

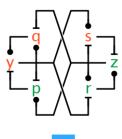
Finding Algorithms in Biological Networks

Luca Cardelli, Microsoft Research & Oxford University

Joint work with Attila Csikász-Nagy, Fondazione Edmund Mach & King's College London

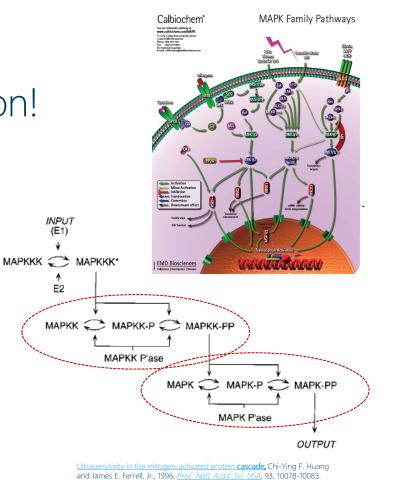
MSRC TAB, 2014-05-12

Research



Cells Compute

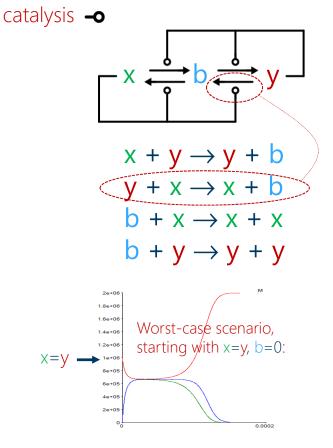
- No survival without computation!
 - Finding food
 - Avoiding predators
- How do they compute?
 - Clearly doing "information processing"
 - But can we actually catch nature running an (optimal) algorithm?



A Consensus Algorithm

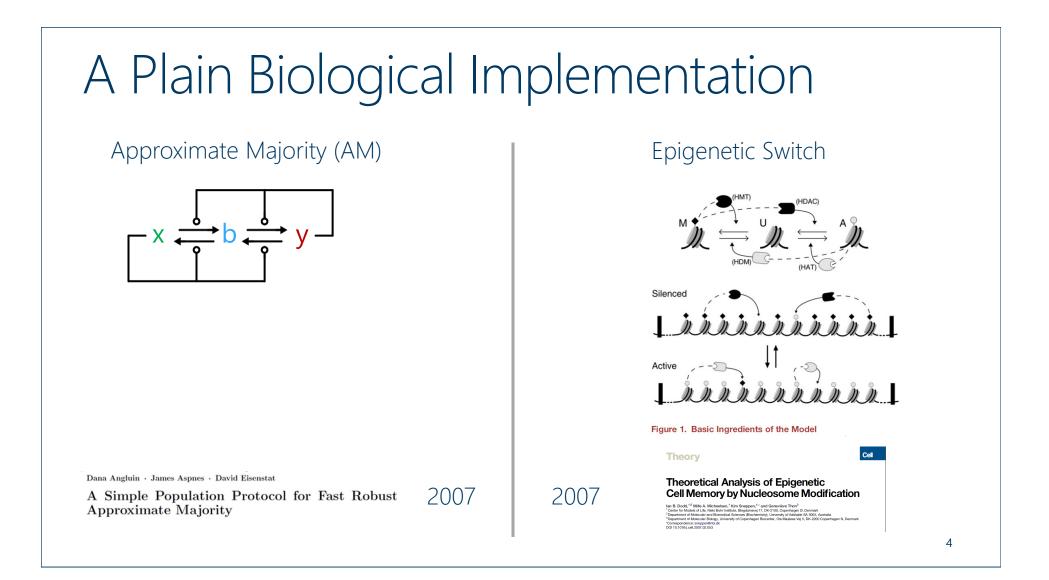
Population Protocols

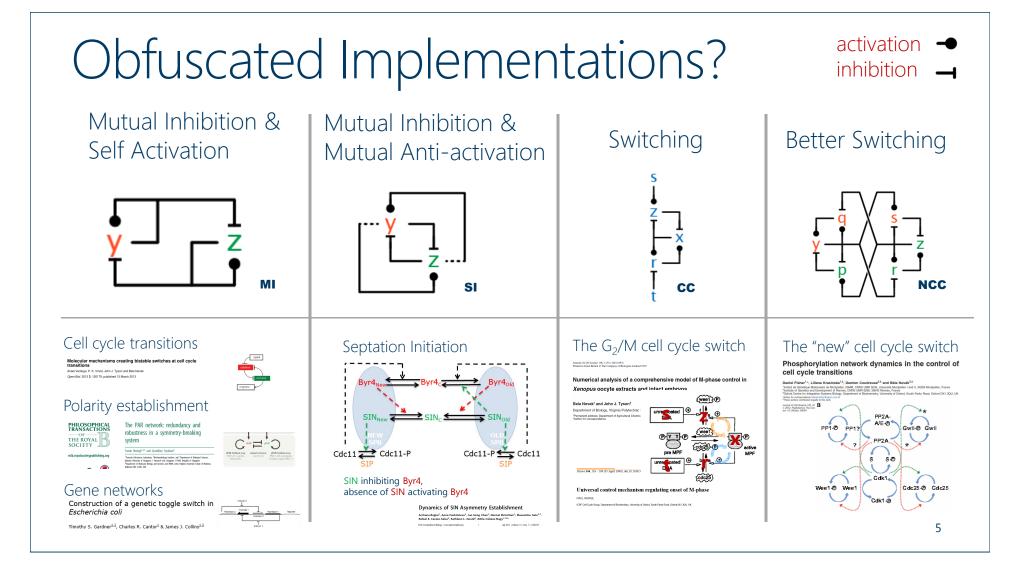
- Finite-state identity-free agents (molecules) interact in randomly chosen pairs
- Each interaction (collision) can result in state changes
- · Complete connectivity, no centralized control (well-mixed solution)
- A Population Consensus Problem
 - Find which state \mathbf{x} or \mathbf{y} is in majority in the population
 - By converting the *whole* population to **x** or y
- Approximate Majority (AM) Algorithm
 - Uses a third "undecided" state b
 - Disagreements cause agents to become undecided
 - Undecided agents believe any non-undecided agent
- With high probability, for *n* agents
 - The total number of interactions is $O(n \log n) \Rightarrow$ fast (optimal)
 - Correct outcome if the initial disparity is $\omega(sqrt(n) \log n) \Rightarrow robust$
 - In parallel time, converges in O(log n)

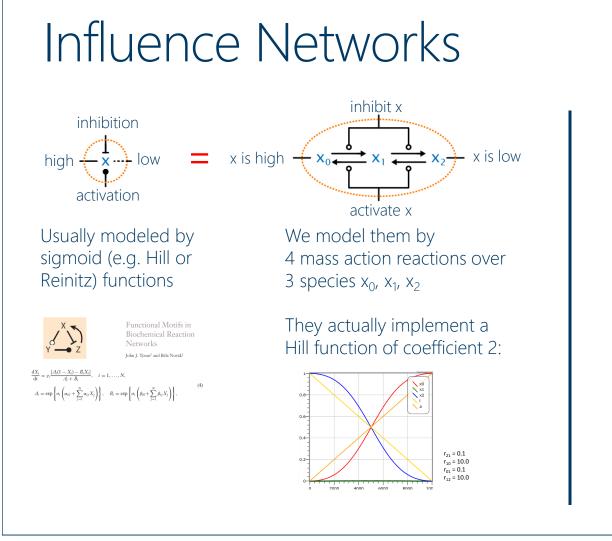


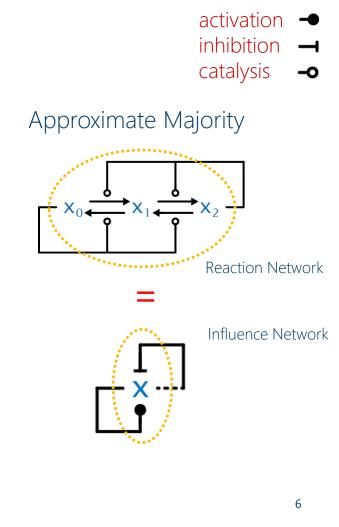
Dana Angluin · James Aspnes · David Eisenstat

A Simple Population Protocol for Fast Robust Approximate Majority



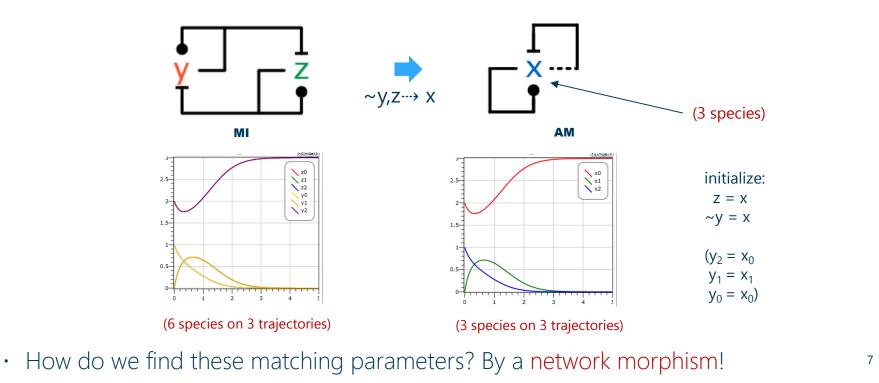


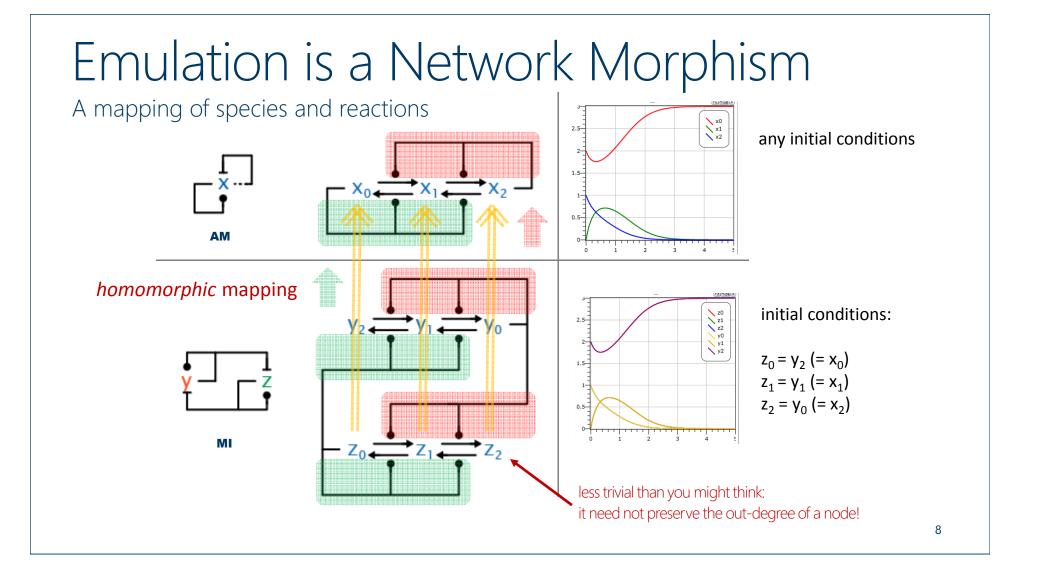


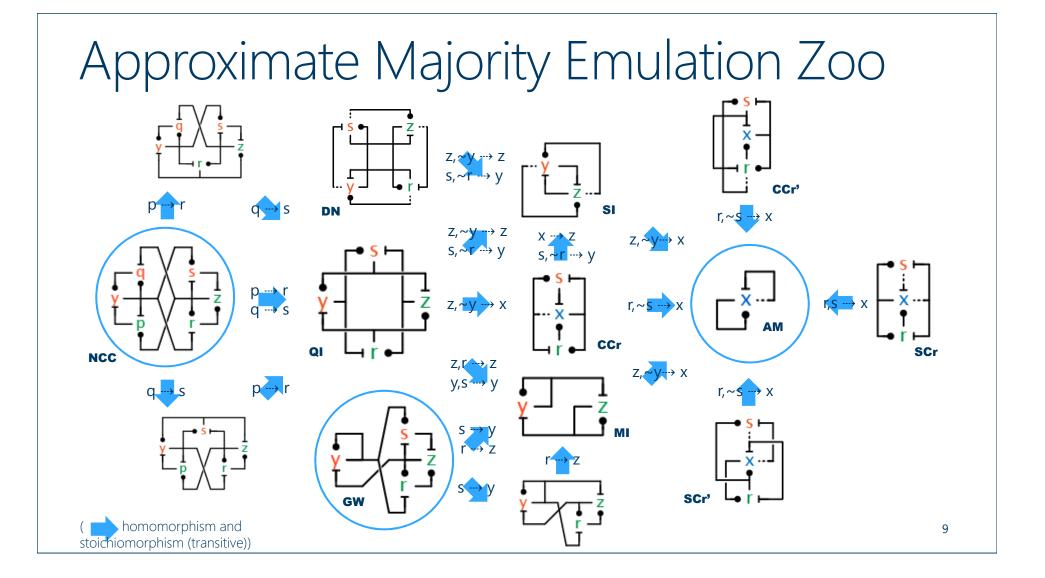


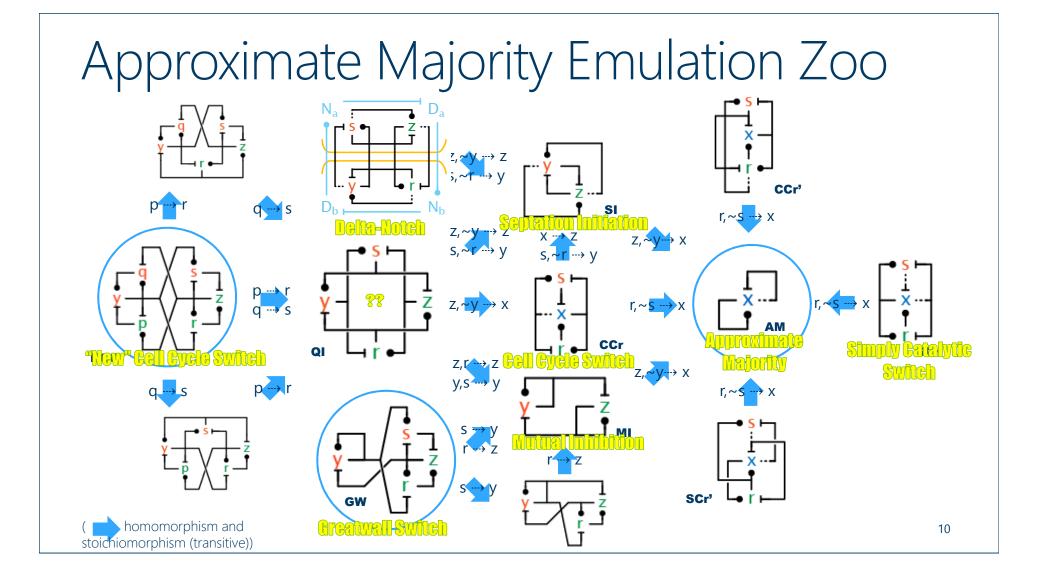
Network Emulation: MI emulates AM

• For *any* rates and initial conditions of AM, we can find *some* rates and initial conditions of MI such that the (6) trajectories of MI retrace those (3) of AM:









Emulation Theorem

Theorem: If $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a CRN reactant morphism and stoichiomorphism then it is a CRN emulation

reactant morphism

$$\boldsymbol{m_{\mathcal{S}}}^{\mathrm{T}} \cdot \boldsymbol{\rho} = \widehat{\boldsymbol{\rho}} \cdot \boldsymbol{m_{\mathcal{R}}}^{\mathrm{T}}$$

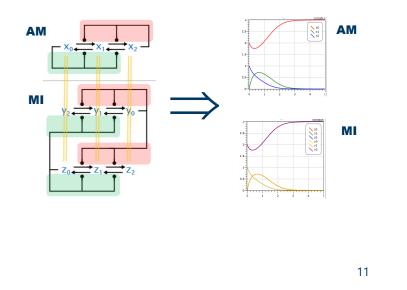
stoichiomorphism

emulation

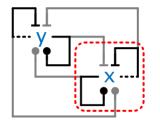
$$\forall \widehat{\boldsymbol{\nu}}. \ F(\widehat{\boldsymbol{\nu}} \circ m_{\mathcal{S}}) = \widehat{F}(\widehat{\boldsymbol{\nu}}) \circ m_{\mathcal{S}}$$

F is the *differential system* of (S, R), given by the law of mass action, $\hat{\nu}$ is a state of (\hat{S}, \hat{R}) . φ is the stoichiometric matrix and ρ is the related reactant matrix. m_S and m_R are the characteristic 0-1 matrices of the morphism maps m_S (on species) and m_R (on reactions). Homomorphism implies reactant morphism.

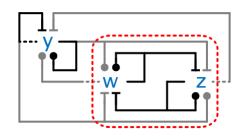
Thus, for *any initial conditions* of (\hat{S}, \hat{R}) we can initialize (S, R) to match its trajectories. And also (another theorem), for *any rates* of (\hat{S}, \hat{R}) we can choose rates of (S, R) that lead to emulation.



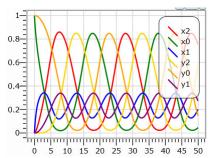
Emulation in Context

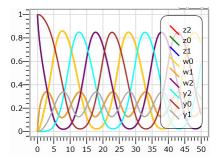


AM-AM Oscillator



AM-MI Oscillator





 $m \in MI \rightarrow AM$ is an emulation: it maps $z \rightarrow x$ and $\sim w \rightarrow x$

We can replace AM with MI in a context. The mapping m tells us how to wire MI to obtain an overall emulation:

Each influence crossing the dashed lines into x is replaced by a similar influence into both z and $\sim w$. The latter is the same as an opposite influence into w (shown).

Each influence crossing the dashed lines out of x is replaced by a similar influence from the same side of *either z or* $\sim w$. The latter is the same as a similar influence from the opposite side of w (shown), and the same as an opposite influence from the same side of w.

12

