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Motivation
� Give substance to the claim that 

“cells compute”
� Yes, but what do they compute?

� Catch nature red-handed in the act 
of running a computational task
� Something that a computer scientist 

would recognize as an algorithm
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H.Lodish & al. Molecular Cell Biology  4th ed.



A Consensus Algorithm
� Population Protocols

� Finite-state identity-free agents (molecules) interact in randomly chosen pairs

� Each interaction (collision) can result in state changes

� Complete connectivity, no centralized control (well-mixed solution)

� A Population Consensus Problem
� Find which state x or y is in majority in the population

� By converting the whole population to x or y

� Approximate Majority (AM) Algorithm
� Uses a third “undecided” state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions is O(n log n) ⇒ fast (optimal)

� Correct outcome if the initial disparity is ω(sqrt(n) log n) ⇒ robust 

� In parallel time, converges in O(log n)
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x yb

x + y →r y + b
y + x →r x + b
b + x →r x + x
b + y →r y + y

x=y

Worst-case scenario, 
starting with x=y, b=0:

catalysis

chemical
reaction
network



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

Bistable
Even when x=y (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp

2007 2007



Motivation (cont’d)
� We can claim that the epigenetic switch is a direct

biological implementation of an algorithm
� Although we may have to qualify that with some notion of 

approximation of the (enzymatic) kinetics

� In most cases the biological implementation seems 
more indirect or obfuscated
� “Nature is subtle but not malicious - Einstein” Ha! think again!

� Other implementations of Approximate Majority seem 
convoluted and... approximate
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Obfuscated Implementations
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GW

Sep 2012 Sep 2012

� GW is a better cell cycle switch 
than [the traditional switch]

� GW is how the cell cycle switch 
“really works”

new feedback

switch reset

GW = AM “obfuscated”



Motivation (cont’d)
� When does a biologically messy network X “implement” some ideal algorithm Y?When does a biologically messy network X “implement” some ideal algorithm Y?When does a biologically messy network X “implement” some ideal algorithm Y?When does a biologically messy network X “implement” some ideal algorithm Y?

� Pushed coauthors into thinking about approximate stochastic bisimulation metrics for CTMCs

� But they didn’t come back...

� Some networks behave similarly because “their ODEs are just equivalent” [David S.]
� When are CRNs “deterministically equivalent”? 

� Or better, when do trajectories of one CRN “collapse” into trajectories of another?

� This can be answered on the static structure of CRNs as opposed to their kinetics. 

� Independently on rates and initial conditions (of one of the two networks).
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Influence Networks
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=
inhibition

activation

inhibit x

activate x

high low x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions

We model them by 
4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

=

Approximate Majority

activation
inhibition
catalysis

r21 = 0.1

r10 = 10.0

r01 = 0.1

r12 = 10.0

Reaction Network

Influence Network

triplet motif

biological mechanism:
(e.g.:) multisite 
phosphorylation
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Biological Influence Networks
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Mutual Inhibition &
Self Activation

Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks

Septation Initiation

Better Switching

The “new” cell cycle switch

MI SI NCC

Cell Cycle
Switching

The G2/M cell cycle switch

CC

activation
inhibition



Network Emulation: MI emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of MIMIMIMI such that the (6) trajectories of MIMIMIMI retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 10

(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)



MI to AM Emulation: Network Morphism
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MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

less trivial than you might think:

it need not preserve the out-degree of a node!

A mapping of species and reactions

z -> x
~y -> x



SI to AM Emulation: Network Morphism
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SI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

A mapping of species and reactions

z -> x
~y -> x



AMr to AM Emulation: Network Morphism
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AMr

initial conditions:

r0 = x0 = x0
AM

r1 = x1 = x1
AM

r2 = x2 = x2
AM

AM

homomorphic mapping

any initial conditions

A mapping of species and reactions

(AMr adds an indirection to the x positive loop;
if we also add an indirection to the x negative 
loop, we obtain a prototypical cell cycle switch
that also emulates AM: CCR)

x -> x
r -> x



Network Emulation: NCC emulates MI
� For any rates and initial conditions of MIMIMIMI we can find some rates and initial 

conditions of NCC NCC NCC NCC such that the (18) trajectories of NCC NCC NCC NCC retrace those (6) of MIMIMIMI

� Why does this work so well?
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC

MI



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))

r ⇢ x

~s ⇢ x

AMs

AMr

Neutral paths
in network space

Side
jumps



Emulations Compose: NCC emulates AM
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� The (18) trajectories NCCNCCNCCNCC can always retrace those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y



Emulation in Context
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AM-AM Oscillator

AM-MI Oscillator

� ∈ MI → AM is an emulation: 
it maps   � → 	 and   ~� → 	

We can replace AM with MI in a context. The 
mapping � tells us how to wire MI to obtain an 
overall emulation:

Each influence crossing the dashed lines into 	 is 
replaced by a similar influence into both � and
~�. The latter is the same as an opposite 
influence into � (shown). 

Each influence crossing the dashed lines out of 	
is replaced by a similar influence from the same 
side of either � or ~�. The latter is the same as a 
similar influence from the opposite side of �
(shown), and the same as an opposite influence 
from the same side of �.



Another 
Zoo
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Network Perturbations
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Network               Normal Behavior         Removing each link in turn

A complex but robust 
implementation of the
simple network

dead

never dead “on average”



Morphisms of CRNs



A Theory of Network Emulation 
(with thanks to David Soloveichik)

� So far, evidence is empirical
� Specific simulations based on a choice of parameters

� But indeed...
� We can show analytically that, GW, NCC, etc. are exactly and always as good as AM

� Where exactly means numerically as good, not just in the same complexity class

� And always means for any choice of rates and initial conditions (of the target network)

� A network emulates another network:
� When it can exactly reproduce the kinetics of another network for any choice of rates and 

initial conditions (of the other network)

� We aim to show that e.g. the cell cycle switch can emulate AM in that sense

� And moreover that the emulation is algorithmic: it is determined by static network structure
(including rate constants and stoichiometric constants), not by random kinetics 23



When can a Network Emulate Another?
� What kind of morphisms guarantee emulation?

� do they preserve network structure?

� do they preserve stoichiometry?

24



Chemical Reaction Networks
� A CRN is a pair �, � where

� � = {��, … , ��} a finite set of species

� � = {��, … , ��} a finite set of reactions(*)

� Reactions � = � →� � ∈ �
with complexes �, � ∈ ℕ�

stoichiometric numbers ��, �� for � ∈ �

and rate constants � > 0

� The stoichiometry of � in � →� � is:

!(�, � →� �) =  �� − ��

&(�, � →� �) = � · (�� − ��)

25

� = {(, ), *}

� = �

� =  2( + ) →� ( + 3*
�. = 2, �/ = 1, �1 = 0

�. = 1, �/ = 0, �1 = 3

�

2
( )

*

! (, � = −1 net stoichiometry 
& (, � = −� (instantaneous) stoichiometry

2
( )

*

(*) � →� �, � →�3
� ∈ �     ⇒    � = �′



CRN Morphisms
A CRN morphism from �, � to (�5, �6)

written � ∈ �, � → (�5, �6)

is a pair of maps � = �7 , �ℛ

a species map �7 ∈ � → �5

a reaction map �ℛ ∈ � → �6

extended to a complex map �7 ∈ ℕ� → ℕ�5 

linearly: �7 � �̂ = Σ�∈�7
;<(�̂) ��

(sometimes omitting the subscripts on �)
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Mappings (symmetries) 
between two networks

=� + �>

	� + 	>

=? + �>

2	>



3 Key Morphisms
� A morphism � ∈ �, � → �5, �6 is 

� a CRN homomorphism
if �ℛ is determined by �7: 

�ℛ � →� � = �7 � →� �7 �

� a CRN reactant morphism
if �ℛ is determined by �7 on reactants. ∃�6, �A :  

�ℛ � →� � = �7 � →�6 �A

� a CRN stoichiomorphism if:
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BC
D · E = EF · BG

D

BC
D · H = HF · BG

D

E · BG = BC · EF

⇒

⇔

def.

E, EF are the respective stoichiometric matrices
H, HF are the respective reactant matrices  
BC, BG are the characteristic 0-1 matrices of �7 , �ℛ

BC �, �̂ = 1  if �7 � = �̂ else 0



Checking the Stoichiomorphism Condition
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�I�(�̂)

�J>, �JK �J�, �JL �J?, �JM �JN, �JO

�> 0 1 -1 0 	>

�� 1 -1 1 -1 	�

�? -1 0 0 1 	?

=> -1 0 0 1 	?

=� 1 -1 1 -1 	�

=? 0 1 -1 0 	>

P�> P�� P�? P�N

∀�̂ ∈ AM

& =>, �J> + & =>, �JK =  −1 = & 	?, P�>

am0am1

am2 am3

mi0mi1

mi2 mi3

mi4mi5

mi6 mi7

∀� ∈ �.   ∀�̂ ∈ �6.  ΣS∈�;< Ŝ & �, � = & � � , �̂

MI AM

All unit rates (sufficient because 
of another theorem)

�(=>)

� ∈ MI → AM

This is both a homomorphism 
and a stoichiomorphism

�I� P�>



CRN Kinetics
A state of a CRN �, � is a T ∈ ℝV

�

The differential system of a CRN (�, �), W ∈ ℝV
� → ℝ�

Given by the law of mass action:

W(T)(�) = ΣS∈X  &(�, �) · [r]T

Usually written as a system of coupled concentration 

ODEs, integrated over time:
\T]

\^
= W(T)(�)
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_

T

T�
� W(T)(�)

a vector of concentrations for each species

W(T)(�) gives the instantaneous change of 
concentration of a species in a given state

sum over all reactions of the stoichiometry 
of the species in the reaction times the 
mass action of the reaction in the state

the mass action of a reaction in  state is the 
product of reagent concentrations 
according to their stoichiometric numbers:

[� →� �]T = T` = Π�∈� T�
`]



if the derivative of � (in state TF ∘ �)
equals the derivative of � � (in state TF)

if we start the two systems in states T = TF ∘ � 
(which is a copy of TF according to �) and TF
resp., for each � the solutions are equal and 
the derivatives are equal, hence they will have 
identical trajectories by determinism

Kinetic Emulation
A morphism � ∈ �, � → (�5, �6) is a CRN emulation
if for the respective differential systems W, W5 , ∀TF ∈ ℝV

�5 :

W TF ∘ � = W5 TF ∘ �

That is: ∀� ∈ �.  W TF ∘ � � = W5 TF (� � )

30

W

_

T = TF ∘ �
T�

�

W T � =

W6 TF (� � )

�, �

_

TF
TF�(�)

�(�)

(�5, �6)

2 2c

�

TF

ℝV
 

T

ℝV
 

ℝ�5

ℝ�

ℝ�5

ℝ�
W

W6

TF

−∘ � −∘ �

TF ∘ �

W6 TF

=



Emulation Theorem
Theorem: If � ∈ �, � → �5, �6 is a CRN 
reactant morphism and stoichiomorphism 
then it is a CRN emulation

W is the differential system of �, � , given by the law of mass action, TA is a 
state of �5, �5 . E is the stoichiometric matrix and H is the related reactant 
matrix. BC and BG are the characteristic 0-1 matrices of the morphism 
maps �7 (on species) and �ℛ (on reactions). −D is transpose.
Homomorphism implies reactant morphism.
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BC
D · H = HF · BG

D

E · BG = BC · EF

∀TF.   W TF ∘ �7 = W6 TF ∘ �7

⇒

Thus, for any initial conditions of �5, �6 we 

can initialize �, � to match its trajectories. 
And also (another theorem), for any rates of 

�5, �6 we can choose rates of �, � that 

lead to emulation. 
reactant morphism

stoichiomorphism

emulation

⇒MI

AM

MI

AM

preserve enough
network structure

preserve enough
chemical stoichiometry

preserve derivatives



Change of Rates Theorem
A change of rates for �, � is morphism d ∈ �, � → �, �′
such that d(�) is the identity and d �, �, � = �, �, �e .

Theorem: If � ∈ �, � → (�5, �6) is a stoichiomorphism, then 
for any change of rates d ̂ of (�5, �6) there is a change of rates d of 
�, � such that d ̂ ∘ � ∘ dI� is a stoichiomorphism.

In fact, d changes rates by the ratio with which d ̂ changes rates:

d �, �, � = �, �, � ·
�6 3

�6
where � �, �, � = (�A, �A, �6) and d ̂ �A, �A, �6 = (�A, �A, �6′).
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thus, for any rates of �5, �6 we 

can match trajectories

a morphism that modifies rates only 



Corollaries
� By checking only static network and 

morphism properties we can learn that:

� All these networks are (at least) bistable

� (We do not have to reanalyze the steady 
states of all these dynamical systems)

� All these networks can perform exactly
as fast as AM

� (We do not have to reprove the complexity 
bounds for all these networks)
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Conclusions



Network Emulation Morphisms
� What guarantees emulation?

� Reactant morphism + stoichiomorphism: static, state-independent (structural) conditions

� How do you find them?
� Emulation Theorem => they do not depend on initial conditions

� Change of Rates Theorem => can look for rate-1 morphisms

� E.g. test all possible rate-1 homomorphism between two networks to see if they are stoichiomorphisms

� How common are they?
� Likely relatively rare, but still many useful ones => richness of networks space

� How useful are they?
� Establish structural, algorithmic, (non-accidental) reasons for kinetic similarity

� Explain simple behavior “facets” of complicated networks

� Investigate evolutionary paths (maybe)

� How brittle are they?
� Will a perturbed trajectory of the source network converge to a trajectory of the target network?

� What about other reaction kinetics?

� What about stochastic?
� Is there a CME Emulation Theorem?
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ApproximateApproximateApproximateApproximate Majority - 3-state
StochasticStochasticStochasticStochastic, discrete time
(DTMC) Fundamental results.

Approximate Majority - 3-state
Stochastic, discrete time 
(ad-hoc)

Approximate Majority - 3-state
Stochastic, continuous timecontinuous timecontinuous timecontinuous time
(CTMC). Simulations.

Transfer complexity results from discrete time 
population protocols to continuous time
stochastic chemical reaction networksstochastic chemical reaction networksstochastic chemical reaction networksstochastic chemical reaction networks.

ExactExactExactExact Majority - 6-state 
NondeterministicNondeterministicNondeterministicNondeterministic. 
(population protocol)

ExactExactExactExact Majority - 4-state
Stochastic, continuous timecontinuous timecontinuous timecontinuous time.
(similar to 2004 paper)

Approximate Majority - 3-state
Stochastic, continuous timecontinuous timecontinuous timecontinuous time
(CTMC) Fundamental results.

The biological cell cycle switch 
is a (non-obvious) implementation of 
approximate majority. Simulations.

Approximate Majority - 3-state
Continuous spaceContinuous spaceContinuous spaceContinuous space, continuous time
(Deterministic ODE). Emulation theorem.


