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Introduction



DNA Computing
� Programmable controllers for 

embedded DNA systems
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Chemical Reaction Networks
� In DNA Strand Displacement we 

can implement arbitrary chemical 
reaction networks (CRN)

� CRN has become our “general 
purpose programming language” 
for nanotechnology
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Engineered CRNs
� What is the meaning/purpose/effect of an 

engineered CRN program?

� How can we represent desired behavior (algorithms) 
in the CRN language?

� How can we correctly transform programs written in 
the CRN language?
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Natural CRNs
� What is the meaning/purpose/effect of a natural CRN 

program?

� How can nature represent desired behavior 
(algorithms) in the CRN language?

� How can nature correctly transform programs written 
in the CRN language?
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CRN Morphisms
When are two reaction networks related?

For example:
� When do they produce the same behavior?

� When is one more robust than another?

� When has one evolved from another?

� When is one a simplified but representative version of another?

� When are there hidden symmetries within one network?

� A morphism (map) relates two networks
� Study conditions on morphisms that answer the above questions
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Algorithms



A Consensus Algorithm
� Population Protocols

� Finite-state identity-free agents (molecules) interact in randomly chosen pairs

� Each interaction (collision) can result in state changes

� Complete connectivity, no centralized control (well-mixed solution)

� A Population Consensus Problem
� Find which state x or y is in majority in the population

� By converting the whole population to x or y

� Approximate Majority (AM) Algorithm
� Uses a third “undecided” state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions is O(n log n) ⇒ fast (optimal)

� Correct outcome if the initial disparity is ω(sqrt(n) log n) ⇒ robust 

� In parallel time, converges in O(log n)
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x yb

x + y →r y + b
y + x →r x + b
b + x →r x + x
b + y →r y + y

x=y

Worst-case scenario, 
starting with x=y, b=0:

catalysis

chemical
reaction
network



A Plain Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

2007 2007
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Obfuscated Implementations?

11

Mutual Inhibition &
Self Activation

Mutual Inhibition &
Mutual Anti-activation

Cell cycle transitions

Polarity establishment

Gene networks
SIN inhibiting Byr4,
absence of SIN activating Byr4

Septation Initiation

Better Switching

The “new” cell cycle switch

MI SI NCC

Cell Cycle
Switching

The G2/M cell cycle switch

CC

activation
inhibition



Networks and Morphisms



Influence Networks
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=
inhibition

activation

inhibit x

activate x

high low x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions

We model them by 
4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

=

Approximate Majority

activation
inhibition
catalysis

r21 = 0.1

r10 = 10.0

r01 = 0.1

r12 = 10.0

Reaction Network

Influence Network



Network Emulation: MI emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of MIMIMIMI such that the (6) trajectories of MIMIMIMI retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 14

(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)



Emulation is a Network Morphism
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MI

initial conditions:

z0 = y2 (= x0)

z1 = y1 (= x1)

z2 = y0 (= x2)

AM

homomorphic mapping

any initial conditions

less trivial than you might think:

it need not preserve the out-degree of a node!

A mapping of species and reactions



Network Emulation: NCC emulates MI
� For any rates and initial conditions of MIMIMIMI we can find some rates and initial 

conditions of NCC NCC NCC NCC such that the (18) trajectories of NCC NCC NCC NCC retrace those (6) of MIMIMIMI

� Why does this work so well?
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC

MI



Approximate Majority Emulation Zoo

17

p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,~s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))



Emulations Compose: NCC emulates AM
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� The (18) trajectories NCCNCCNCCNCC can always retrace those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y



Emulation in Context
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AM-AM Oscillator

AM-MI Oscillator

� ∈ MI → AM is an emulation: 
it maps   � → 	 and   ~� → 	

We can replace AM with MI in a context. The 
mapping � tells us how to wire MI to obtain an 
overall emulation:

Each influence crossing the dashed lines into 	 is 
replaced by a similar influence into both � and
~�. The latter is the same as an opposite 
influence into � (shown). 

Each influence crossing the dashed lines out of 	
is replaced by a similar influence from the same 
side of either � or ~�. The latter is the same as a 
similar influence from the opposite side of �
(shown), and the same as an opposite influence 
from the same side of �.



When can a Network Emulate Another?
� What kind of morphisms guarantee emulation?

� do they preserve network structure?

� do they preserve stoichiometry?
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Emulation Theorem
Theorem: If � ∈ �, � → ��, �� is a CRN 
reactant morphism and stoichiomorphism 
then it is a CRN emulation

� is the differential system of �, � , given by the law of mass action, �� is a 
state of ��, �� . � is the stoichiometric matrix and � is the related reactant 
matrix. �� and �� are the characteristic 0-1 matrices of the morphism 
maps �� (on species) and �ℛ (on reactions). −� is transpose.
Homomorphism implies reactant morphism.
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��
� · � = � · ��

�

� · �� = �� · � 

∀� .   � � ∘ �� = �� � ∘ ��

⇒

Thus, for any initial conditions of ��, �� we 

can initialize �, � to match its trajectories. 
And also (another theorem), for any rates of 

��, �� we can choose rates of �, � that 

lead to emulation. 
reactant morphism

stoichiomorphism

emulation

⇒MI

AM

MI

AM

preserve enough
network structure

preserve enough
chemical stoichiometry

preserve derivatives



Corollaries
� By checking only static network and 

morphism properties we can learn that:

� All these networks are (at least) bistable

� (We do not have to reanalyze the steady 
states of all these dynamical systems)

� All these networks can perform exactly
as fast as AM

� (We do not have to reprove the complexity 
bounds for all these networks)
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Another 
Zoo
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Network Perturbations
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Network               Normal Behavior         Removing each link in turn

A complex but robust 
implementation of the
simple network

dead

never dead “on average”



Cell Cycle Switch



xy

� This basic network is universal in Eukaryotes [P. Nurse]
� The switching function and the basic network is the same from yeast to us. 

The human cdc2 gene can be replaced for the yeast one, and it works!

� In particular detail, in frog eggs:

� The function is very well-studied. But why this network structure?

� That is, why this peculiar algorithm?

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
Why ???



Cell Cycle vs AM
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DC AM CC

1.0

0.00355

0

0

2.0

15

0

0.00710

← tp →0

0

↑

xp
↓

Pr(xp|tp)

1.00

15000

0

1.00

↑

xs
↓

← ts →

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions (x0=x1=x2)

Black lines: high-count stochastic simulation traces
Color: full probability distribution of low-count system

Hor axis is time.

↑

xp
↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑

xs
↓

← sxs →

Black lines: deterministic ODE bifurcation diagrams
Red lines: medium-count stochastic simulations
Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards x0 against fixed bias.

Stabilization
Speed

Steady State
Stimulus-
Response

AM shows hysteresis (like CC)
time

stimulus

The “classical” Cell Cycle Switch CCCCCCCC
approximates AM performance

(a “bad” switch)

There is an obvious bug in 
CC performance: let’s fix it!

activation
inhibition
catalysis



Cell Cycle vs AM
� But GW is better!

� Fully switchable, just as fast as AM

� GW emulates AM

� That same week:
� The Greatwall loop is a necessary

component of the switch

� So, nature fixed CC!
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A Theory of Network Emulation 
(with thanks to David Soloveichik)

� So far, evidence is empirical
� Simulations based on a choice of parameters

� But indeed...
� We can show that, GW, NCC, etc. are exactly and always as good as AM

� Where exactly means numerically as good, not just in the same complexity class

� And always means for any choice of rates and initial conditions
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Conclusions



Nature likes a good algorithm
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CCr

CC

Simulation Morphisms

Approximate
“default” rates and initial conditions

Exact
any rates and initial conditions

These additional feedbacks do exist 

in real cell cycles (via indirections)

Even the most recent, most complex, cell cycle switch can exactly emulate AM

NCC MI
AM



Interpretations of Network Morphisms
� Explanation of network structure

� E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that 
embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM “explains” what Delta-Notch (normally) does, and exactly 
how well it can do it.

� Robust implementation of simpler function
� Redundant symmetries are implicit in the stoichiomorphism relationships

� Neutral paths in network space (evolution)
� If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is 

“kinetically neutral”.

� This allows the network to increase its complexity without kinetic penalty.

� Later, the extra degrees of freedom can lead to kinetic differentiation.

� But meanwhile, the organism can explore variations of network structure.

� Network implementation (not abstraction!)
� Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior, 

on the contrary, they are about refinement / fine-graining that preserve behavior.

� They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) implementable 
because of excessive demands on species interactions.
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ApproximateApproximateApproximateApproximate Majority - 3-state
StochasticStochasticStochasticStochastic, discrete time
(DTMC) Fundamental results.

Approximate Majority - 3-state
Stochastic, discrete time 
(ad-hoc)

Approximate Majority - 3-state
Stochastic, continuous timecontinuous timecontinuous timecontinuous time
(CTMC)

Transfer complexity results from discrete time 
population protocols to continuous time
stochastic chemical reaction networksstochastic chemical reaction networksstochastic chemical reaction networksstochastic chemical reaction networks.

ExactExactExactExact Majority - 6-state 
NondeterministicNondeterministicNondeterministicNondeterministic. 
(population protocol)

ExactExactExactExact Majority - 4-state
Stochastic, continuous timecontinuous timecontinuous timecontinuous time.

Approximate Majority - 3-state
Stochastic, continuous timecontinuous timecontinuous timecontinuous time
(CTMC) Fundamental results.

The biological cell cycle switch 
is a (non-obvious) implementation of 
approximate majority.

Approximate Majority - 3-state
Continuous spaceContinuous spaceContinuous spaceContinuous space, continuous time
(Deterministic ODE)


