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� No survival without computation!
� Finding food

� Avoiding predators

� How do they compute?
� Clearly doing “information processing”

� But can we actually catch nature running 
an (optimal) algorithm?

Cells Compute
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Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



Outline
� Analyzing biomolecular networks

� Try do understand the function of a network

� But also try to understand its structure, and what determines it

� The Cell-Cycle Switches
� Some of the best studied molecular networks

� Important because of their fundamental function (cell division) 
and the stability of the network across evolution

� We ask:
� What does the cell cycles switch compute?

� How does it compute it?
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� This network is universal in all Eukaryotes [P. Nurse]
� I.e., the network at the core of cell division is the same from yeast to us

� Not the components of the network, nor the rates

� The function is very well-studied. But why this structure?

� I.e., why this algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
Why ???



How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states. 
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population” Switches
� Populations of identical agents (molecules) with the whole population switching 

from one state to another as a whole

� Highly concurrent. Stochastic symmetry breaking
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A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y



A Very Good Algorithm
� Approximate Majority (AM)

� Decide which of two populations is in majority

� A fundamental ‘population protocol’
� Agents in a population start in state x or state y

� A pair of agents is chosen randomly at each step, 
they interact (‘collide’) and change state

� The whole population must eventually agree on a 
majority value (all-x or all-y) with probability 1
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Third ‘undecided’ state

1) Disagreements cause agents to 
become undecided

2) Undecided agents believe any
non-undecided agent they meet



Properties
� With high probability, for n agents

� The total number of interactions before converging is O(n log n)

⇒ fast (optimal)

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)

8

[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]



Chemical Implementation
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x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

Chemistry as a 
programming 
language for 
population 
algorithms!

Worse-case scenario example, 
starting with x=y, b=0:Bistable

Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



Back to Biology
� The AM algorithm has ideal properties for settling a 

population into one of two states

� Seems like this would be useful in Biology
� Can we find biological implementations of this algorithm?

� Can that explain some biological features?

� Could the cell cycle switch be operating this way? 
(Looks unlikely...)
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(Aside) A Biological Implementation
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Population of histones
reaching agreement



(Detour) How to model “Influence”
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“True” molecular interactions. “Equivalent” influence interactions.



The Reinitz Model of Influence
� Based on early connectionist (neural 

network) modeling
� Each activation/inhibition interaction is 

modeled as a flexible sigmoid function with 
4+ parameters per node

� We prefer to stick to mass action kinetics
� It will later become clear why

� We model activation/inhibition nodes
by a mass action motif:
� Using 4 rate parameters per node

� Akin to multisite modification
13
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The Triplet Model of Influence
� Solving this mass action model at steady state

with ��� = �� + �� + ��, obtain �� as a function of 
 and � :
�

�� =
��������� 
�

������
� + ������
� + ��������

� Assuming � = ��� − 
 (inhibition decreases as activation increases)
obtain �� as a function of 
∈[0. . ���] (max stimulus = max response)

�� =
��������� 
�

(������ − ������ + ������)
� + (������ − 2������)��� 
 + ������ ���� 

� By regulating the rates of flow through �� within 2 orders of 
magnitude we can obtain a range of linear, hyperbolic and 
sigmoid responses in the range [0..1] to linear activation 
∈[0..1].
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steady state transitions 
from inhibited to activated
with ��� = 1 and 
∈[0..1]



Influence Network Notation
� Catalytic reaction

� Triplet motif
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x + z → z + y

z is the catalyst

influence node catalytic node

(~x)0= x2,    
(~x)1= x1,    
(~x)2= x0

Duality



Cell Cycle Switch vs. AM
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=

=

AM

CC



Convergence Analysis
� Switches as computational systems
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DC AM SC CC

1.0

0.00355

0

0

2.0

0.00710

0

0

2.0
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0

0.00710

← tp →0

0

↑
xp

↓

Pr(xp|tp)

1.00

15000

0

1.00

↑
xs

↓

← ts →

NEW!
CC appears to converge in log time

Start symmetrical
(x0=x1=x2 etc.)

Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system



Steady State Analysis
� Switches as dynamical systems
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↑
xp

↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑
xs

↓

← sxs →

DC AM SC CC

NEW!
AM shows hysteresis

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system



Contextual Analysis
� AM switches in the context of oscillators
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Trammel of Archimedes

Shishi Odoshi

0.0050
0

30000

← t →

↑
n

↓

ri/re = 0.5

ri/re = 0.5

0.010
0

30000

← t →

↑
n

↓

30← x →0

Pr(y|x)

↑
y

↓
0

30

ri/re = 0.5

Pr(y|x)

30← x →0

↑
y

↓
0

30

ri/re = 0.5

en.wikipedia.org/wiki/Trammel_of_Archimedes

y2

y0

x0

x2



Modularity Analysis
� CC swapped in for AM
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ri/re = 0.5

0.010
0

30000

← t →

↑
n

↓

0.020 ← t →

ri/re = 0.675

0

30000
↑
n

↓

← sx →
0

200

25
↑
x

↓

ri/re = 0.6
sy = 10

25
↑
x

↓

ri/re = 0.675
sy = 10

← sx → 200
0



Evidence that CC is ‘similar’ to AM
� But there is a difference

� The classical cell cycle switch, CC, works ok but never as well as AM

� The output of CC does not go ‘fully on’:

� Because s continuously inhibits x through z, so that x cannot fully express 

� Engineering question: could we fix it? (Yes: let x inhibit s and t)

� Q: Why didn’t nature fix it?
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2.0

15

0

0.00710

← tp →0

0

↑
xp

↓

Pr(xp|tp)

CC

0.020 ← t →

ri/re = 0.675

0

30000
↑
n

↓



Nature did!
� There is another known feedback loop

� By which x suppresses s “in retaliation” via the so-called Greatwall loop

� Also, s and t happen to be the same molecule (=s)

� s and x now are antagonists: they are the two halves of the switch, 
mutually inhibiting each other (through intermediaries).
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1.0

9

0

0.0025

← tp →0

0

↑
xp

↓

Pr(xp|tp)

15000

0

↑
xs

↓

← ts →

Full activation!
GW

(Gwl)

cdc25

cdk/cyc

wee1

PP2A



More surprisingly
� Makes it faster too!

� The extra feedback also speeds up the decision time of the switch, 
making it about as good as the ‘optimal’ AM switch:
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0.004← ts →0

15000

0

↑
xs

↓

AM

GW

CC

Conclusion (in our published paper):
Nature is trying as hard as it can to 
implement an AM-class algorithm!

The “classical” cell cycle switch seems 
to be only half of the picture: the extra 
feedback completes it  algorithmically.



The Greatwall Kinase
� Our paper appeared:

� Suggesting GW is a better switch 
than CC.             September 2012

� Another paper that 
same week:
� Showing experimentally that the 

Greatwall loop is a necessary
component of the switch, i.e. the 
not-as-good-as-AM network
has been ‘refuted’
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A new cell cycle switch candidate: GW
� Will it work in the normally-wired oscillator?

� Absolutely not!  �
� The x stable state is just too strong: a high x will shut down s completely; which means that r 

will be fully on, and it in turn will reinforce x fully. And y can never be strong enough to push 
down x when x-r are in such a strong mutual feedback. No amount of fiddling seems to give 
enough control on that situation.
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However this will
� Put s under control of y so it can undermine x

26

x

Robust full-on oscillation with all-default parameters 
(all black rates 1.0, all gray rates 0.5, all initial quantities 
equal)



Suggests a new interaction

� Either Gwl or PP2A or something 
along that path must be under 
control of cdc20.

� There are some hints in the 
literature that this may be the 
case, but no direct experimental 
validation.
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(Gwl)

cdc25

cdk/cyc

wee1

PP2A

cyc 
synthesis

checkpoint

cdc20



Part II: What is network structure 
really telling us about kinetics?
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An Analytical Theory of Network 
Emulation (with thanks to David Soloveichik)

� So far, our evidence is empirical
� Although based on numerical simulations 

and covering both kinetic and steady state behavior

� Analytical evidence is harder to obtain
� The proof techniques for the AM algorithm are hard and do not generalize easily 

to more complex networks

� Quantitative theories of behavioral equivalence and behavioral approximation, e.g. 
in process algebra, are still lacking (although rich qualitative theories exist)
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Mutual Inhibition
� A recent paper suggests that all cellular switches in all phases of the cell 

cycle follow (abstractly) a mutual inhibition pattern:

� Also found in other areas
(cell polarity establishment):

30

MI



Septation Initiation
� Other (inherently different) biological networks are based on mutual inhibition, 

and share characteristics with AM

31

SIN inhibiting Byr4,
absence of SIN promoting Byr4



New Cell Cycle Network
� A recent paper presents a more complete view of the cell cycle switch

� N.B. “phosphorylation network dynamics” is the same as our x0-x1-x2 motif
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NCC

Cdk1PP2A

GWL

PP1 Wee1

Cdc25



Network Emulation: NCC to MI
� For any initial state of MIMIMIMI we can find some initial state of NCCNCCNCCNCC (actually by copying

the state of MIMIMIMI) such that NCCNCCNCCNCC exactly emulates MIMIMIMI

� Also for any rates of MIMIMIMI we can find rates for NCCNCCNCCNCC such that
the average behavior is exactly the same

� Why does this work so well?
33

(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize z,r,p, 
identically to z;

initialize y,q,s
identically to y

(3 species each)



Network Emulation: MI to AM
� For chosen initial conditions of MIMIMIMI, the (6) trajectories of MIMIMIMI emulate those (3) of AMAMAMAM:

MI MI MI MI exactly emulates AMAMAMAM
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(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize ~y,z, 
identically to x

(3 species)



Network Emulations Compose: NCC to AM
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� For chosen initial conditions of NCCNCCNCCNCC, the (18) trajectories of NCCNCCNCCNCC emulate those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

The new cell cycle switch 
can emulate AM exactly.

For any initial conditions 
of AM.

And for any rates of AM.

Why?

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y

NCC NCC NCC NCC exactly
emulates AMAMAMAM



MI to AM mapping in detail

36

MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions



An Analytical Theory of Network Emulation

� An emulation is an “implementation”
� “for every input produces the same output” (algorithms)

“for every initial conditions produces the same trajectories” (dynamical systems)

� A refined network that works just as well as the coarser network
in the context of the inputs of the coarser network (not arbitrary inputs)

� When can a network emulate another one?
� Theories of behavioral equivalence and behavioral approximation, 

e.g. like in process algebra, are still lacking in this quantitative field �

� So we look at the continuous-state semantics of these networks, 
and see what we can do there ☺

� If you get lost, just read the green stuff!
37



Chemical Reaction Networks
� A CRN is a pair �, � where

� � = {��, … , �!} is a finite set of species

� � = {#�, … , #$} is a finite set of reactions over �

� Reactions # = %, &, � written  Σ(∈*  %( · � →, Σ(∈*  &( · �

� Ex.: # =  2- + . →, - + 30
� with %1 = 2, %2 = 1, %3 = 0 reactant stoichiometric numbers

&1 = 1, &2 = 0, &3 = 3 product stoichiometric numbers 

� The stoichiometry of a species � in a reaction # is:

4(�, (%, &, �)) =  &( − %( net stoichiometry    4 -, # = −1

5(�, (%, &, �)) = � · (&( − %() (instantaneous) stoichiometry     5 -, # = −�

38

#

6



Species Maps and Reaction Maps
� A species map is a map 7 ∈ � → �8

� Ex:  7 �0 = 7 �1 =�̂

� It induces a canonical reaction map � → �:

� Ex:  7(�0 + �1 →� �1) = 2�̂ →� �̂

� Where 7 %, &, � = 7 % , 7 & , �

� And 7 % (similarly 7 & ) is the sum over fibers:

7 % (̂ = Σ(∈$;<((̂) %(

in case two species in the same reaction are mapped to the same species.

39

7 �̂

%(
�

ℕ

7 % (̂

6 6>

0 1 2

the fiber of �̂: 7?�(�̂)

�0

�1

%(
�Σ =



CRN Morphisms
� Mappings (potential symmetries) between two networks

� A CRN morphism is a map 7 ∈ �, � → �8, �: = 7@ , 7ℛ

with 7@ ∈ � → �8 and 7ℛ ∈ � → �: .

� We are interested in morphisms 
that are not injective,
that represent implementations
or refinements of simpler networks

40



Σ(∈   5 �, #   =   5    , 7(#)CRN Homomorphisms
� Preserve the graph structure of the network

� 7 ∈ �, � → �8, �: is a CRN homomorphism
if 7ℛ is determined by 7@: 

7ℛ %, &, � = 7@ % , 7@ & , �

� Ex:
#�:     7ℛ ��, ��, � = �̂�, �̂�, � = (7* �� , 7* �� , �)
#�:     7ℛ ��, ��, � = �̂�, �̂�, � = (7* �� , 7* �� , �)

� It implies that for each reaction m preserves stoichiometry 
summed over species fibers

∀�̂ ∈ �8.
   

∀# ∈ �.  Σ(∈$;< (̂  5 �, # = 5 �̂, 7(#)

� But it may not preserve stoichiometry
5 ��, #� + 5 ��, #� =  −2� ≠  −1� =  5 �̂�, #̂� (see next slide)

6 6>

7# 7(#)

Homomorphism 

�̂



42

CRN Stoichiomorphisms
� Preserve the stoichiometry of the network

� 7 ∈ �, � → �8, �: is a CRN stoichiomorphism if for each 
species m preserves stoichiometry summed over reaction fibers

∀� ∈ �.
   

∀#̂ ∈ �:.  ΣE∈$;< Ê  5 �, # = 5 7 � , #̂

� This condition can be checked over the syntax of CRNs, 
without any consideration of their kinetics

� Ex:
��, #̂�:     5 ��, #� + 5 ��, #� = 0 =  5 �̂�, #̂�

��, #̂�:     5 ��, #� + 5 ��, #� = 1� =  5 �̂�, #̂�
��, #̂�:     5 ��, #� + 5 ��, #� = 1� =  5 �̂�, #̂�

� We will show that existence of a stoichiomorphism implies 
identical network kinetics (in certain conditions).

F F>

7 #̂

ΣE∈   5 �, #   =   5 7 � ,    

Homomorphism and
stoichiomorphism.



CRN Morphism Conditions
� Homomorphism: preserves the graph structure of the network

∀�̂ ∈ �8.
   

∀# ∈ �.  Σ(∈$;< (̂  5 �, # = 5 �̂, 7(#)

� Stoichiomorphism: preserves the stoichiometry of the network

∀� ∈ �.   ∀#̂ ∈ �:.  ΣE∈$;< Ê  5 �, # = 5 7 � , #̂

� If 7 is an isomorphism (injective and surjective, with singleton fibers) 
then both properties reduce to the simple property:
preserves the stoichiometry of each species in each reaction

∀� ∈ �.   ∀# ∈ �.   5 �, # = 5 7 � , 7 #

� The above are thus generalization for when 7 is not injective.
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Checking the Stoichiomorphism Condition
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7?�(#̂)

7��, 7�G 7��, 7�H 7��, 7�I 7�J, 7�K

L� 0 1 -1 0 ��

L� 1 -1 1 -1 ��

L� -1 0 0 1 ��

M� -1 0 0 1 ��

M� 1 -1 1 -1 ��

M� 0 1 -1 0 ��


7� 
7� 
7� 
7J

∀#̂ ∈ AM

5 M�, 7�� + 5 M�, 7�G =  −1 = 5 ��, 
7�

am0am1

am2 am3

mi0mi1

mi2 mi3

mi4mi5

mi6 mi7

∀� ∈ �.   ∀#̂ ∈ �:.  ΣE∈$;< Ê 5 �, # = 5 7 � , #̂

MI AM

All unit rates (for simplicity)

7(M�)

7 ∈ MI → AM

This is both a homomorphism 
and a stoichiomorphism

7?� 
7�



CRN Kinetics
� A state of a CRN (�, �) is a vector of concentrations for each species: Q ∈ ℝS

* .

� The mass action [#] ∈ ℝS
* → ℝS of a reaction # ∈ � is:

[#]Q = [(%, &, �)]Q = Π(∈* Q(
UV

= QU

� The differential system of a CRN (�, �) is the map W ∈ ℝS
* → ℝ*

(for each state, gives the differential of concentration for each species):      

W(Q)(�) = ΣE∈X  5(�, #) · [#]Q

� Normally written as a system of concentration ODEs, integrated over time: 

YQ(

Y�
= W(Q)(�) = Σ(U,Z,,)∈X  � · (&( − %() · QU

45

�

Q
Q(

� W(Q)(�)



Kinetic Emulation
� A map 7 ∈ �, � → �8, �: is a CRN emulation if the following 

holds for the respective differential systems W, W8 :

∀Q[ ∈ ℝS
*8 . ∀� ∈ �.  W Q[ ∘ 7 � = W8 Q[ 7 �

(the derivative of � in state Q[ ∘ 7 equals the derivative of 7 � in state Q[)

� It follows that for any initial state Q[ of �8, �: there is an initial 
state Q (=Q[ ∘ 7) of �, � such that the trajectory of any � in 
�, � is identical to (emulates) the trajectory of 7(�) in �8, �: .

(the trajectory of � from Q[ ∘ 7 equals the trajectory of 7 � from Q[)

�

(With minor caveats if m is not surjective.)

46

�

Q = Q[ ∘ 7
Q(

� W Q � =

�, �

�

Q[

Q[$(()
7(�) W: Q[ 7 �

�:, �>

W Q[ ∘ 7 = W: Q[ ∘ 7

W

ℝ*8

ℝ*

ℝ*8

ℝ*
W

W:

Q[

−∘ 7 −∘ 7

Q[ ∘ 7

W: Q[



Emulation Theorem
� Theorem: If 7 is a CRN homomorphism and stoichiomorphism 

then it is a CRN emulation.

That is, for any initial conditions we can match trajectories.

� Actually, 7 need not be a homomorphism for this to hold: it is enough for 7 to be a reactant morphism and a stoichiomorphism. A reactant 
morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of 
network mappings that preserve kinetics.

47

⇒MI

AM

MI

AM



Change of Rates Theorem
� A change of rates for �, � is bijection ] ∈ �, � → �, �′ such that ](�) is the identity and 

] %, &, � = %, &, �_ .

� Theorem: If 7 ∈ �, � → �8, �: is a stoichiomorphism, then for any change of 
rates ] ̂ of �8, �: there is a change of rates ] of �, � such that ] ̂ ∘ 7 ∘ ]?� is a 
stoichiomorphism.

� In fact, ] changes rates by the ratio with which ] ̂ changes rates:

] %, &, � = %, &, � ·
,: `

,:
where 7 %, &, � = (%a, &a, �:) and ] ̂ %a, &a, �: = (%a, &a, �:′).

� Corollary: If 7 ∈ �, � → �8, �: is a stoichiomorphism and homomorphism, 
then for any change of rates ] ̂ of �8, �: there is a change of rates ] of �, � such 
that ] ̂ ∘ 7 ∘ ]?� is an emulation.

� That is, for any rates we can match trajectories. 48



Any Rates, Any Initial Conditions
� A stoichiomorphism 7 ∈ �, � → �8, �:  that is also a homomorphism, determines an 

emulation for any choice of rates of �8, �: . 

� Those emulations can match any initial conditions of any choice of rates of �8, �: with some 
initial conditions of some choice of rates of �, � .

� Automatically substitutive for catalytic networks
� Rewire in larger network according to 7 (shared inputs, single copy outputs).
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directive sample 10.0 100

init z0 2 |

init z1 0 |

init z2 1 |

init y0 0.9 |

init y1 0.2 |

init y2 1.9 |

y2 + y0 ->{0.9} y0 + y1 |

y1 + y0 ->{1.0} y0 + y0 |

z0 + y0 ->{1.1} y0 + z1 |

z1 + y0 ->{1.2} y0 + z2 |

y0 + z0 ->{0.7} z0 + y1 |

y1 + z0 ->{0.8} z0 + y2 |

z2 + z0 ->{0.5} z0 + z1 |

z1 + z0 ->{0.6} z0 + z0

directive sample 10.0 100

init z0 2 |

init z1 0 |

init z2 1 |

init s0 0.9 |

init s1 0.2 |

init s2 1.9 |

init r0 2 |

init r1 0 |

init r2 1 |

init y0 0.9 |

init y1 0.2 |

init y2 1.9 |

s2 + y0 ->{0.9} y0 + s1 |

s1 + y0 ->{1.0} y0 + s0 |

r0 + y0 ->{1.1} y0 + r1 |

r1 + y0 ->{1.2} y0 + r2 |

s0 + z0 ->{0.7} z0 + s1 |

s1 + z0 ->{0.8} z0 + s2 |

r2 + z0 ->{0.5} z0 + r1 | 

r1 + z0 ->{0.6} z0 + r0 |

y2 + s0 ->{0.9} s0 + y1 |

y1 + s0 ->{1.0} s0 + y0 |

z0 + s0 ->{1.1} s0 + z1 |

z1 + s0 ->{1.2} s0 + z2 |

y0 + r0 ->{0.7} r0 + y1 |

y1 + r0 ->{0.8} r0 + y2 |

z2 + r0 ->{0.5} r0 + z1 |

z1 + r0 ->{0.6} r0 + z0

MI with completely heterogeneous rates and initial conditions                       QI with matching rates and initial conditions



Cell Cycle Stoichiomorphism Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

(          homomorphism and stoichiomorphism (transitive))

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,~s ⇢ x

NCC

GW



From Empirical to Analytical
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SCr CCr

SC CC

First part of talk:

Second part of talk:

Approximate
“default” rates and initial conditions

Exact
any rates and initial conditions

These additional feedbacks do exist 
in real cell cycles (via indirections)



Another 
Zoo
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Network Perturbations
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Network               Normal Behavior         Removing each link in turn

A complex but robust 
implementation of the
simple network

dead

never dead “on average”



Interpretation of Stoichiomorphism
� Ignorance about initial conditions

� We may not know the concentrations of species in the more complex network, but at least we know that if they satisfy certain 
conditions, then it behaves like the simpler network.

� Robust implementation of simpler function
� Redundant symmetries are implicit in the stoichiomorphism relationships

� Neutral paths in network space (evolution)
� If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because 

it is “kinetically neutral”.

� This allows the network to increase its complexity without kinetic penalty.

� Later, the extra degrees of freedom can lead to kinetic differentiation.

� But meanwhile, the organism can explore variations of network structure.

� Network implementation (not abstraction!)
� Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior, 

on the contrary, they are about refinement / fine-graining that preserve behavior.

� They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically) 
implementable because of excessive demands on species interactions.
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Conclusions
� The cell cycle switch can exactly emulate AM

� Nature likes a good algorithm!
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emulates: emulates:

(New) cell cycle switch
Approximate majority

algorithm

NCC

AMMI



In separate work...
� We produced a chemical implementation of AM using DNA gates

� I.e., a ‘synthetic reimplementation’ of the central cell-cycle switch.  
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