The Cell Cycle Switch Computes Approximate Majority

Luca Cardelli, Microsoft Research \& Oxford University

Joint work with Attila Csikász-Nagy, Fondazione Edmund Mach \& King's College London
UCSF, 2014-03-03

Outline

- Algorithms and Dynamical Systems
- Networks and Morphisms
- Kinetic Emulation
- Network Zoos
- Conclusions

Algorithms and Dynamical Systems

Biological Networks

Consensus Algorithms

Approximate Majority (AM)

Two initial populations: some $x_{0}+$ some x_{2}
One final population: all x_{0} or all x_{2}
One intermediate population: x_{1} (undecided)

$$
\begin{aligned}
& \mathrm{x}_{0}+\mathrm{x}_{2} \rightarrow \mathrm{x}_{2}+\mathrm{x}_{1} \\
& \mathrm{x}_{2}+\mathrm{x}_{0} \rightarrow \mathrm{x}_{0}+\mathrm{x}_{1} \\
& \mathrm{x}_{1}+\mathrm{x}_{0} \rightarrow \mathrm{x}_{0}+\mathrm{x}_{0} \\
& \mathrm{x}_{1}+\mathrm{x}_{2} \rightarrow \mathrm{x}_{2}+\mathrm{x}_{2}
\end{aligned}
$$

Worst-case scenario starting with $x_{0}=x_{2}, x_{1}=0$
Provably fast: $\mathrm{O}(\log \mathrm{n})$ and robust to perturbations
. David Eisenst
A Simple Population Protocol for Fast Robust Approximate Majority

Nucleosome Modification

Silenced
I inioniounjobl

Figure 1. Basic Ingredients of the Model
Theory
Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification

Influence Nodes

Usually modeled by sigmoid (e.g. Hill or Reinitz) functions

Functional Motifs in Biochemical Reactio Networks

$\frac{d X_{i}}{d t}=\eta_{i} \frac{\left[A\left(1-x_{i}\right)-B_{1} X_{X}\right]}{A_{i}+B_{i}}, i=1, \ldots, N$,

activation
inhibition
catalysis
Approximate Majority

In Previous Work

- But GW is better!
- Fully switchable, just as fast as AM
- GW emulates AM

- That same week:
- The Greatwall loop is a necessary component of the switch
- So, nature fixed CC!

SCIENTIFIC REPRTS

 Approximate Majority
SUBJECT AREAS:

COMPUTATONAL
BIOLOGY

Luca Cardelli' \&Attila Csikász-Nagy ${ }^{2,3}$

Networks and Morphisms

A Theory of Network Emulation

(with thanks to David Soloveichik)

- So far, evidence is empirical
- Simulations based on a choice of parameters
- But indeed...
- We can show that, GW, NCC, etc. are exactly and always as good as AM
- Where exactly means numerically as good, not just in the same complexity class
- And always means for any choice of rates and initial conditions

Network Emulation: Ml emulates AM

- For any rates and initial conditions of AM, we can find some rates and initial conditions of MI such that the (6) trajectories of MI retrace those (3) of AM :

Emulation is a Network Morphism

A mapping of species and reactions

it need not preserve the out-degree of a node!

Network Emulation: NCC emulates MI

- For any rates and initial conditions of MI we can find some rates and initial conditions of NCC such that the (18) trajectories of NCC retrace those (6) of MI

- Why does this work so well?

Kinetic Emulation

When can a Network Emulate Another?

-What kind of morphisms guarantee emulation?

- they need to preserve network structure
- they need to preserve stoichiometry

Chemical Reaction Networks

- A CRN is a pair (S, R) where
- $S=\left\{s_{1}, \ldots, s_{n}\right\} \quad$ a finite set of species

$$
\begin{aligned}
& S=\{A, B, C\} \\
& R=\{r\}
\end{aligned}
$$

- $R=\left\{r_{1}, \ldots, r_{m}\right\} \quad$ a finite set of reactions
$r=2 A+B \rightarrow^{k} A+3 C$

$$
\rho \rightarrow^{k} \pi
$$

with stoichiometric numbers $\rho, \pi \in \mathbb{N}^{S}$

- The stoichiometry of s in $\rho \rightarrow^{k} \pi$ is:

$$
\begin{aligned}
\eta\left(s, \rho \rightarrow^{k} \pi\right) & =\pi_{s}-\rho_{s} \\
\varphi\left(s, \rho \rightarrow^{k} \pi\right) & =k \cdot\left(\pi_{s}-\rho_{s}\right)
\end{aligned}
$$

$\eta(A, r)=-1 \quad$ net stoichiometry
$\varphi(A, r)=-k \quad$ (instantaneous) stoichiometry

CRN Morphisms

A CRN morphism from (S, R) to (\hat{S}, \hat{R})
written $m \in(S, R) \rightarrow(\hat{S}, \widehat{R})$
is a pair of maps $m=\left(m_{\mathcal{S}}, m_{\mathcal{R}}\right)$
a species map $m_{\mathcal{S}} \in S \rightarrow \hat{S}$
a reaction map $m_{\mathcal{R}} \in R \rightarrow \hat{R}$
(sometimes omitting the subscripts on m)
We are interested in morphisms that are not injective, that represent refinements of simpler networks

Mappings (symmetries) between two networks

3 Key Morphisms

- A morphism $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is
- a CRN homomorphism
if $m_{\mathcal{R}}$ is determined by $m_{\mathcal{S}}$:

$$
m_{\mathcal{R}}\left(\rho \rightarrow^{k} \pi\right)=m_{\mathcal{S}}(\rho) \rightarrow^{k} m_{\mathcal{S}}(\pi) \quad \Rightarrow \quad \boldsymbol{m}_{\mathcal{S}}{ }^{\mathrm{T}} \cdot \boldsymbol{\varphi}=\widehat{\boldsymbol{\varphi}} \cdot \boldsymbol{m}_{\mathcal{R}}{ }^{\mathrm{T}}
$$

- a CRN reactant morphism if $m_{\mathcal{R}}$ is determined by $m_{\mathcal{S}}$ on reactants. $\exists \hat{k}, \hat{\pi}$:

$$
m_{\mathcal{R}}\left(\rho \rightarrow^{k} \pi\right)=m_{\mathcal{S}}(\rho) \rightarrow^{\hat{k}} \hat{\pi} \quad \Leftrightarrow \quad \boldsymbol{m}_{\mathcal{S}}{ }^{\mathbf{T}} \cdot \boldsymbol{\rho}=\hat{\boldsymbol{\rho}} \cdot \boldsymbol{m}_{\mathcal{R}}{ }^{\mathrm{T}}
$$

- a CRN stoichiomorphism if:
def.
$\boldsymbol{\varphi} \cdot \boldsymbol{m}_{\mathcal{R}}=\boldsymbol{m}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{\varphi}}$
$m_{S}(\rho)_{\hat{s}}=\Sigma_{s \in m_{S}-1(\hat{s})} \rho_{s}$

Checking the Stoichiomorphism Condition

All unit rates (sufficient because of another theorem)
This is both a homomorphism and a stoichiomorphism

CRN Kinetics

A state of a CRN (S, R) is a $\boldsymbol{v} \in \mathbb{R}_{+}^{S}$
The differential system of a $\operatorname{CRN}(S, R), F \in \mathbb{R}_{+}^{S} \rightarrow \mathbb{R}^{S}$

Given by the law of mass action:

$$
F(\boldsymbol{v})(s)=\Sigma_{r=\left(\rho \rightarrow \rightarrow^{k} \pi\right) \in R} \varphi(s, r) \cdot \Pi_{\dot{S} \in S} \boldsymbol{v}_{\dot{S}}^{\rho_{s}}
$$

Usually written as a system of coupled concentration
ODEs, integrated over time: $\quad \frac{d v_{s}}{d t}=F(\boldsymbol{v})(s)$
a vector of concentrations for each species
$F(\boldsymbol{v})(s)$ gives the instantaneous change of concentration of a species in a given state
sum over all reactions of the stoichiometry of species in reaction times the product of reagent concentrations according to their stoichiometric numbers

Kinetic Emulation

A morphism $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is a CRN emulation if for the respective differential systems $F, \hat{F}, \forall \hat{v} \in \mathbb{R}_{+}^{\hat{S}}$:

$$
F(\widehat{\boldsymbol{v}} \circ m)=\hat{F}(\widehat{\boldsymbol{v}}) \circ m
$$

That is: $\forall s \in S . F(\hat{\mathfrak{v}} \circ m)(s)=\hat{F}(\hat{\mathfrak{v}})(m(s))$

if the derivative of s (in state $\widehat{\boldsymbol{v}} \circ m$) equals the derivative of $m(s)$ (in state $\widehat{\boldsymbol{v}}$)
if we start the two systems in states $\boldsymbol{v}=\widehat{\boldsymbol{v}} \circ$ m (which is a copy of $\widehat{\boldsymbol{v}}$ according to m) and \widehat{v} resp., for each s the solutions are equal and the derivatives are equal, hence they will have identical trajectories by determinism

Emulation Theorem

Theorem: If $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is a CRN reactant morphism and stoichiomorphism then it is a CRN emulation
reactant morphism $\quad \boldsymbol{m}_{s}{ }^{\mathrm{T}} \cdot \boldsymbol{\rho}=\widehat{\boldsymbol{\rho}} \cdot \boldsymbol{m}_{\boldsymbol{R}}{ }^{\mathrm{T}}$
stoichiomorphism

$$
\varphi \cdot m_{\mathcal{R}}=m_{s} \cdot \widehat{\varphi}
$$

\Downarrow
emulation

$$
F(\widehat{v} \circ m)=\widehat{F}(\widehat{v}) \circ m
$$

N.B. homomorphism implies reactant morphism, implies $\boldsymbol{m}_{\boldsymbol{S}}{ }^{\mathrm{T}} \cdot \boldsymbol{\rho}=\widehat{\boldsymbol{\rho}} \cdot \boldsymbol{m}_{\mathcal{R}}{ }^{\mathrm{T}}$.
thus, for any initial conditions of (\hat{S}, \hat{R}) we can match trajectories

Change of Rates Theorem

A change of rates for (S, R) is morphism $\iota \in(S, R) \rightarrow\left(S, R^{\prime}\right)$ such that $\iota(S)$ is the identity and $\iota(\rho, \pi, k)=\left(\rho, \pi, k^{\prime}\right)$.

Theorem: If $m \in(S, R) \rightarrow(\hat{S}, \hat{R})$ is a stoichiomorphism, then for any change of rates $\hat{\imath}$ of (\hat{S}, \hat{R}) there is a change of rates ι of (S, R) such that $\hat{\imath} \circ m \circ \iota^{-1}$ is a stoichiomorphism.
thus, for any rates of (\hat{S}, \hat{R}) we can match trajectories

In fact, ι changes rates by the ratio with which $\hat{\imath}$ changes rates:

$$
\iota(\rho, \pi, k)=\left(\rho, \pi, k \cdot \frac{\hat{k}^{\prime}}{\hat{k}}\right) \text { where } m(\rho, \pi, k)=(\hat{\rho}, \hat{\pi}, \hat{k}) \text { and } \hat{\imath}(\hat{\rho}, \hat{\pi}, \hat{k})=\left(\hat{\rho}, \hat{\pi}, \hat{k}^{\prime}\right)
$$

Network Zoos

Emulations Compose: NCC emulates AM

- The (18) trajectories NCC can always retrace those (3) of AM

Emulation in Context

AM-AM Oscillator

AM-MI Oscillator
$m \in \mathrm{MI} \rightarrow \mathrm{AM}$ is an emulation:
it maps $z \rightarrow x$ and $\sim w \rightarrow x$

We can replace AM with MI in a context. The mapping m tells us how to wire Ml to obtain an overall emulation:

Each influence crossing the dashed lines into x is replaced by a similar influence into both z and
$\sim w$. The latter is the same as an opposite influence into w (shown).

Each influence crossing the dashed lines out of x is replaced by a similar influence from the same side of either \boldsymbol{z} or $\sim w$. The latter is the same as a similar influence from the opposite side of w (shown), and the same as an opposite influence from the same side of w.

Another
 Zoo

Network Perturbations

Network

A complex but robust implementation of the simple network

Normal Behavior

never dead "on average

Conclusions

Interpretations of Stoichiomorphism

- Explanation of network structure
- E.g. we know that the main function of Delta-Notch is to stabilize the system in one of two states. AM is the quintessential network that embodies fast robust bistability. The stoichiomorphism from Delta-Notch to AM "explains" what Delta-Notch (normally) does, and exactly how well it can do it.
- Robust implementation of simpler function
- Redundant symmetries are implicit in the stoichiomorphism relationships
- Neutral paths in network space (evolution)
- If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is "kinetically neutral"
- This allows the network to increase its complexity without kinetic penalty.
- Later, the extra degrees of freedom can lead to kinetic differentiation.
- But meanwhile, the organism can explore variations of network structure.
- Network implementation (not abstraction!)
- Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior, on the contrary, they are about refinement / fine-graining that preserve behavior.
- They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) implementable because of excessive demands on species interactions.

Nature likes a good algorithm

Second part

any rates and initial conditions
These additional feedbacks do exist in real cell cycles (via indirections)

The cell cycle switch can exactly emulate AM

In separate work...

- We produced a chemical implementation of AM using DNA gates
- I.e., a 'synthetic reimplementation' of the central cell-cycle switch.

nature nanotechnology

nature.com $\stackrel{\text { - journal }}{ }$ home > archive $>$ issue > article - abstrac
ARTICLE PREVIEW
view full access options
NATURE NANOTECHNOLOGY | ARTICLE
Programmable chemical controllers made from DNA

Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik \& Georg Seelig

