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Calbiochem’ MAPK Family Pathways

Cells Compute

» No survival without computation!
- Finding food
- Avoiding predators

- How do they compute?

- Clearly doing "information processing” ;

- But can we actually catch nature running
an (optimal) algorithm?
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Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang
and James E. Ferrell, Jr,, 1996, Proc. Natl_ Acad. Sci. USA, 93, 10078-10083.




Abstract Machines of Biology

Hold receptors,
host reactions

Membrane

Machine
Phospholipids

Enact fusion, fission

Metabolism, Propulsion (@) Confinement, Storage
Signaling, Transport Surface and Bulk Transport

Extracellular Features




Biological Languages
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Machme Gene Networks

Molecular Interaction
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Biological Networks

Mutual Inhibition &
Self Activation
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Mutual Inhibition &
Mutual Anti-activation
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Cell cycle transitions

r mechanisms creating bistable switches at cell cycle
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Construction of a genetic toggle switch in "I
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Something
Mysterious

Something
Complicated

The "new” cell cycle switch

Phosphorylation network dynamics in the control of
cell cycle transitions
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How to build a good switch




The Cell Cyc le Switch oot 1 Mg e

Paul Nurse

'his basic network is universal in Eukaryotes [P Nurse]

- The switching function and the basic network is the same from yeast to us.
- In particular detail, in frog eggs:

®
unreplicated @
DNA

Double positive feedback on x
Double negative feedback on x
No feedback ony

W hy ? ? ? Numerical analysis of a comprehensive model of M-phase control in
co Xenopus oocyte extracts and intact embryos

b & 3G
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pre MPF

unreplicated |
DNA

Bela Novak* and John J. Tysont
I irginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
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- The function is very well-studied. But why this network structure?
- That is, why this peculiar algorithm?




How to Build a Good Switch
- What is a "‘good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population protocol” switches

- Identical agents (‘molecules’) in a population start in some state, say x or y

- A pair of agents is chosen randomly at each step,
they interact (‘collide’) and change state

+ The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1




A Bad Algorithm e
X+_:_*y
- Direct Competition L

- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

Yy + X — X+ X
X+ty—=Yy+y

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)
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A Very Good Algorithm

- Approximate Majority (AM)
- Third, undecided, state b
- Disagreements cause agents to become undecided
- Undecided agents believe any non-undecided agent

- With high probability, for n agents
- The total number of interactions before converging is O(n log n)
= fast (optimal)
- The final outcome is correct if the initial disparity is w(sgrt(n) log n)
= solution states are robust to perturbations

catalysis -o

X+y—>y+Db
y+X—>X+Db
D+ X—>X+X
b+y—-y+y

- Logarithmic time bound in parallel time o] worstcasf scenaro
- Parallel time is the number of steps divided by the number of agents A=Y = B o
- In parallel time the algorithm converges with high probability in O(log n) j;::ﬁ\“\\

A Simple Population Protocol for Fast Robust
Approximate Majority

|||||||||
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A Biological Implementation

Approximate Majority (AM)

T
Bistable
Even when x=y (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp

Dana Angluin - James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

Epigenetic Switch
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Figure 1. Basic Ingredients of the Model

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Back to Biology

- The AM algorithm has ideal properties for settling a
population into one of two states

- Seems like this would be useful in Biology
- Can we find biological implementations of this algorithm?
- Could it be related to the cell cycle switch?

12
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Algorithms and Dynamical
Systems




Influence Nodes

inhibition

activation

Usually modeled by
sigmoid (e.g. Hill or
Reinitz) functions

inhibit x

activate x

We model them by
4 mass action reactions over
3 species Xo, Xy, X5

They actually implement a
Hill function of coefficient 2:
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N
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activation -
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Approximate Majority
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: acivation | The “classical” Cell Cycle Switch CC
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in CC performance!
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Nature fixed the bug!

There is another known feedback loop by which x suppresses s “in retaliation” via

the so-called Greatwall loop; s and x are antagonists: they are the two halves of the
switch, mutually inhibiting each other (through intermediaries).

Also, s and t happen to be the same molecule (=s)

,; —l Pg( o 15000
Z -

[ / \ | T 1 = AM
S l X el . GW
1 Iy cC

L r J ’ip
—T GW % —t,- 10 © 08 —t.> 0004
Full activation! Faster too!

The “classical” cell cycle switch seems to be only half of the picture: the extra
feedback completes it algorithmically and makes it as good as AM.
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In Previous Work

SCIENTIFIC 02 ¢
: REPg}RTS {
- GW is better!
Fully switchable, just as fast as AM

@ The Cell Cycle Switch Computes

GW emulates AM ) .
Approximate Majority
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COMMUNICATIONS

- That same week:

The Greatwall loop is a necessary
component of the switch

So, nature fixed CC!

ARTICLE

' & Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | DOI:10.1028/ ncomms 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

Masatoshi Haral!, Yusuke Abe’!, Toshiaki Tanaka?, Takayoshi¥amamoto! !, Eiichi Okumura' & Takeo Kishimoto!,
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Networks and Morphisms




A Theory of Network Emulation
(with thanks to David Soloveichik)

+ So far, evidence is empirical
- Specific simulations based on a choice of parameters

- But indeed...

- We can show that, GW, NCC, etc. are exactly and always as good as AM
- Where exactly means numerically as good, not just in the same complexity class
- And always means for any choice of rates and initial conditions

- A network emulates another network:

- When it can exactly reproduce the kinetics of another network for any choice of rates and
initial conditions

- We aim to show that the cell cycle switch can emulate AM in that sense
- And moreover that the emulation is algorithmic: it is determined by network structure

19




Network Emulation: Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial
conditions of Ml such that the (6) trajectories of Ml retrace those (3) of AM:

o 1 1

T T Ny’Z___>X T \
(3 species)
Mmi AM

] / N initialize:
] z2 1 N\ x2

2 :(1’ 2 Z=X
- ~y =X

| ] Yi=X%
I AP AT ST VAR AN EE AR AR A AR AR Yo = Xo)

(6 species on 3 trajectories) (3 species on 3 trajectories)

- How do we find these matching parameters? By a network morphism!

20




Emulation is a Netvvork Morphism
A mapping of species and reactions ] =
: im any initial conditions
- [xu.:{ xj—_sz] 5
AM _\\
homomorphic mapping l_
] initial conditions:
. N
z ] 2;=Y15X%
i °:o"';.su;'.l; M MM AR

less trivial than you might think:
it need not preserve the out-degree of a node!

21




Network Emulation: NCC emulates M

+ For any rates and initial conditions of Ml we can find some rates and initial
conditions of NCC such that the (18) trajectories of NCC retrace those (6) of Ml

},—9\/1_1

NCC M (3 species each)

J.// \l
s/

LSS S
e
s T T T

: — 7
A _1 | zpos :
L/ Ne | Yas-—y i
................ f e R AR EEEE
(18 species on 6 trajectories) (6 species on 6 trajectories) initialize
zZLp =z
yas=y

-+ Why does this work so well?
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Kinetic Emulation




When can a Network Emulate Another?

- What kind of morphisms guarantee emulation?

- do they preserve network structure?
- do they preserve stoichiometry?




Chemical Reaction Networks

- A CRNis a pair (S, R) where

- S ={sq,.,S} a finite set of species S={A,B,C}
- R={n,..,nn}  afinite set of reactions R = {r}
- Reactionsr = r=2A4+B->"A+3C
p—)kn' pa=2, pp=1 pc=0

with stoichiometric numbers p,m € N3 nyp=1 nmp =0, mc =3

- The stoichiometry of s in p =% m is:

n(s,p =% n) = ng—p; n(A,v) = —1 net stoichiometry

o(s,p ~Fm) =k - (g — ps) @(A,r) = —k (instantaneous) stoichiometry

25




CRN Morphisms

A CRN morphism from (S, R) to (S, R)
written m € (S,R) - (S, R)

is a pair of maps m = (mg, mg)
a speciesmapms €S > S
a reaction map mg € R > R

(sometimes omitting the subscripts on m)

We are interested in morphisms that are not injective,
that represent refinements of simpler networks

Mappings (symmetries)
between two networks

[X{H-— X g— Xz:l

Vie— Y1e— Yo

—— —
Zoe— 14— 22

26




3 Key Morphisms

@, P are the respective stoichiometric matrices

N morphism m € (S,R) » (5‘ ﬁ) is p, P are the respective reactant matrices
’ ’ mg, mg are the characteristic O-1 matrices of mg, mg
- a CRN homomorphism ms(s,8) =1 if ms(s) =3 else 0
if mg is determined by mg:
mgg(p —k n) = ms(p) =>% ms(m) — ms' - @ =@ -mg'
- a CRN reactant morphism R
if mg is determined by mg on reactants. 3k, it
mﬂe(P - 7T) =ms(p) -* #t p— ms' -p=p-mg'
- a CRN stoichiomorphism if: def. Q-Mmgp=ms- P

ms(p)s = Z.S‘Emg_l(ﬁ) Ps 27




Checking the Stoichiomorphism Condition

m € MI - AM Vs €S. VP €ER. Zrem-1»@(s, 1) = @(m(s),7)

mig, miy miy, YAy miy, mig miz, mi,
Zy of /1 -1 0 Xg
_ Z i/ I/ 1 -1 X
All unit rates (sufficient because S 2 /i 2 0 1 x, {2
2] yO\_/" o T Xo —
of another theorem) ps o 7 = n " -
This is both a homomorphism Yz N ! = 0 X
. . . amy amq am, ams
and a stoichiomorphism V7 € AM

28




CRN Kinetics

A stateofaCRN (S,R) isav € ]R‘_g'_ a vector of concentrations for each species

The differential system of a CRN (S, R), F € R} —» RS

%
Vs ie —~F(v)(s) F(v)(s) gives the instantaneous change of
£ % concentration of a species in a given state
Given by the law of mass action: sum over all reactions of the stoichiometry
Y of species in reaction times the product of
FO)S) = Zyopoimen @) Tees v Lo o oo e
Usually written as a system of coupled concentration
ODEs, integrated over time: Ls = (v)(s)

dt

29




Kinetic Emulation

A morphismm € (S,R) — (S,R) is a CRN emulation
if for the respective differential systems F, F, Vo € RS

F@Wom) =F®)om

v RS _F, RS if the derivative of s (in state D o m)
equals the derivative of m(s) (in state )
ol e
;R T R
Thatis: Vs € S. F(D o m)(s) = F(®)(m(s))
~ if we start the two systems in statesv =D om
R 5 }_7 (which is a copy of ¥ according to m) and v
VEVOm Lo T resp., for each s the solutions are equal and
Vs F@®)(m(s)) / Q the derivatives are equal, hence they will have
% = ¢ identical trajectories by determinism
e GS,R)

(S,R) 30




Fmulation Theorem

Theorem: If m € (S,R) — ($,R) isa CRN

reactant morphism and stoichiomorphism thus, for any initial conditions of (S, R)

then it is a CRN emulation we can match trajectories
reactant morphism m T, =D-m T
s p=p-mgp am [T A
stoichiomorphism Q- -Mmgp =mMg - (/p XO‘—I X“—I X i

U MI _’[ _’I :

Y2e— V14— Yo
emulation F(i} o m) = F(i}) om NN i

—_—
— 20— 21— 22

N.B. homomorphism implies reactant morphism,
impliesmgT - p=p-mg?'.

31




Change of Rates Theorem

A change of rates for (S, R) is morphism ¢ € (S,R) — (S,R") ~ amorphism that modifies rates only
such that «(S) is the identity and t(p, , k) = (p, m, k').

Theorem: Ifm € (S,R) — (S, R) is a stoichiomorphism, then
for any change of rates £ of (5, R) there is a change of rates t of . for any rares of ($,R) we
(S,R) such thati o m o1 is a stoichiomorphism. can match trajectories

In fact, ¢« changes rateg/by the ratio with which © changes rates:
(o, k) = (p, k- %) where m(p, k) = (p,# k) and i(p, #,k) = (p, 7, k").

—

[ (k)

GG RO)

32




| |88

Microsoft”
Research

OXFORD

Network Z00s




Approximate Majority Emulation Z00
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i CcCr
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Approximate Majority Emulation Z00
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Emulations Compose: NCC emulates AM

- The (18) trajectories NCC can always retrace those (3) of AM

’T_l__rﬁ
ZLp - z Z,~y-> X

O T_lyqsy I
T_l/_T o [y

~Y,~Q,~S > X

SO
BERALSRABRABRREY

\\\\\\\\\\\\\\\\\\\\\\\\
000000

(18 species on 3 traJectorles) (3 species on 3 trajectories)
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Emulation in Context

|
X

L L L R ey L R R L R
0 5 10 15 20 25 30 35 40 45 50

------------------

|_-'.
.....é;.....;
j

O RN R A TR T
0 5 10 15 20 25 30 35 40 45 50

AM-MI Oscillator

m € MI - AM is an emulation:
tmaps z—-x and ~w-x

We can replace AM with Ml in a context. The
mapping m tells us how to wire Ml to obtain an
overall emulation:

Each influence crossing the dashed lines into x is
replaced by a similar influence into both z and
~w. The latter is the same as an opposite
influence into w (shown).

Each influence crossing the dashed lines out of x
is replaced by a similar influence from the same
side of either z or ~w. The latter is the same as a
similar influence from the opposite side of w
(shown), and the same as an opposite influence

from the same side of w.
37




Another
/00

111111111111
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77777

Xxa Xb xc xd
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va yb yc yd

- —
3 N\ xa0
o5 N\ xal
] N\ xa2 |
.6 xb
| xbl
0.4 N =b2
1 xc0
3] N\ xc1
-2 xc2
o)

111111111111
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Network Perturbations

Network

xa xb xc xd

XX

ya yb yc yd

A complex but robust
implementation of the
simple network

Normal Behavior

¢ 1 2 3 4 5 & 7 8 9 1

Removing each link in turn

2 N0
N NG
4 -

N sumOa0;xb0;xc0:xd0)

\ sum(xa0;xb0;xc0;xd0) N sum(xa0;xb0;xc0;xdo)

N sum(xa0;xb0;xc0;xd0)

N\ sum(vazivb2ive2ivd2) Nsom(yazivbaiye2ivd2)

JRARRA ARSI Rk LRSS s ) sk st S L LARE LAk taaaa rat

~_never dead

\ sum(xa0;xb0;xc0;xdo) 1 (x30;xb0;0;30)

\ sum(xa0;x60;xc0;xd0)

sumGcaLAbLxeLxa1)
N sum(eatiabcinds) NS
N sum(eazinbixc2int2) N sumGcazinb2ixezing2)
suma0, Sum(ya0iyb0rvco:vao)
Sumtyat sumyaziybLveLval)
242 N somiyazivo2 Nsumyaz, N sumiyaziybziveaiydz)
e
2e

A AL aaasd st st e e
o 1 2 3 4 s & 7 8 3
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Conclusions




Interpretations of Stoichiomorphism

Explanation of network structure

E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that
embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM “explains” what Delta-Notch (normally) does, and exactly
how well it can do it.

Robust implementation of simpler function

Redundant symmetries are implicit in the stoichiomorphism relationships

Neutral paths in network space (evolution)
If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is
"kinetically neutral”.
This allows the network to increase its complexity without kinetic penalty.
Later, the extra degrees of freedom can lead to kinetic differentiation.
But meanwhile, the organism can explore variations of network structure.

Network implementation (not abstraction!)

Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior,
on the contrary, they are about refinement / fine-graining that preserve behavior.

They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) implementable
because of excessive demands on species interactions.
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Nature likes a good algorithm

First part Second part

S
5 1
L 1
SR = "y
' I _T r ccCr
Approximate | Exact
‘default” rates and initial conditions t ©°° any rates and initial conditions

These additional feedbacks do exist
in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

/1 ’ .
r / ﬂx ¢ 1
LLL/ S T S i i
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In separate work...

- We produced a chemical implementation of AM using DNA gates
- le., a 'synthetic reimplementation’ of the central cell-cycle switch.
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