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� No survival without computation!
� Finding food

� Avoiding predators

� How do they compute?
� Clearly doing “information processing”

� But can we actually catch nature running 
an (optimal) algorithm?

� MAPKKK = MAP Kinase Kinase Kinase =
that which operates on that which operates on 
that which operates on protein.

Cells Compute
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Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

We’ll see 
this motif later
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Bioinformatics View (Data Structures)
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Outline
� Analyzing biomolecular networks

� Try do understand the function of a network

� But also try to understand its structure, and what determines it

� The Cell-Cycle Switches
� Some of the best studied molecular networks

� Important because of their fundamental function (cell division) 
and the stability of the network across evolution

� We ask:
� What does the cell cycles switch compute?

� How does it compute it?
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� This basic network is universal in Eukaryotes [P. Nurse]
� The switching function and the basic network is the same from yeast to us.

� In particular detail, in frog eggs:

� The function is very well-studied. But why this network structure?

� That is, why this peculiar algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
Why ???



How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states. 
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population protocol” switches
� Identical agents (‘molecules’) in a population start in some state, say x or y

� A pair of agents is chosen randomly at each step, 
they interact (‘collide’) and change state

� The whole population must eventually agree on a 
majority value (all-x or all-y) with probability 1

10



A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y

x y

catalysis



A Very Good Algorithm
� Approximate Majority (AM)

� Third, undecided, state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions before converging is O(n log n)

⇒ fast (optimal)

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)
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x yb

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

x=y

Worst-case scenario, 
starting with x=y, b=0:

catalysis



Consensus Algorithms
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Direct Competition Approximate Majority

DC AM

Worse-case scenario example, 
starting with x0=x2, x1=0:

x0=x2

x=y

Bad: O(n) Good: O(log n)

x2 + x0 → x0 + x1

x1 + x0 → x0 + x0

x0 + x2 → x2 + x1

x1 + x2 → x2 + x2

x + y → y + y
y + x → x + x



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

Bistable
Even when x=y (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



Back to Biology
� The AM algorithm has ideal properties for settling a 

population into one of two states

� Seems like this would be useful in Biology
� Can we find biological implementations of this algorithm?

� Could it be related to the cell cycle switch?
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How to model “Influence”
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“True” molecular interactions. “Equivalent” influence interactions.



The Reinitz Model of Influence
� Based on early connectionist (neural 

network) modeling
� Each activation/inhibition interaction is 

modeled as a flexible sigmoid function with 
4+ parameters per node

� We prefer to stick to mass action kinetics
� It will later become clear why

� We model activation/inhibition nodes
by a mass action motif:
� Using 4 rate parameters per node

� Akin to multisite modification
17



Influence Network Notation
� Catalytic reaction

� Triplet motif
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x + z → z + y

z is the catalyst

influence node catalytic node

(~x)0= x2,    
(~x)1= x1,    
(~x)2= x0

Duality



Influence Network Duality
� Let ~x be the species such that 

(~x)0= x2,    (~x)1= x1, (~x)2= x0

so that promoting x is the same as inhibiting ~x etc. Then:

19



���

���

���

���

The Triplet Model of Influence
� Solving this mass action model at steady state

with ��� = �� + �� + ��, obtain �� as a function of 
 and � :
�

�� =
��������� 
�

������
� + ������
� + ��������

� Assuming � = ��� − 
 (inhibition decreases as activation increases)
obtain �� as a function of 
∈[0. . ���] (max stimulus = max response)

�� =
��������� 
�

(������ − ������ + ������)
� + (������ − 2������)��� 
 + ������ ���� 

� By regulating the rates of flow through �� within 2 orders of 
magnitude we can obtain a range of linear, hyperbolic and 
sigmoid responses in the range [0..1] to linear activation 
∈[0..1].
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steady state transitions 
from inhibited to activated
with ��� = 1 and 
∈[0..1]



Influence Nodes
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=

AM

inhibition

activation

inhibit x

activate x

high low x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions

We model them by 
4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

=

Approximate Majority

activation
inhibition
catalysis

r21 = 0.1

r10 = 10.0

r01 = 0.1

r12 = 10.0



Refining the AM algorithm
� Subject to biochemical constraints
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Step 1: the AM Network

� ... not biochemically plausible
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(x0 promotes x0)

(x2 promotes x2)

=



Natural Constraint #1
� Direct autocatalysis is not commonly seen in nature
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x1 + x0 → x0 + x0

x1 + x2 → x2 + x2



Step 2: remove auto-catalysis
� Replace autocatalysis 

� By mutual (simple) catalysis, introducing intermediate species z and r

� z and r need to ‘relax back’ when they are not being promoted:
s and t provide the back pressure for such relaxation

� ... still not biochemically plausible.
25

(x0 promotes r0, promotes x0)

(x2 promotes z2, promotes x2)



Natural Constraint #2
� x0 and x2 (usually two states of the same molecule) 

are both active catalysts in that network

� That is not commonly seen in nature
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vs. or



� Remove the catalytic activity of x2
� By “flipping the z feedback to the other side”

� All species now have one active (x0,z0,r0) and one inactive (x2,z2,r2) form

� This is ‘biochmically plausible’

Step 3: only one active state per species
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(x0 promotes r0, promotes x0)

(x2 promotes z0 via s bias,
z0 promotes x2 via inhibiting x0)



Done
� … and that is the cell-cycle switch!

� But did we preserve the AM function through our network transformations?

� Ideally: prove either that the networks are ‘contextually equivalent’ or that the 
transformations are ‘correct’

� Practically: compare their ‘typical’ behavior
28
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Convergence Analysis
� Switches as computational systems

29

DC AM SC CC
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Steady State Analysis
� Switches as dynamical systems
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In Previous Work
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DC AM CC

1.0

0.00355

0

0

2.0

15

0

0.00710

← tp →0

0

↑

xp

↓

Pr(xp|tp)

1.00

15000

0

1.00

↑

xs

↓

← ts →

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions (x0=x1=x2)

Black lines: high-count stochastic simulation traces
Color: full probability distribution of low-count system

Hor axis is time.

↑

xp

↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑

xs

↓

← sxs →

Black lines: deterministic ODE bifurcation diagrams
Red lines: medium-count stochastic simulations
Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards x0 against fixed bias.

Stabilization
Speed

Steady State
Stimulus-
Response

AM shows hysteresis (like CC)
time

stimulus

The “classical” Cell Cycle Switch CCCCCCCC
approximates AM performance

(a “bad” switch)

There is an obvious bug 
in CC performance!

activation
inhibition
catalysis



Evidence that CC is ‘similar’ to AM
� But there is a difference

� The classical cell cycle switch, CC, works ok but never as well as AM

� The output of CC does not go ‘fully on’:

� Because s continuously inhibits x through z, so that x cannot fully express 

� Engineering question: could we fix it? (Yes: let x inhibit s and t)

� Q: Why didn’t nature fix it?
32
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Nature fixed it!
� There is another known feedback loop

� By which x suppresses s “in retaliation” via the so-called Greatwall loop

� Also, s and t happen to be the same molecule (=s)

� s and x now are antagonists: they are the two halves of the switch, 
mutually inhibiting each other (through intermediaries).
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More surprisingly
� Makes it faster too!

� The extra feedback also speeds up the decision time of the switch, 
making it about as good as the ‘optimal’ AM switch:
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15000
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xs

↓

AM
GW
CC

Conclusion (in our published paper):
Nature is trying as hard as it can to 
implement an AM-class algorithm!

The “classical” cell cycle switch seems 
to be only half of the picture: the extra 
feedback completes it  algorithmically.



The Greatwall Kinase
� Our paper appeared:

� Suggesting GW is a better switch 
than CC.             September 2012

� Another paper that 
same week:
� Showing experimentally that the 

Greatwall loop is a necessary
component of the switch, i.e. the 
not-as-good-as-AM network
has been ‘refuted’
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The Argument So Far
� Relating dynamical and computational systems in isolation (as 

closed systems)
� The AM algorithm (network) implements an input-driven switching function (in addition to the known 

majority function).

� The CC algorithm implements a input-less majority function (in addition to the known switching function).

� The structures of AM and CC are related, and an intermediate network shares some properties of both.

� But what about the context?
� Will AM and CC behave similarly in any context 

(as open systems)?

� That’s a hard question, so we look at their intended context: implementing oscillators.

� Also, oscillators are almost the ‘worst case’ contexts: very sensitive to component behavior.
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Oscillators
� Basic in Physics, studied by simple phenomenological (not structural) ODE models.

� Non-trivial in Chemistry: it was only discovered in the 20’s (Lotka) that chemical systems can 
(theoretically) oscillate: before, oscillation was thought impossible. Shown experimentally only 
in the 50’s.

� Mechanics (since antiquity) and modern Electronics (as well as Chemistry) must engineer the 
network structure of oscillators.

� Biology: all natural cycles are oscillators. Here we must reverse engineer their network 
structure.

� Computing: how can populations of agents (read: molecules) interact (network) to achieve 
oscillations?
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en.wikipedia.org/wiki/Trammel_of_Archimedes

y2

y0

x0

x2

Cell Cycle Oscillator
� The cell cycle switch is part of an oscillator network

� The cell cycle oscillation: grow-divide-grow-divide...

� The principle of the oscillator
� Two interconnected switches yield a limit-cycle oscillator; e.g. two AM switches

� In a Trammel of Archimedes configuration (gray rates < black rates)

� (The biological network lacks some of these links and still oscillates)

38
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The Trammel of Archimedes
� A device to draw ellipses

� Two interconnected switchesswitchesswitchesswitches.

� When one switch is on (off) it flips the other switch on (off). When the other switch is on (off) it flips 
the first switch off (on).

� The amplitude is kept constant by mechanical constraints.
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The Shishi Odoshi
� A Japanese scarecrow (lit. scare-deer)

� Used by Bela Novak to illustrate the cell cycle switch.

40

u
p

d
n

e
m
pt
y

fu
ll

water

counterweight

empty + up � up + full
up + full � full + dn
full + dn � dn + empty
dn + empty � empty + up

http://www.youtube.com/watch?v=VbvecTIftcE&NR=1&feature=fvwp

Outer switched connections replaced by constant 
influxes: tap water and gravity.



Contextual Analysis
� AM switches in the context of oscillators
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Modularity Analysis
� CC swapped in for AM
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A new cell cycle switch candidate: GW
� Will it work in the normally-wired oscillator?

� Absolutely not!  �
� The x stable state is just too strong: a high x will shut down s completely; which means that r 

will be fully on, and it in turn will reinforce x fully. And y can never be strong enough to push 
down x when x-r are in such a strong mutual feedback. No amount of fiddling seems to give 
enough control on that situation.
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However this will
� Put s under control of y so it can undermine x

44

x

Robust full-on oscillation with all-default parameters 
(all black rates 1.0, all gray rates 0.5, all initial quantities 
equal)



Suggests a new interaction

� Either Gwl or PP2A or something 
along that path must be under 
control of cdc20.

� There are some hints in the 
literature that this may be the 
case, but no direct experimental 
validation.
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Suggests a new problem
� What is the ‘proper’ way to wire-in a replacement 

circuit?

� There is an answer (given by a study of network 
morphisms)
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But what about network equivalence?
� Our evidence is empirical

� Although quantitative and covering both kinetic and steady state behavior

� Also, contextual equivalence holds in the context of oscillators (see paper)

� Analytical evidence is harder to obtain
� The proof techniques for the AM algorithm are hard and do not generalize easily 

to more complex networks

� Quantitative theories of behavioral equivalence and behavioral approximation, e.g. 
in process algebra, are still lacking (although rich qualitative theories exist)
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Summary
� The structure of AM implements an input-driven switching function (in addition to 

the known majority function).

� The structure of CC/GW implements a input-less majority function (in addition to 
the known switching function).

� The structures of AM and CC/GW are related, and an intermediate network 
shares the properties of both.

� The behaviors of AM and CC/GW in isolation are related.

� The behaviors of AM and CC/GW in oscillator contexts are related.

� A refinement (GW) of the core CC network, known to occur in nature, improves 
switching performance and brings it in line with AM performance.
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