult/demanding for typical 
biological networks.)
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Mapping one network into another
� Notion is strangely missing from the literature

� Seen in Biology: single-network analysis (e.g. structure of feedback loops) and network reduction 
(e.g. while preserving steady states). Study of common or frequent subnetworks.

� Seen in C.S.: comparing network behaviors (e.g. morphisms of event structures).

� Nothing much resembling (bi)simulation “on the syntax” (structure) of whole biochemical networks.

� Model reduction is unavoidable and pervasive, but
� Often criticized/ignored by biologists when it leads to quantities that are “not biologically 

meaningful”. E.g. a fusion or change a variables in the ODEs where the new variables do not 
correspond to biological parts. The reduced model should “inform” the original one.

� Science’s ethos
� The “truth” is the big network, not the small one!

If you depart from the truth in any way, you have to explain how you can get back to it.

� The point is not to reduce the size of the network (although that’s neat), 
but to understand aspects of the big network by reference to a smaller one.

� The mapping is more important than either networks.
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Norbert Wiener
Pioneer of stochastic processes 

and inventor of Cybernetics.

“The best material model of a 
cat is another, or preferably the 
same, cat”



Network Emulation MI emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of MIMIMIMI such that the (6) trajectories of MIMIMIMI retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 30

(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)



CRN Morphisms
A CRN morphism from �, 	 to (��, 	�)

written � ∈ �, 	 → (��, 	�)

is a pair of maps � = �� , �ℛ

a species map �� ∈ � → ��

a reaction map �ℛ ∈ 	 → 	�

extended to a complex map �� ∈ ℕ� → ℕ�� 

linearly: �� � �̂ = Σ�∈��
��(�̂) ��
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Mappings (symmetries) 
between two networks

�� + � 

!� + ! 

�" + � 

2! 



Network Emulation: MI emulates AM
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MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

less trivial than you might think:

it need not preserve the out-degree of a node!

A mapping of species and reactions

z -> x
~y -> x



Network Emulation: SI emulates AM
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SI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

A mapping of species and reactions

z -> x
~y -> x



Network Emulation: NCC emulates MI

� For any rates and initial conditions of MIMIMIMI we can find some rates and initial 
conditions of NCC NCC NCC NCC such that the (18) trajectories of NCC NCC NCC NCC retrace those (6) of MIMIMIMI
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC

MI



Emulations Compose
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� The (18) trajectories NCCNCCNCCNCC can always retrace those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y

The new cell cycle switch 
can emulate AM exactly.

For any initial conditions 
of AM.

And for any rates of AM.



Emulations are Modular
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How to check for emulation
� How do we check a potential emulation morphism 

for all possible initial conditions of the target?
� Statically! Check conditions on the joint stoichiometric 

matrices of the two networks under the mapping.

� How do we check a potential emulation morphism 
for all possible rates of the target?
� Can’t; but if one emulation is found, then the rates of the 

target network can be changed arbitrarily and a related 
emulation will again exist.
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Static Criteria for Emulation
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Emulation Theorem: If � ∈ �, 	 → ��, 	�

is a CRN reactant morphism and 
stoichiomorphism then it is a CRN emulation

$ is the differential system of �, 	 , given by the law of mass action, %& is a 
state of ��, 	� . ' is the stoichiometric matrix and ( is the related reactant 
matrix. )* and )+ are the characteristic 0-1 matrices of the morphism maps 
�� (on species) and �ℛ (on reactions). −- is transpose.
Homomorphism implies reactant morphism.

)*
- · ( = (/ · )+

-

' · )+ = )* · '/

∀%/.   $ %/ ∘ �� = $� %/ ∘ ��

⇒

reactant morphism

stoichiomorphism

emulation

preserve enough
network structure

preserve enough
chemical stoichiometry

preserve derivatives ⇒MI

AM

MI

AM

Stoichiomorphims condition is 
sufficient for “networks of interest”
and actually “close” to a necessary condition.



Applications of Emulation
� Model Reduction

� Find reduced networks

� Compute quotient CRNs

� Find network symmetries 
that may be of biological interest

� Morphism Generation
� Find morphisms between networks

(e.g. all the ones for a fixed rate assignment)

39
Concur 2015

Aggregation
reduction

Emulation
reductionPOPL 2016



Noise Reduction 
in Complex Switches



Basic Switches (deterministic)
(A) (A) (A) (A) Influence network diagrams

((((B) B) B) B) Chemical reaction network diagrams and feedback loops

((((C) C) C) C) Numerical solutions of the deterministic kinetics of the networks:
Horizontal axis is time
Vertical axis is species concentration

First some arbitrary initial conditions are chosen for AM. 

Then the initial conditions of the other networks are chosen in such a 
way that each trace of each of the other networks retraces exactly one 
trace of AM. 

This can be done for any initial conditions chosen for AM, and 
indicates the potential of each of the other networks to operate as a 
simpler switch.

41(To appear.)



Basic Switches (stochastic)
Horizontal axes is time

Vertical axes is number of molecules. 

(A) (A) (A) (A) Influence networks. 

((((B) B) B) B) Chemical Master Equation solution: probability distribution, 
with color (in 10 bands from light = 0 to dark = 1) indicating the 
probability that at time t there are y molecules of the single 
indicated species. 

(C) (C) (C) (C) Chemical Master Equation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the network.

(D) (D) (D) (D) Central Limit Approximation solution: mean (solid lines) and 
standard deviation (color bands) for the species in the

network.

Disentangle the contribution of 
complexity to stochasticity

Compare network noise on the baseline 
of deterministic emulation, across 
networks of different size and structure
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CME vs LNA in the limit
AM at various system sizes
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More Complex Switches

Horizontal axes are time, vertical axes are number of molecules. 

(A) (A) (A) (A) Influence networks. 

((((B) B) B) B) ODE solutions for comparison

((((C) C) C) C) Chemical Master Equation solution: mean (solid lines) and standard deviation (color bands) for the species in the network. 

((((D) D) D) D) Central Limit Approximation solution: mean (black lines) and standard deviation (color bands) for the species in the network.
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Intrinsic Noise
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Complexity improves overall performance of the cell cycle switch. Complexity improves overall performance of the cell cycle switch. Complexity improves overall performance of the cell cycle switch. Complexity improves overall performance of the cell cycle switch. The performance of different networks was

evaluated by calculating the standard deviation of the main molecular states over time.

Standard deviations are calculated via numerical integration of the chemical master equation (CME) using the Visual GEC

software, and via numerical integration of the central limit approximation (CLA) in Matlab. We investigate switching in one

direction or the other by providing different initial conditions that settle (more likely) in different steady states. 

((((A) A) A) A) In the forward direction, principal molecular states were initialised at 2 copies, and complementary molecular states were initialised at 1 copy. 

((((B) B) B) B) In the reverse direction, principal molecular states were initialised at 1 copy, and complementary molecular states were initialised at 2 copies.



Extrinsic Noise

Complexity confers switching networks robustness to extrinsic noise. Complexity confers switching networks robustness to extrinsic noise. Complexity confers switching networks robustness to extrinsic noise. Complexity confers switching networks robustness to extrinsic noise. Extrinsic noise was analyzed by randomly perturbing the reaction rates of each 
model. Variations in network behaviour were assessed in comparison to the behaviour of the default parameterisation, in which all

reaction rates are set equal to 1. Network variation was quantified using the summed Wasserstein metric over the whole probability distribution 
over time.
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Noise vs. Complexity
� With corresponding initial conditions, all studied networks show the 

same mean behavior

� CCr emulating AM is the simplest explanation of the core cell cycle 
switching function

� Many other biological switches can be so reduced to an algorithm 
with well-understood properties

� On the basis of kinetic similarity of mean behavior, we show 
variations in noise behavior.

� Intrinsic noise tends to decrease with complexity, but this also 
depends on network structure and not directly on total molecular 
counts
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Complexity vs. Cost
� Complex networks, while more expensive, are less of a burden in 

energy rich situations.

� The cell cycle operates only in such “wellness” conditions.

� Hence complex switches may have evolved to work better by using 
more resources

� Complex network also reduce noise levels, so for a fixed noise level 
that can be tolerated, they work at lower molecular level for each 
species.
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Conclusions



Walks in Network Space
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Walks in Network Space
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Walks in Network Space

52

p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr

Neutral paths
in network space

Side
jumps



Networks are Algorithms
� They are methods for achieving a function

� We need to understand how these methods relate to each other

� In addition to how and how well they implement function

� Algorithms can be obfuscated, and nature can obfuscate networks (to what end?)

� Network emulation can be checked statically
� By stoichiometric/reaction-rate (structural) properties

� That is, no need to compare ODE (functional) properties

� For any initial conditions and rates of (one of) the networks

� We can efficiently discover emulations 
� Automatic model reduction of large networks 53



Nature likes good algorithms
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CCr

CC
Approximate

“default” rates and initial conditions

Exact
any rates and initial conditions

These additional feedbacks do exist 
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

NCC MI
AM



What Contributes to Complexity?
� Indifference? (does not really cost much)

� Robustness? (resist point failures)

� Adaptability? (neutral paths)

� Noise resistance? (improve signal processing)

� Temperature compensation?

� Etc.
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Feynman’s Blackboard
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