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� No survival without computation!
� Finding food

� Avoiding predators

� How do they compute?
� Clearly doing “information processing”

� But can we actually catch nature running 
an (optimal) algorithm?

Cells Compute
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Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.

We’ll see 
this motif later
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Something 
Complicated
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Something 
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How to build a good switch



� This basic network is universal in Eukaryotes [P. Nurse]
� The switching function and the basic network is the same from yeast to us.

� In particular detail, in frog eggs:

� The function is very well-studied. But why this network structure?

� That is, why this peculiar algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
Why ???



How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states. 
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population protocol” switches
� Identical agents (‘molecules’) in a population start in some state, say x or y

� A pair of agents is chosen randomly at each step, 
they interact (‘collide’) and change state

� The whole population must eventually agree on a 
majority value (all-x or all-y) with probability 1
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A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y

x y

catalysis



A Very Good Algorithm
� Approximate Majority (AM)

� Third, undecided, state b

� Disagreements cause agents to become undecided

� Undecided agents believe any non-undecided agent

� With high probability, for n agents
� The total number of interactions before converging is O(n log n)

⇒ fast (optimal)

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)
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x yb

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

x=y

Worst-case scenario, 
starting with x=y, b=0:

catalysis



A Biological Implementation
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Approximate Majority (AM) Epigenetic Switch

x yb

Bistable
Even when x=y (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



Back to Biology
� The AM algorithm has ideal properties for settling a 

population into one of two states

� Seems like this would be useful in Biology
� Can we find biological implementations of this algorithm?

� Could it be related to the cell cycle switch?
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Relating Algorithms and 
Dynamical Systems



Influence Nodes
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=

AM

inhibition

activation

inhibit x

activate x

high low x is high x is low

Usually modeled by 
sigmoid (e.g. Hill or 
Reinitz) functions

We model them by 
4 mass action reactions over 
3 species x0, x1, x2

They actually implement a 
Hill function of coefficient 2:

=

Approximate Majority

activation
inhibition
catalysis

r21 = 0.1

r10 = 10.0

r01 = 0.1

r12 = 10.0



In Previous Work
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1.00

15000

0
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↑
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↓

← ts →

CC converges in O(log n) time (like AM)
(but 2x slower than AM, and does not fully switch)

Symmetrical initial conditions (x0=x1=x2)

Black lines: high-count stochastic simulation traces
Color: full probability distribution of low-count system

Hor axis is time.

↑
xp
↓

← sxp → 150
0
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Pr(xp|sxp)

150

150
0

0

↑
xs
↓

← sxs →

Black lines: deterministic ODE bifurcation diagrams
Red lines: medium-count stochastic simulations
Color: full probability distribution of low-count system

Hor axis is stimulus pushing towards x0 against fixed bias.

Stabilization
Speed

Steady State
Stimulus-
Response

AM shows hysteresis (like CC)
time

stimulus

The “classical” Cell Cycle Switch CCCCCCCC
approximates AM performance

(a “bad” switch)

There is an obvious bug 
in CC performance!

activation
inhibition
catalysis



Nature fixed the bug!
� There is another known feedback loop by which x suppresses s “in retaliation” via 

the so-called Greatwall loop; s and x are antagonists: they are the two halves of the 
switch, mutually inhibiting each other (through intermediaries).

� Also, s and t happen to be the same molecule (=s)

� The “classical” cell cycle switch seems to be only half of the picture: the extra
feedback completes it algorithmically and makes it as good as AM.
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In Previous Work
� GW is better!

� Fully switchable, just as fast as AM

� GW emulates AM

� That same week:
� The Greatwall loop is a necessary

component of the switch

� So, nature fixed CC!
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Networks and Morphisms



A Theory of Network Emulation 
(with thanks to David Soloveichik)

� So far, evidence is empirical
� Specific simulations based on a choice of parameters

� But indeed...
� We can show that, GW, NCC, etc. are exactly and always as good as AM

� Where exactly means numerically as good, not just in the same complexity class

� And always means for any choice of rates and initial conditions

� A network emulates another network:
� When it can exactly reproduce the kinetics of another network for any choice of rates and 

initial conditions

� We aim to show that the cell cycle switch can emulate AM in that sense

� And moreover that the emulation is algorithmic: it is determined by network structure
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Network Emulation: MI emulates AM
� For any rates and initial conditions of AMAMAMAM, we can find some rates and initial 

conditions of MIMIMIMI such that the (6) trajectories of MIMIMIMI retrace those (3) of AMAMAMAM:

� How do we find these matching parameters? By a network morphism! 20

(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize: 
z = x

~y = x

(y2 = x0

y1 = x1

y0 = x0)

(3 species)



Emulation is a Network Morphism
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MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions

less trivial than you might think:

it need not preserve the out-degree of a node!

A mapping of species and reactions



Network Emulation: NCC emulates MI
� For any rates and initial conditions of MIMIMIMI we can find some rates and initial 

conditions of NCC NCC NCC NCC such that the (18) trajectories of NCC NCC NCC NCC retrace those (6) of MIMIMIMI

� Why does this work so well?
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize 
z,r,p = z
y,q,s = y

(3 species each)

NCC

MI



Kinetic Emulation



When can a Network Emulate Another?
� What kind of morphisms guarantee emulation?

� do they preserve network structure?

� do they preserve stoichiometry?
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Chemical Reaction Networks
� A CRN is a pair �, 	 where

� � = {�, … , ��} a finite set of species

� 	 = {�, … , ��} a finite set of reactions

� Reactions � =

� →� �

with stoichiometric numbers �, � ∈ ℕ�

� The stoichiometry of � in � →� � is:

�(�, � →� �) =  �� − ��

�(�, � →� �) = � · (�� − ��)
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� = {!, ", #}

	 = �

� =  2! + " →� ! + 3#
�' = 2, �( = 1, �* = 0

�' = 1, �( = 0, �* = 3

�

,
! "

#

� !, � = −1 net stoichiometry 
� !, � = −� (instantaneous) stoichiometry

,
! "

#



CRN Morphisms
A CRN morphism from �, 	 to (�-, 	.)

written / ∈ �, 	 → (�-, 	.)

is a pair of maps / = /0 , /ℛ

a species map /0 ∈ � → �-

a reaction map /ℛ ∈ 	 → 	.

(sometimes omitting the subscripts on /)

We are interested in morphisms that are not injective,

that represent refinements of simpler networks
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Mappings (symmetries) 
between two networks



3 Key Morphisms
� A morphism / ∈ �, 	 → �-, 	. is 

� a CRN homomorphism
if /ℛ is determined by /0: 

/ℛ � →� � = /0 � →� /0 �

� a CRN reactant morphism
if /ℛ is determined by /0 on reactants. ∃�., �3 :  

/ℛ � →� � = /0 � →�. �3

� a CRN stoichiomorphism if:
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45
6 · 7 = 78 · 49

6

45
6 · : = :8 · 49

6

7 · 49 = 45 · 78

⇒

⇔

def.

7, 78 are the respective stoichiometric matrices
:, :8 are the respective reactant matrices  
45, 49 are the characteristic 0-1 matrices of /0 , /ℛ

45 �, �̂ = 1  if /0 � = �̂ else 0

/0 � �̂ = Σ�∈�0
=>(�̂) ��



Checking the Stoichiomorphism Condition
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/?(�̂)

/@A, /@B /@, /@C /@D, /@E /@F, /@G

HA 0 1 -1 0 IA

H 1 -1 1 -1 I

HD -1 0 0 1 ID

JA -1 0 0 1 ID

J 1 -1 1 -1 I

JD 0 1 -1 0 IA

K/A K/ K/D K/F

∀�̂ ∈ AM

� JA, /@A + � JA, /@B =  −1 = � ID, K/A

am0am1

am2 am3

mi0mi1

mi2 mi3

mi4mi5

mi6 mi7

∀� ∈ �.   ∀�̂ ∈ 	..  ΣP∈�=> P̂ � �, � = � / � , �̂

MI AM

All unit rates (sufficient because 
of another theorem)

/(JA)

/ ∈ MI → AM

This is both a homomorphism 
and a stoichiomorphism

/? K/A



CRN Kinetics
A state of a CRN �, 	 is a R ∈ ℝT

�

The differential system of a CRN (�, 	), U ∈ ℝT
� → ℝ�

Given by the law of mass action:

U(R)(�) =  ΣPV(W→XY)∈Z  �(�, �) · Π�́∈� R�́
W]́

Usually written as a system of coupled concentration 

ODEs, integrated over time:
^R]

^_
= U(R)(�)
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`

R

R�
� U(R)(�)

a vector of concentrations for each species

U(R)(�) gives the instantaneous change of 
concentration of a species in a given state

sum over all reactions of the stoichiometry 
of species in reaction times the product of 
reagent concentrations according to their 
stoichiometric numbers



if the derivative of � (in state R8 ∘ /)
equals the derivative of / � (in state R8)

if we start the two systems in states R = R8 ∘ / 
(which is a copy of R8 according to /) and R8
resp., for each � the solutions are equal and 
the derivatives are equal, hence they will have 
identical trajectories by determinism

Kinetic Emulation
A morphism / ∈ �, 	 → (�-, 	.) is a CRN emulation
if for the respective differential systems U, U- , ∀R8 ∈ ℝT

�- :

U R8 ∘ / = U- R8 ∘ /

That is: ∀� ∈ �.  U R8 ∘ / � = U- R8 (/ � )
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U

`

R = R8 ∘ /
R�

�

U R � =

U. R8 (/ � )

�, 	

`

R8
R8�(�)

/(�)

(�-, 	.)

, ,b

/

R8

ℝT
 

R

ℝT
 

ℝ�-

ℝ�

ℝ�-

ℝ�
U

U.

R8

−∘ / −∘ /

R8 ∘ /

U. R8

=



Emulation Theorem
Theorem: If / ∈ �, 	 → �-, 	. is a CRN 
reactant morphism and stoichiomorphism 
then it is a CRN emulation

N.B. homomorphism implies reactant morphism, 

implies 45
6 · : = :8 · 49

6.
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⇒MI

AM

MI

AM

45
6 · : = :8 · 49

6

7 · 49 = 45 · 78

U R8 ∘ / = U. R8 ∘ /

⇒

thus, for any initial conditions of �-, 	.

we can match trajectories

reactant morphism

stoichiomorphism

emulation



Change of Rates Theorem
A change of rates for �, 	 is morphism c ∈ �, 	 → �, 	′
such that c(�) is the identity and c �, �, � = �, �, �e .

Theorem: If / ∈ �, 	 → (�-, 	.) is a stoichiomorphism, then 
for any change of rates c ̂ of (�-, 	.) there is a change of rates c of 
�, 	 such that c ̂ ∘ / ∘ c? is a stoichiomorphism.

In fact, c changes rates by the ratio with which c ̂ changes rates:

c �, �, � = �, �, � ·
�. f

�.
where / �, �, � = (�3, �3, �.) and c ̂ �3, �3, �. = (�3, �3, �.′).
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thus, for any rates of �-, 	. we 

can match trajectories

a morphism that modifies rates only 



Network Zoos



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))



Approximate Majority Emulation Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,~s ⇢ x

NCC

GW

z,~y ⇢ z
s,~r ⇢ y

DN

(          homomorphism and 
stoichiomorphism (transitive))



Emulations Compose: NCC emulates AM
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� The (18) trajectories NCCNCCNCCNCC can always retrace those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y



Emulation in Context
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AM-AM Oscillator

AM-MI Oscillator

/ ∈ MI → AM is an emulation: 
it maps   H → I and   ~h → I

We can replace AM with MI in a context. The 
mapping / tells us how to wire MI to obtain an 
overall emulation:

Each influence crossing the dashed lines into I is 
replaced by a similar influence into both H and
~h. The latter is the same as an opposite 
influence into h (shown). 

Each influence crossing the dashed lines out of I
is replaced by a similar influence from the same 
side of either H or ~h. The latter is the same as a 
similar influence from the opposite side of h
(shown), and the same as an opposite influence 
from the same side of h.



Another 
Zoo
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Network Perturbations
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Network               Normal Behavior         Removing each link in turn

A complex but robust 
implementation of the
simple network

dead

never dead “on average”



Conclusions



Interpretations of Stoichiomorphism
� Explanation of network structure

� E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that 
embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM “explains” what Delta-Notch (normally) does, and exactly 
how well it can do it.

� Robust implementation of simpler function
� Redundant symmetries are implicit in the stoichiomorphism relationships

� Neutral paths in network space (evolution)
� If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is 

“kinetically neutral”.

� This allows the network to increase its complexity without kinetic penalty.

� Later, the extra degrees of freedom can lead to kinetic differentiation.

� But meanwhile, the organism can explore variations of network structure.

� Network implementation (not abstraction!)
� Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior, 

on the contrary, they are about refinement / fine-graining that preserve behavior.

� They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) implementable 
because of excessive demands on species interactions.
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Nature likes a good algorithm
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CCr

CC

First part Second part

Approximate
“default” rates and initial conditions

Exact
any rates and initial conditions

These additional feedbacks do exist 
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

NCC MI
AM



In separate work...
� We produced a chemical implementation of AM using DNA gates

� I.e., a ‘synthetic reimplementation’ of the central cell-cycle switch.  
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