()

Microsoft”
Research
OXFORD

The Cell Cycle Switch Computes
Approximate Majority

Luca Cardelli, Microsoft Research & Oxford University

Mestre, 2015-04-08




Qutline

- Cellular Computation

- Computational capabilities of biochemical mechanisms
that may (or may not) be used by biological entities

- Chemical Algorithms

- Specific instances of (bio-)chemical computation
- Particularly, consensus and the cell cycle switch

- Obfuscation

+ How to hide a simple algorithm in a complex network
- How to understand a complex network by a simple algorithm (de-obfuscation)




Cellular Computation




Calbiochem’ MAPK Family Pathways

Cellular Computation

» No survival without computation!
+ Finding food
- Avoiding predators
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- How do cells compute?

+ Clearly doing "information processing” \ |
- What are their computational primitives? ‘ : S e
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Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr,, 1996, Proc. Natl_ Acad. Sci. USA, 93, 10078-10083.




Abstract Machines of Biochemistry

Hold receptors,
host reactions

Membrane

Machine
Phospholipids

Enact fusion, fission
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Signaling, Transport Surface and Bulk Transport

Extracellular Features




Bioinformatics View (Data Structures)
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Systems Biology View (Networks)
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These 3 machines
are Turing powerful!




More concretely

- Give substance to the claim that
"cells compute”
- Yes, but what do they compute?

- Catch nature red-handed in the act
of running a computational task

- Something that a computer scientist
would recognize as an algorithm




Chemical Algorithms




Can Chemistry Compute?

- If we believe that biology can do computation...

- It must be somehow based on chemistry

+ SO, can chemistry compute, and how?

- That is in itself a very interesting question with non-trivial answers
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Chemical Programming Examples

Spec program

Y = 2X X->Y+Y ooy
Y :=|Xx/2] X + X ->Y

Y = X1 + X2 X1->Y

X2 ->Y




Advanced Programming Examples

spec program
Y ;= min(X1, X2) X1+ X2->Y
Y := max(X1, X2) X1->L1+Y max(X1,X2)=

X2 -> |2 + Y (XT+X2)-min(X1,X2)
LT+ L2 ->K (but is not computed

Y +K->0 ‘sequentially”: it is a form
of concurrent computation)
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A Consensus Algorithm =" ——
y

X ==b—==
A Population Consensus Problem I_ T . T -----
Given two populations of x and vy “agents” (entities/molecules)
we want them to “reach consensus”
by converting all agents to x or to y

depending on which population was in majority initially chemical y + X =TX+ b

reaction
network

Approximate Majority (AM) Algorithm

Uses a third “undecided” population b
Disagreements cause agents to become undecided
Undecided agents agree with any non-undecided agent

Population Protocols Model

Finite-state identity-free agents (molecules) interact in randomly chosen ps
Each interaction (collision) can result in state changes

Complete connectivity, no centralized control (well-mixed solution) SRS b Samerepas § it Shanes
A Simple Population Protocol for Fast Robust
Approximate Majority 14
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A Biological Implementation

Approximate Majority (AM)

T :
1) Bistable
Even when initially x=y (stochastically)

2) Fast (asymptotically optimal)
O(log n) convergence time

3) Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority 2007

Epigenetic Switch

(HMT) (HDAC)
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Here We Got Lucky

- We can claim that the epigenetic switch is a direct I
biological implementation of an algorithm P té'\T@i

- Although we may have to qualify that with some notion of
approximation of the (enzymatic) kinetics

- In most cases the biological implementation seems
more indirect or obfuscated
- "Nature (s subtle but not malicious - Einstein” Hal think again! 752
- Other implementations of Approximate Majority seem more
convoluted and... approximate
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The Cell Cyc le Switch oot 1 Mg e

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs:

®
unreplicated | @ f
—]
DNA H%»GL-—]
0 W D . W O Numerical analysis of a comprehensive model of M-phase control in
¥ J —— Xenopus oocyte extracts and intact embryos
@2 {cdc25) @ o .
pre MPF MPF
unreplicated | ® . b
DNA

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?
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How to Build a Good Switch

- We need first a bistable system: one that has two distinct and stable
states. l.e., given any initial state the system must settle into one of
two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

18




A Bad Algorithm cotalyss o

+ Direct Competition

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X — X+ X
X+ty—=Yy+y

111111

19




A Good Algorithm

- Approximate Majority (AM)
- Third, undecided, state b
- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent

- With high probability, for n agents
- The total number of interactions before converging is O(n log n)
= fast (optimal)
- The final outcome is correct if the initial disparity is w(sgrt(n) log n)
= solution states are robust to perturbations

- Logarithmic time bound in parallel time

catalysis -o

X+y—>y+Db
y+X—>X+Db
D+ X—>X+X
b+y—-y+y

2c+06 o —
1.8e+06

555555

,,,,,, Worst-casg scenario,

_ e starting with x=y, b=0:
- Parallel time is the number of steps divided by the number of agents K=Y = B
- In parallel time the algorithm converges with high probability in O(log n) j;::ﬁ\“\\

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

|||||||||
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An “Ugly” Algorithm: Cell Cycle Switch

fee 3@

Nobel-prize
winning network

Variation on a
distributed
algorithm?

Double positive feedback on x
Double negative feedback on x
No feedback ony. Why 7?77

- |s it a good algorithm? Is it bad?
- |s it optimal or suboptimal?

i N @&— N

¢ _1

e

\

Need to explain this
network notation!
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How to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.
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Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

Chemical Reaction Network « > Influence Network
I IS TR T ) LN D ) Instead of modeling basic interactions, such as binding, synthesis, and degra-
E\-(J]\-ng a pf]l’ll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.
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activation =@

The Triplet Model of Influence hibiion

inhibit x
inhibition P
high —x--?:é- low = xishigh —'— Xpe— X| —2 xz—::-— X is low
activation '

Usually modeled by
sigmoid (e.g. Hill or
Reinitz) functions

biological mechanism:
(e.g.;) multisite
phosphorylation

activate x

triplet motif
We model them by

4 mass action reactions over

3 species X, Xy, Xo

They actually implement a
Hill function of coefficient 2:

N\ %0
Nxt
\ 2

r;=0.1
r10=10.0
rp;=0.1
1, =10.0

catalysis -o

For example:

Approximate Majority
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Convergence Analysis

- Switches as computational systems s b s Aty wie

4, [] I
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. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system
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Steady State Analysis

- Switches as dynamical systems

bias _ ; i

l l_l I}llas | J.?

Xe—Y _ ‘I'—I l__)T(T

L 7 | 1 it
SX

DC AM SC

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system
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Why is CC worse than AM?

- The classical CC has an algorithmic “bug

- It works ok but never as well as AM
- Because s continuously inhibits x through z, so that x cannot fully express

1

S
| =
I__l =

X -
r _T T | - = : -
I cc F 0 «t- 002

0 <t 20 ° The corresponding cell cycle
/ : oscillator is also depressed
- So let’s fix the bug!

- Easy: let x inhibit s and t “in retaliation”
- Q: Why didn't nature fix it?
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Nature fixed it!

- o

‘here is another known feedback loop

+ By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule (=s)

Biological network
; _l 150000 —t,> 00025 / -
9
Pr(x,|t,)
Z _-I — weel
[ X
-[ /\ T R - (Gwl) l
S l X %, - PP2A ===— cdk/cyc
1 1
T— r —T By cdc25 —T
_T GW OO “t,- 10 © \ T
Full activation!

s and x now are antagonists: they are the two halves of the switch,
mutually inhibiting each other (through intermediaries).
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More surprisingly

- The fix makes it faster too!

- The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:

Conclusion:
Nature is trying as hard as it can to
implement an AM-class algorithm!

The “classical” cell cycle switch is only
half of the picture: the extra feedback
completes it algorithmically.

15000

<_m>< -

AM
GW
CcC

T
<t

—
0.004
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Publications
- Our paper appeared:

+ Suggesting GW is a better switch

[ /_l\z {_l
than CC. September 2012 ]

Another paper that
same week:

- Showing experimentally that the
Greatwall loop is a necessary

component of the switch, i.e. the
not-as-good-as-AM network
has been ‘refuted’

SCIENTIFIC 02 ¢
REPLIRTS tant AN

@ The Cell Cycle Switch Computes
Approximate Majority

SUBJECT AREAS:
Luca Cardelli’ & Attila Csikasz-Nagy™*
COMPUTATIONAL
BIOIOGY

— L
natre -
COMMUNICATIONS

ARTICLE

D 6 Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | pOt:10. /i 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'! Yusuke Abelt, Toshiaki Tanaka?, Takayoshi Yamamota® !, Eiichi Okumura' & Takeo Kishimoto!
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What we learned

- The network structure of AM implements an input-driven switching function
(in addition to the known majority function).

+ The network structure of CC/GW implements a input-less majority function
(in addition to the known switching function).

- The behavior of AM and CC/GW in isolation are related.
- The behavior of AM and CC/GW in oscillator contexts are related (not shown).

- A refinement (GW) of the core CC network, known to occur in nature,
improves its switching performance and brings it in line with AM performance.
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But again, is CC (or GW) the “same” as AM?

- Our evidence for computational content of
biochemical networks is so far

- Quantitative, covering both kinetic and steady state behavior of what networks do

- But empirical (based on simulations/numerical solutions)

- And it does not yet explain how the CC/GW network relates to the AM network,
that is, how each piece of CC/GW corresponds to each piece of AM

- Analytical evidence is harder to obtain

- The proofs of the computational properties (optimality etc.) for the AM algorithm
are hard and do not generalize easily to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation, e.g.

in process algebra, are still lacking (although rich qualitative theories exist)
31




Obfuscation

When does a (complex) network
implement a (simpler) algorithm?




Antagonistic Networks

- Let's generalize:

- AM is based on antagonism between two species (inside the triplet)
+ So (essentially) is GW
+ So (essentially) are many standard biological networks

- Are they somehow related?

- We could try the same empirical analysis as for CC/AM
+ But we can do better

33




Mutual Inhibition (1 vs. 1)

- "All" cellular switches in all phases of the cell cycle follow (abstractly) a

mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle

transitions

Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

- Also found in other areas
(cell polarity establishment):

PHILOSOPHICAL
TRANSACTIONS
——OF

THE ROYAL Dj
SOCIETY J

rsth.royalsocietypublishing.org

The PAR network: redundancy and
robustness in a symmetry-breaking
system

Fumio Motegi'%* and Geraldine Seydoux*

signal
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Septation Initiation (1 vs. 1)

- Other (inherently different) biological networks are based on mutual inhibition,
and share characteristics with AM

——————— | I— ——— -

1 |

1 ¢ |

I Byrd,. > BYyrd g Byrdq I

| S AN 1

| ~ 9 7z \f\ |

| [ N |

1 SINNEW < SINC ‘(_'_’ SINO[G 1

| | |

| I I |

| I I |

Y

Cdc11 =2 Cdc11-P Cdc11-P €5 Cdcll
OPEN aACCESS Freely available online @PLOS | g%ﬂ;\é‘:’AYIONAL

Dynamics of SIN Asymmetry Establishment

Archana Bajpai', Anna Feoktistova®, Jun-Song Chen® Dannel McCollum? Masamitsu Sato™®,
Rafael E. Carazo-Salas®, Kathleen L. Gould?, Attila Csikdsz-Nagy'7-®*

SIN inhibiting Byr4,
absence of SIN promoting Byr4
Byr4 inhibiting SIN,
absence of Byr4 promoting SIN
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Delta-Notch (2 vs. 2)

- A mutual inhibition pattern

- Involving two species in each cell

low Delta
=>

ﬂ tWO Ce”S a,b low Notch

- DN, antagonize D,,N,

Lateral Inhibition through Delta-Notch
Signaling: A Piecewise Affine Hybrid Model*

Ronojoy Ghosh and Claire J. Tomlin

M.D. Di Benedetto, A. Sangiovanni-Vincentelli (Eds.): HSCC 2001, LNCS 2034, pp. 232-B46] 2001.
[® Springer-Verlag Berlin Heidelberg 2001

low Notch
=>
high Delta

high Notch
=>
low Delta

high Delta
=>
high Notch
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New Cell Cycle Network (3 vs. 3)

- A recent paper presents a more complete view of the cell cycle switch
N.B. “phosphorylation network dynamics” here is the same as our x5-x,-%, motif

Phosphorylation network dynamics in the control of . e
cell cycle transitions Mutual inhibition between
T e ke three Spec]es each

.’ ea’:\ﬂi lﬁﬁﬁﬁ?&fca?ar:fs?‘l;a E:IVEB FF?DUC; rd, South Parks Road, Oxford OX1 3QU, UK

B - PP1 /-1 Wee1

--._**

F'F"‘If;-}lm;(: E'EQDE w{;—}wu / '|'
k’ft PR \“j P  PP2A S X cdk1

ST - T_ [ 43

,—Cdkk.;' Y GWLI / —'l'Cdc25

Weel® Weel | i GdoZE® Cdods
NCC

U e’ L\
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Comparing networks

- How can we compare different networks?

- Different number of species
- Different number of reactions
- Apparently unrelated connectivity

- So that we can compare their function?

- Does antagonism (in network structure)
guarantee bistability (in function)?

- We do it by mapping networks onto one another

so that they emulate each other

38




Network Emulation: Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

T T Ny’Z___>X T \
(3 species)
Mmi AM

] / N initialize:
] z2 1 N\ x2

2 :(1’ 2 Z=X
- ~y =X

| ] Yi=X%
I AP AT ST VAR AN EE AR AR A AR AR Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism!
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Network Emulation: Ml emulates AM

A mapping of species and reactions

] i ILI

| ; I:X0¢ . X e— X5

AM

any initial conditions

homomorphic mapping

Z->X
~y -> X

f; [ 1

f N initial conditions:
] Nz2
] N o
o 2,=Y, =X,
1— . Zl = yl = Xl
\ e T

less trivial than you might think:
it need not preserve the out-degree of a node!
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Network Emulation: S emulates AM

A mappmg of speoes and reactions _ Q:i’
l_l_—l ] N any initial conditions

homomorphic mapping

initial conditions:

: 2
-y o] - Zp=Y2=Xp
‘ LZ . Z;1=Y15%

Z;=Yo =X,

Z->X
~y -> X

Si ZO‘ VZ]A _=22_
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Network Emulation: NCC emulates M|

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml

1—9\/ T_l

NCC M (3 species each)

J.// \l
s/

LSS S
e
s T T T

y —Z
T_ _T Zrp > Z '
L/\ ] y,q,S >y mi
R E e S AEEEEEEEEEE e R AR EEEE
(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
zZLp =z
yas=y

-+ Why does this work so well?
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Emulations Compose: NCC emulates AM

- The (18) trajectories NCC can always retrace those (3) of AM

’T_Dﬁ

Zrp -z Z,~y-> X

1_ J_ / T _'I' YAy » — X --- The new cell cycle switch
late AM exactly.
VA = S I conenulte A e

~Y,~Q,~S > X For any initial conditions

NeCC AM of AM.

/ ..... / ' And for any rates of AM.
] A ] N\, x0
2.54 22 | e N
] 2 1 N2

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
43




—e 5

Approximate Majority Emulation Z00

N —

N =
»VJ > N
Xt & K P
N N >
— N 8




Approximate Majority Emulation Z00
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( homomorphism and
stoichiomorphism (transitive))




Approximate Majority Emulation Z00
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Conclusions




Relating Networks

- Real biological networks

- Are of course much more complex than these simple patterns
- How much of that is obfuscation and how much is functional?

- Network emulation can be checked statically

+ By stoichiometric/reaction-rate (structural) properties
- That is, no need to compare ODE (functional) properties
- For any initial conditions and rates of (one of) the networks

- Efficient algorithms can find emulations

- Automatic model reduction of large networks
48




Computational Approach

Q (traditional); what kind of dynamical system is the cell-cycle switch?

A (traditional): Bistability — ultrasensitivity — hysteresis ...
- Focused on how sub-populations change over time.

Q (computational): What kind of algorithmic system s the cell-cycle switch?

A (computational): Interaction — complexity - convergence .
- Focused on how individual molecules interact as algorithmic components.

Leading to a better understanding of not just the function
but also the network (algorithm).

- If there is some clever population algorithm in nature that we have not invented yet (unlike AM)
how shall we recognize it?
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