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Calbiochem’ MAPK Family Pathways

Cells Compute

» No survival without computation!
- Finding food
- Avoiding predators

- How do they compute?

+ Clearly doing “information processing” :

- But can we actually catch nature running
an (optimal) algorithm?
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~~~~~~~~~~~~~~ MARIR P88
, . , , MAPK 3= MAPK-P > MAPK-PP
MAPKKK = MAP Kinase Kinase Kinase = We'll see
that which operates on that which operates on this motif later . MAPK Plase
that which operates on protein. ouTPUT
Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr,, 1996, Proc. Natl_ Acad. Sci. USA, 93, 10078-10083.
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Abstract Machines of Biochemistry

Hold receptors,
host reactions

Membrane

Machine
Phospholipids

Enact fusion, fission

Metabolism, Propulsion (@) Confinement, Storage
Signaling, Transport Surface and Bulk Transport

Extracellular Features




Bioinformatics View (Data Structures)
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Systems Biology View (Networks)
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These 3 machines
are Turing powerful!




Outline

- Analyzing biomolecular networks

- Try do understand the function of a network
- But also try to understand its structure, and what determines it

- The Cell-Cycle Switches

- Some of the best studied molecular networks

- Important because of their fundamental function (cell division)
and the stability of the network across evolution

- We ask:

+ What does the cell cycles switch compute?
- How does it compute it?




The Cell Cyc le Switch oot 1 Mg e

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs:

®
unreplicated @
DNA

Double positive feedback on x
Double negative feedback on x
No feedback ony

W hy ? ? ? Numerical analysis of a comprehensive model of M-phase control in
co Xenopus oocyte extracts and intact embryos

b & 3G
(Y
pre MPF

unreplicated |
DNA

Bela Novak* and John J. Tysont
I irginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
ral

oooooooooooooooooooooooo

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?




How to Build a Good Switch
- What is a "‘good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population protocol” switches

- Identical agents (‘molecules’) in a population start in some state, say x or y

- A pair of agents is chosen randomly at each step,
they interact (‘collide’) and change state

+ The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1

10




A Bad Algorithm cotalyss o

+ Direct Competition

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X — X+ X
X+ty—=Yy+y

111111
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A Very Good Algorithm

- Approximate Majority (AM)
- Third, undecided, state b
- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent

- With high probability, for n agents
- The total number of interactions before converging is O(n log n)
= fast (optimal)
- The final outcome is correct if the initial disparity is w(sgrt(n) log n)
= solution states are robust to perturbations

catalysis -o

X+y—>y+Db
y+X—>X+Db
D+ X—>X+X
b+y—-y+y

- Logarithmic time bound in parallel time o] worstcasf scenaro
- Parallel time is the number of steps divided by the number of agents A=Y = B o
- In parallel time the algorithm converges with high probability in O(log n) j;::ﬁ\“\\

A Simple Population Protocol for Fast Robust
Approximate Majority

|||||||||
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Consensus Algorithms

Direct Competition Approximate Majority
! | l | X5 + Xg = Xo + Xq
X Xty—=y+y ° > Xy + Xg = Xo + Xg
— Yy +X— X+ X XOfo X« X3 Xo + X5 = X5 + X4
Bl i T ol
DC AM

Ba d O (n) Dana Angluin - James Aspnes - David Eisenstat G OOd O (| Og n)

A Simple Population Protocol for Fast Robust

o e Approximate Majority
X:y — 1.20+06 /
80 XO_X2 —0c /
B T | 1111 A I o . _
“ - ) Worse-case scenario example,
. starting with x,=x,, X;=0:
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A Biological Implementation

Approximate Majority (AM)

T
Bistable
Even when x=y (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

Epigenetic Switch
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Back to Biology

- The AM algorithm has ideal properties for settling a
population into one of two states

- Seems like this would be useful in Biology
- Can we find biological implementations of this algorithm?
- Could it be related to the cell cycle switch?
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ow to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.
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Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

Instead of modeling basic interactions, such as binding, synthesis, and degra-

3 - g v ] =1 & Ti 1 Ll =} 1 T ) J s}
E\-(J]\-ng a pf]lll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.




The Reinitz Model of Influence

Based on early connectionist (neural (/X\:\ Biochemcal Reacton
: Networks
network) mOdehng Y _. Z John J. Tyson' and Béla Novik?
- Each activation/inhibition interaction is s wao m
modeled as a flexible sigmoid function with e e o

4+ parameters per node amenafone Zons)|. neenlo o)

. . L inhibition
- We prefer to stick to mass action kinetics
- It will later become clear why effect —x-
L o inhibition
- We model activation/inhibition nodes activation i fre
by a mass action motif: R W 5o
. effect — x, 77— X, —= X,—
Using 4 rate parameters per node o o

Akin to multisite modification T l— ——
activation




Influence Network Notation

- Catalytic reaction T z z zis the catalyst
y L XLZ»V

X—y — X+Z—2Z+Yy

- Triplet motif

middle state

inhibit x ”"M””i.i”“(E.nsures nonlinearity) |

(promote X5) “"'"“‘* J - Duality
r—)T(" = _'_ X0oe— X| — ij.’_ - _/rNTX_*\_

promote X -——-7[” \ f X, %
(promote X,) f N e - e
Xo X, state where state where (~X)o= Xy,

output output X is promoted x is inhibited (~X)1= Xq,

(~X)2= Xo

influence node catalytic node




Influence Network Duality

- Let ~x be the species such that

(~X)o= %o (“X)= X, (~X),= X
so that promoting x is the same as inhibiting ~x etc. Then:

N

f._r__f:'{\ /r'\

XD Xz --...Xz MXO

output output output output
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The Triplet Model of Influence mhisition -

koo kize ~  (other

Solving this mass action model at steady state | effect — x,7 X, ——
With tot = x + x; + x,, Obtain x4 as a function of aand i : effect)
_ k10k21t0t az . .
X0 S R oka1a? + korkarai + ko1 ka2 activation
) =
\ x0 §§;

Assuming i = tot — a (inhibition decreases as activation increases) L x1
obtain x, as a function of ae[0..tot] (max stimulus = max response) N\ x2
[
kyoky tot a?
Xn =
° 7 (kiokar — kotkzy + ko1ki2)a? + (koikar — 2koikiz)tot a+ koi ki tot?

|
|

s

By regulating the rates of flow through x4 within 2 orders of
magnitude we can obtain a range of linear, hyperbolic and
sigmoid responses in the range [0.1] to linear activation a[0..1]. , .

steady state transitions ¥
from inhibited to activated . ]
with tot = 1 and a<[0..1] '

o
d




Influence Nodes

inhibition

activation

Usually modeled by
sigmoid (e.g. Hill or
Reinitz) functions

inhibit x

activate x

We model them by
4 mass action reactions over
3 species Xo, Xy, X5

They actually implement a
Hill function of coefficient 2:

N0
N«
N

x
0.6
0.6
0.4
] r; =01
o2 rp=10.0
] rp=0.1
1 r;; =10.0
R e e L
o 000 4000 &nnn o0 100

activation -
inhibition =4
catalysis -o

Approximate Majority
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Refining
- Subject to

the AM algorithm

i -

piochemical constraints




Step 1. the AM Network

- ... not biochemically plausible

-[ \ e
— Y +e= — _X04-—X]4-—X2 '
o

(X, promotes Xx,)

(Xo promotes x;)




Natural Constraint #1

- Direct autocatalysis is not commonly seen in nature

X1 + Xg = Xg + X
X1 + X5 = X5 + X,




Step 2: remove auto-catalysis

- Replace autocatalysis

- By mutual (simple) catalysis, introducing intermediate species z and r

+ z and r need to 'relax back” when they are not being promoted:
s and t provide the back pressure for such relaxation

(X, promotes z,, promotes x,)

—f N @ N

L] [
K d

T

t

(Xg promotes ry, promotes x,)

- ... still not biochemically plausible.

25




Natural Constraint #2

+ Xo and X, (usually two states of the same molecule)
are both active catalysts in that network

- That is not commonly seen in nature

R SRV SR
o !

!
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Step 3: only one active state per species

- Remove the catalytic activity of x,
- By “flipping the z feedback to the other side”

| i
1* =) 1 S bromotesx: via inhibting xg
F_T F _T (X, promotes r,, promotes x)
! |

- All species now have one active (xy,z,,Ip) and one inactive (x,,z,,r,) form
- This is "biochmically plausible’
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Done

- ... and that is the cell-cycle switch!

S

— & @@) Nobel-prize l
- “““““"'H%-@u winning network Z __I_
14 _ X

o
Variation on a r —T

distributed
algorithm t

- But did we preserve the AM function through our network transformations?

- Ideally: prove either that the networks are ‘contextually equivalent’ or that the
transformations are ‘correct’

+ Practically: compare their ‘typical” behavior

28




Convergence Analysis

- Switches as computational systems

| |
[ o A
=y 44 B
I_T |__1 f_T i_T
t i cCcC

—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system

NEW!
CC appears to converge in log time
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Steady State Analysis

- Switches as dynamical systems

bias

ll_l bias bias
Xe—Y ] L

l_x'
L f7 K -i-_TSTx
SX SX

t
DC AM SC

LN e—

0 o sx, - 150

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system

i bias
1

?jSTX

t  cc

15

| Prix|sx,)

. 10°
- 10
. 10°
0.01
01
. 1
B
X,
!
0
« sX, > 15
NEW!

AM shows hysteresis
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N Previous Work

I

Xe—Yy
L_J

(a "bad” switch) Dpe

—t,—

0
15000

Stabilization
Speed

1.0

o LI

B{TI

AM

C

b ]

0.00355

0.00710

activation -e

inhibition
catalysis

150
Steady State
Stimulus-
Response 1

0 « SXg -

time 1.0

«— sxp—>

150 stimulus 0

0
15
Pr(x,t,)
/ I 00001
I I 0001
0 “t,- 20

B
¥ )T
l
0
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Pr(x,|sx,)

. 10°
| | 10"
- 10°
 0.01
0.1
I
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The "classical” Cell Cycle Switch CC
approximates AM performance

SCIENTIFIC 0> W
REPLIRTS 5 tnnS(

The Cell Cycle Switch Computes
Approximate Majority

SUBJECT AREAS:
o Luca Cordell” & Atila Csikdsz:Nagy®

[E—
BT

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions (xy=x;=X,)

Black lines: high-count stochastic simulation traces
Color: full probability distribution of low-count system

Hor axis is time.

AM shows hysteresis (like CC)

Black lines: deterministic ODE bifurcation diagrams
Red lines: medium-count stochastic simulations
Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards X, against fixed bias.

There is an obvious bug
in CC performance!
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Fvidence that CC is 'similar’ to AM

- But there is a difference

- The classical cell cycle switch, CC, works ok but never as well as AM
- The output of CC does not go ‘fully on”:

| o

Z

0.00710

®
r

iy
1

C
t

- Because s continuously inhibits x through z, so that x cannot fully express

- Engineering question: could we fix it? (Yes: let x inhibit s and t)

- Q: Why didn't nature fix it?
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Nature fixed it!

- o

‘here is another known feedback loop

+ By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule (=s)

( F to 0. / >

—lz 150005 t 0.0025 Pgr(xnlt) . ele]

—mp
S / \ T_Sl( ! E pp2A - _dT|<'
l )i i - cdk/cyc

T— r —T 'y cdc25 —T

_T GwW 0 “t,- 10 ° \ T

Full activation!

s and x now are antagonists: they are the two halves of the switch,
mutually inhibiting each other (through intermediaries).
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More surprisingly

- Makes it faster too!

- The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:

Conclusion (in our published paper):
Nature is trying as hard as it can to
implement an AM-class algorithm!

The “classical” cell cycle switch seems
to be only half of the picture: the extra

feedback completes it algorithmically.

15000

<_m>< -

AM
GW
CcC

T
<t

—
0.004
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The Greatwall Kinase

SCIENTIFIC 02
REPg}RTS {
- Our paper appeared: Z
+ Suggesting GW is a better switch i—\_l:)l( @ The Cell Cycle Switch Computes
than CC. September 2012 ¢ 1 ... Approximate Majority

Luca Cardelli’ & Attila Csikasz-Nagy™*
COMPUTATIONAL
BIOIOGY

- Another paper that
same week:

- Showing experimentally that the
Greatwall loop is a necessary
component of the switch, i.e. the
not-as-good-as-AM network
has been ‘refuted’

— AN
nature \ ————— @
COMMUNICATIONS

ARTICLE

D 6 Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | pOt:10. /i 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'! Yusuke Abelt, Toshiaki Tanaka?, Takayoshi Yamamota® !, Eiichi Okumura' & Takeo Kishimoto!
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The Argument So Far

Relating dynamical and computational systems in isolation (as
closed systems)

- The AM algorithm (network) implements an input-driven switching function (in addition to the known
majority function).

- The CC algorithm implements a input-less majority function (in addition to the known switching function).
- The structures of AM and CC are related, and an intermediate network shares some properties of both.

But what about the context?

Will AM and CC behave similarly in any context
(as open systems)?

- That's a hard question, so we look at their intended context: implementing oscillators.
- Also, oscillators are almost the ‘worst case’ contexts: very sensitive to component behavior.
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Oscillators

- Basic in Physics, studied by simple phenomenological (not structural) ODE models.

- Non-trivial in Chemistry: it was only discovered in the 20's (Lotka) that chemical systems can
(theoretically) oscillate: before, oscillation was thought impossible. Shown experimentally only
in the 50°s.

- Mechanics (since antiquity) and modern Electronics (as well as Chemistry) must engineer the
network structure of oscillators.

- Biology: all natural cycles are oscillators. Here we must reverse engineer their network
structure.

- Computing: how can populations of agents (read: molecules) interact (network) to achieve
oscillations?

37




Cell Cycle Osci

- The cell cycle switc

lator

N is part of an oscillator network

- The cell cycle oscillation: grow-divide-grow-divide...

- The principle of the oscillator

- Two interconnected switches yield a limit-cycle oscillator; e.g. two AM switches

- In a Trammel of Archimedes

configuration (gray rates < black rates)

- (The biological network lacks some of these links and still oscillates)

L1

B

=l

" Yo l

Yo [ ?_1

Xo

en.wikipedia.org/wiki/Trammel_of_Archimedes
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The Trammel of Archimedes

A device to draw ellipses

Two interconnected switches.

- When one switch is on (off) it flips the other switch on (off). When the other switch is on (off) it flips

the first switch off (on).
- The amplitude is kept constant by mechanical constraints.

The network

Y1
Yo

X ==Y

en.wikipedia.org/wiki/Trammel_of_Archimedes
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The Shishi Odoshi

- A Japanese scarecrow (lit. scare-deer)

- Used by Bela Novak to illustrate the cell cycle switch.

counterweight

oooooooooooooooooooooooooo

ooooooooooooooooooooooooo

empty + up = up + full
up + full > full + dn

full + dn = dn + empty
dn + empty 2> empty + up

http://www.youtube.com/watch?v=VbvecTIftcE&NR=1&feature=fvwp

Outer switched connections replaced by constant
influxes: tap water and gravity.
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Contextual Analysis
- AM switches in the context of oscillators

30
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Modularity Analysis
- CC swapped in for AM

2? ....... . Jr =06
N sy = 10
0 et

25
T e . r/r, = 0.675
)f ﬁ::;;_j-u--:;;/ sy =10
o —

0 «sx—-> 20
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A new cell cycle switch candidate: GW

- Will it work in the normally-wired oscillator?

- Absolutely not! ®

- The x stable state is just too strong: a high x will shut down s completely; which means that r
will be fully on, and it in turn will reinforce x fully. And y can never be strong enough to push
down x when x-r are in such a strong mutual feedback. No amount of fiddling seems to give

enough control on that situation.
43




However this will

- Put s under control of y so it can undermine x

sly
L5

V_

le

X

&
AN
L\

-l
1

SX

X

SPiM

3000

b()
2250

1500

=
oo

750

0
0 021901

Robust full-on oscillation with all-default parameters

(all black rates 1.0, all gray rates 0.5, all initial quantities
equal)
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Suggests a new interaction

+ Either Gwl or PP2A or something
along that path must be under | |
control of cdc20.

cdc20 —
- There are some hints in the T_, i l
literature that this may be the i weel
case, but no direct experimental ! (Gwl) T |
validation. ---@ PP2A F---- cdk/cyc

cdc25
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Suggests a new problem

- What is the ‘proper’ way to wire-in a replacement
circuit?

- There is an answer (given by a study of network
morphisms)




But what about network equivalence?

- Our evidence is empirical

- Although quantitative and covering both kinetic and steady state behavior
- Also, contextual equivalence holds in the context of oscillators (see paper)

- Analytical evidence is harder to obtain

- The proof techniques for the AM algorithm are hard and do not generalize easily
to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation, e.g.
in process algebra, are still lacking (although rich qualitative theories exist)
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summary

+ The structure of AM implements an input-driven switching function (in addition to
the known majority function).

- The structure of CC/GW implements a input-less majority function (in addition to
the known switching function).

- The structures of AM and CC/GW are related, and an intermediate network
shares the properties of both.

- The behaviors of AM and CC/GW in isolation are related.
- The behaviors of AM and CC/GW in oscillator contexts are related.

- A refinement (GW) of the core CC network, known to occur in nature, improves
switching performance and brings it in line with AM performance.
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