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DNA Computing

+ Programmable controllers for
embedded DNA systems

nature
nanotechnology

nature.com » journal home » archive » issue » article » abstract

ARTICLE PREVIEW

NATURE NANOTECHNOLOGY | ARTICLE [ =

Programmable chemical controllers
made from DNA

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips,
Luca Cardelli, David Soloveichik & Georg Seelig




Chemical Reaction Networks

- In DNA Strand Displacement we
can implement arbitrary chemical
reaction networks (CRN)
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Engineered CRNs

- What is the meaning/purpose/effect of an
engineered CRN program?

- How can we represent desired behavior (algorithms)
in the CRN language?

- How can we correctly transform programs written in
the CRN language?




Natural CRNs

- What is the meaning/purpose/effect of a natural CRN
program?

- How can nature represent desired behavior
(algorithms) in the CRN language?

- How can nature correctly transform programs written
in the CRN language?
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RN Morphisms

nen are two reaction networks related?

For example:

+ When do they produce the same behavior?

-+ When is one more robust than another?

- When has one evolved from another?

- When is one a simplified but representative version of another?
- When are there hidden symmetries within one network?

- A morphism (map) relates two networks

+ Study conditions on morphisms that answer the above questions
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A Consensus Algorithm =" —1—
Population Protocols |_X == Y

S,

Finite-state identity-free agents (molecules) interact in randomly chosen pairs
- Each interaction (collision) can result in state changes

- Complete connectivity, no centralized control (well-mixed solution)

X+y—->'y+b
i chemical % v Sy 4 {
A Population Consensus Problem eaction yFXo'x+ D>
Find which state x or y is in majority in the population network b+ X—>'X+X
By converting the whole population to x or y b + y SNy y+y
Approximate Majority (AM) Algorithm o
- Uses a third "undecided” state b e
- Disagreements cause agents to become undecided e Worst-case scenario, _
- Undecided agents believe any non-undecided agent X=y _,,_‘mkstartmg ith x=y, b=0:
With high probability, for n agents = \
- The total number of interactions is O(n log n) = fast (optimal) °
- Correct outcome if the initial disparity is w(sqrt(n) log n) = robust e . Do B
- In parallel time, converges in O(log n)

A Simple Population Protocol for Fast Robust
Approximate Majority

9




A Plain Biological Implementation

Approximate Majority (AM) Epigenetic Switch
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic

Dana Angluin - James Aspnes - David Eisenstat
A Simple Population Protocol for Fast Robust 2007 2007 Cell Memory by Nucleosome Modification

Approximate Majority e S TR o

“Correspondance: sneppen@nbick
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Obtuscated Implementations?

Mutual Inhibition &
Self Activation
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Cell Cycle
Switching
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Influence Networks

inhibition

activation

Usually modeled by
sigmoid (e.g. Hill or
Reinitz) functions

inhibit x

activate x

We model them by
4 mass action reactions over
3 species Xo, Xy, X5

They actually implement a
Hill function of coefficient 2:

N0
N«
N

x
0.6
0.6
0.4
] r; =01
o2 rp=10.0
] rp=0.1
1 r;; =10.0
R e e L
o 000 4000 &nnn o0 100

activation -
inhibition =4
catalysis -o

Approximate Majority

Reaction Network

Influence Network
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Network Emulation: Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

T T Ny’Z___>X T \
(3 species)
Mmi AM

] / N initialize:
] z2 1 N\ x2

2 :(1’ 2 Z=X
- ~y =X

| ] Yi=X%
I AP AT ST VAR AN EE AR AR A AR AR Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism!
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Emulation is a Network Morphism

A mapping of species and reactions

-

K

AM

X ] X0e—— X1

—

any initial conditions

a

homomorphic mapping

]

/ N initial conditions:
] N 22
E N

5] Z,=Y, (= %)
x | z,=y, (=x)
7 ] Z, = Yo (=)

less trivial than you might think:
it need not preserve the out-degree of a node!
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Network Emulation: NCC emulates M

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml

},—9\/1_1

NCC M (3 species each)

J.// \l
s/

LSS S
e
s T T T

: — 7
A _1 | zpos :
L/ Ne | Yas-—y i
................ f e R AR EEEE
(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
zZLp =z
yas=y

-+ Why does this work so well?
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Approximate Majority Emulation Z00
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Approximate Majority Emulation Z00
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( homomorphism and
stoichiomorphism (transitive))




Emulations Compose: NCC emulates AM

- The (18) trajectories NCC can always retrace those (3) of AM

’T_l__rﬁ
ZLp - z Z,~y-> X

O T_lyqsy I
T_l/_T o [y

~Y,~Q,~S > X

SO
BERALSRABRABRREY

\\\\\\\\\\\\\\\\\\\\\\\\
000000

(18 species on 3 traJectorles) (3 species on 3 trajectories)
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Emulation in Context

|
X

L L L R ey L R R L R
0 5 10 15 20 25 30 35 40 45 50

------------------

|_-'.
.....é;.....;
j

O RN R A TR T
0 5 10 15 20 25 30 35 40 45 50

AM-MI Oscillator

m € MI - AM is an emulation:
tmaps z—-x and ~w-x

We can replace AM with Ml in a context. The
mapping m tells us how to wire Ml to obtain an
overall emulation:

Each influence crossing the dashed lines into x is
replaced by a similar influence into both z and
~w. The latter is the same as an opposite
influence into w (shown).

Each influence crossing the dashed lines out of x
is replaced by a similar influence from the same
side of either z or ~w. The latter is the same as a
similar influence from the opposite side of w
(shown), and the same as an opposite influence

from the same side of w.
20




When can a Network Emulate Another?

- What kind of morphisms guarantee emulation?

- do they preserve network structure?
- do they preserve stoichiometry?




Fmulation Theorem

Theorem: If m € (S,R) — ($,R) isa CRN
reactant morphism and stoichiomorphism
then it is a CRN emulation

T preserve enough
network structure

preserve enough
chemical stoichiometry

reactant morphism mg -p=p-me

stoichiomorphism Q -Myp=mg-P

U

emulation /P, F(Do ms) = F‘(i}) omg preserve derivatives

F is the differential system of (S, R), given by the law of mass action, ¥ is a
state of (S, R). ¢ is the stoichiometric matrix and p is the related reactant
matrix. mg and mg, are the characteristic 0-1 matrices of the morphism
maps mg (On species) and mg, (On reactions). —Tis transpose.
Homomorphism implies reactant morphism.

Thus, for any initial conditions of (S, R) we
can initialize (S, R) to match its trajectories.
And also (another theorem), for any rates of
(S, R) we can choose rates of (S, R) that
lead to emulation.

[T o am
I:onxlzxz
mi Ll =y
Y2 e— Y1e— Yo
_]_] N Mmi
N

—p —p
I~ Zoe— 21— 22

i
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Corollaries

+ By checking only static network and
morphism properties we can learn that: C

+t)
#

Ly
$ 3 o
]
]
z
o
L]
- bin
< N N v N nN
- 0 ey
¢ N e x X
® N N
@ %
& N

- All these networks are (at least) bistable

- (We do not have to reanalyze the steady
states of all these dynamical systems)

IRk
” [t
.L_—KI.__L
[,
4
L1

- All these networks can perform exactly
as fast as AM

- (We do not have to reprove the complexity
bounds for all these networks)
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Network Perturbations

Network

xa xb xc xd

XX

ya yb yc yd

A complex but robust
implementation of the
simple network

Normal Behavior

¢ 1 2 3 4 5 & 7 8 9 1

Removing each link in turn

2 N0
N NG
4 -

N sumOa0;xb0;xc0:xd0)

\ sum(xa0;xb0;xc0;xd0) N sum(xa0;xb0;xc0;xdo)

N sum(xa0;xb0;xc0;xd0)

N\ sum(vazivb2ive2ivd2) Nsom(yazivbaiye2ivd2)

JRARRA ARSI Rk LRSS s ) sk st S L LARE LAk taaaa rat

~_never dead

\ sum(xa0;xb0;xc0;xdo) 1 (x30;xb0;0;30)

\ sum(xa0;x60;xc0;xd0)

sumGcaLAbLxeLxa1)
N sum(eatiabcinds) NS
N sum(eazinbixc2int2) N sumGcazinb2ixezing2)
suma0, Sum(ya0iyb0rvco:vao)
Sumtyat sumyaziybLveLval)
242 N somiyazivo2 Nsumyaz, N sumiyaziybziveaiydz)
e
2e

A AL aaasd st st e e
o 1 2 3 4 s & 7 8 3
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The Cell Cyc le Switch oot 1 Mg e

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.
The human cdc2 gene can be replaced for the yeast one, and it works!

- In particular detail, in frog eggs:

Double positive feedback on x
DO u b | en eg at|Ve feed ba C k on X Numerical analysis of a compl:ehensive model of M-phase control in
N f d b k Xenopus oocyte extracts and intact embryos

O Teedback ony
Why 2?7

Bela Nov:

d John J. Tysont

- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?
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C ‘ ‘ C ‘ A M activation  -@ The “classical” Cell Cycle Switch CC
inhibition =4 i
e yC e VS catalysis approximates AM performance

SCIENTIFIC 0> W
REPLIRTS 5 tnnS(

o LI

— .-.]
Xe—V ET( The Cell Cycle Switch Computes
|_T Approximate Majority

SUBJECT AREAS:

b ]

" ” . COMPUTATIONAL lwea Cardelli' & Attila Csikasz-Nagy**
(a "bad” switch) bpec AM c it
0 —t,— 1.0 0.00355 0 0.00710
15000 15 _ ) _
PrOct.) CC converges in O(log n) time (like AM)
Stabilization / . o oo (but 2x slower than AM, and does not fully switch)
Speed —
1 i Symmetrical initial conditions (xy=x;=X,)
Xg Black lines: high-count stochastic simulation traces
! Color: full probability distribution of low-count system
Hor axis is time.
AM shows hysteresis (like CC
0 0 “t,- 20 © Y ( )

0 10 0 time 1.0
150

Steady State
Stimulus-
Response 1

15 Black lines: deterministic ODE bifurcation diagrams
' Red lines: medium-count stochastic simulations
Pr(x,|sx,) Color: full probability distribution of low-count system
. 10°
| | 10" Hor axis is stimulus pushing towards X, against fixed bias.
. 10°
 0.01

0.1
I

There is an obvious bug in
CC performance: let's fix it!

B
¥ )T
l
0
5

0 JupeT 150 stimulus 0 - sx,— 1
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Cell Cycle vs AM

- But GW is better!

Fully switchable, just as fast as AM

GW emulates AM
-t > 0.0025
15000 3 >
Pr(x;|t,)
I 00001
I 0.001
W oot
T 01
X ol
i 1
Xp
B
[ 0 0
0 “t,- 1.0

- That same week:

The Greatwall loop is a necessary
component of the switch

So, nature fixed CC!

1PO-g uoko
aAmoRY|

SCIENTIFIC 02 W
REPLIRTS Al tans

@ The Cell Cycle Switch Computes
Approximate Majority

Luca Cardelli’ & Attila Csikasz-Nagy™*

SUBJECT AREAS:

COMPUTATIONAL
BIOIOGY

nature
COMMUNICATIONS

panret ——— &

ARTICLE

' & Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 01028/ ncomms 2
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

Masatoshi Haral!, Yusuke Abe’!, Toshiaki Tanaka?, Takayoshi¥amamoto! !, Eiichi Okumura' & Takeo Kishimoto!,
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A Theory of Network Emulation
(with thanks to David Soloveichik)

- So far, evidence is empirical
- Simulations based on a choice of parameters

- But indeed...

- We can show that, GW, NCC, etc. are exactly and always as good as AM
- Where exactly means numerically as good, not just in the same complexity class
- And always means for any choice of rates and initial conditions

30
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Nature likes a good algorithm

Simulation Morphisms

] 5 r i
- KR :3

K

I
Approximate | Exact
[

‘default” rates and initial conditions ce any rates and initial conditions

A

These additional feedbacks do exist
in real cell cycles (via indirections)

Fven the most recent, most complex, cell cycle switch can exactly emulate AM

/1 ’ .
r [ ﬂ ¢ 1
LLL/ S T S i i
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Interpretations of Network Morphisms

Explanation of network structure

E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that
embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM “explains” what Delta-Notch (normally) does, and exactly
how well it can do it.

Robust implementation of simpler function

Redundant symmetries are implicit in the stoichiomorphism relationships

Neutral paths in network space (evolution)
If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is
"kinetically neutral”.
This allows the network to increase its complexity without kinetic penalty.
Later, the extra degrees of freedom can lead to kinetic differentiation.
But meanwhile, the organism can explore variations of network structure.

Network implementation (not abstraction!)

Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior,
on the contrary, they are about refinement / fine-graining that preserve behavior.

They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) implementable
because of excessive demands on species interactions.
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Population Majority

2004: Computation in networks of passively mobile finite-state

SENSOI'S. DanaAngluin, James Aspnes, Zoé Diamadi Michael ). Fischer, René Peratta. PODC04.

Majority.

The value of the majority function is 1 if there are more
1’s than 0’s in the input; otherwise, it is 0.

The states of our protocol consist of a live bit and a
counter with values in the set {~1,0,1}. Initially, the live

Exact Majority - 6-state
Nondeterministic.
(population protocol)

2007: A Simple Population Protocol for Fast Robust
ApprOXimate Ma_]orlty Dana Angluin, James Aspnes, David Eisenstat. DISC07.

Approximate Majority - 3-state
Stochastic, discrete time
(DTMC) Fundamental results.

2007: Theoretical Analysis of Epigenetic Cell Memory by
NUCIeosome MOdlﬁcatlon lan B. Dodd, Mile A Micheelsen, Kim Sneppen, Genevieve Thon. Cell.

Approximate Majority - 3-state
Stochastic, discrete time
(ad-hoc)

2009 Art|ﬁC|a| BIOChemIS'try Luca Cardeli: Algorithmic Bioprocesses, Springer.

Approximate Majority - 3-state
Stochastic, continuous time
(CTMC)

2009: Robust Stochastic Chemical Reaction Networks and
Bounded Tau Leaping (Appendlx 4) David Soloveichick JCompuit Biol.

Transfer complexity results from discrete time
population protocols to continuous time
stochastic chemical reaction networks.

2009. Using Three States for Binary Consensus on Complete

G raphS. Etienne Perron, Dinkar Vasudevan, and Mian Vojnovic. [EEE Infocom.

Approximate Majority - 3-state
Stochastic, continuous time
(CTMC) Fundamental results.

2010: Convergence Speed of Binary Interval Consensus. woezbrait

Mian Vgjnovic. Infocom’10.

Exact Majority - 4-state
Stochastic, continuous time.

. . L. Wz The biological cell cycle switch
2012: The Cell Cycle Switch Computes Approximate Majority. [xzzey is a (non-obvious) implementation of
Luca Cardell, Attla Csikasz-Nagy. Scentiic Reports. sszzm przer approximate majority.
2014: Morphisms of Reaction Networks that Couple Structure L I Approximate Majority - 3-state

to FU nCtion. Luca Cardeli.

Continuous space, continuous time
(Deterministic ODE)
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