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Calbiochem’ MAPK Family Pathways

Cells Compute

» No survival without computation!
- Finding food
- Avoiding predators

- How do they compute?

M 1 M M n v
+ Clearly doing “information processing MAPKKK 5 MAPKKK"
X 4
- But can we actually catch nature running £2 |
an (optimal) algorithm? MAPKK <3 MAPKIGP £ MAPKK.PP
t
MAPKK P'ase
MAPK <= MAPK-P > MAPK-PP
e
MAPK Pase
ouTPUT
P i T A




Outline

- Analyzing biomolecular networks

- Try do understand the function of a network
- But also try to understand its structure, and what determines it

- The Cell-Cycle Switches

- Some of the best studied molecular networks

- Important because of their fundamental function (cell division)
and the stability of the network across evolution

- We ask:

+ What does the cell cycles switch compute?
- How does it compute it?




The Cell Cycle Switch

'his network is universal in all Eukaryotes [P Nurse]

- |.e., the network at the core of cell division is the same from yeast to us
- Not the components of the network, nor the rates

11 Science 106, 1153-1168 (1993)
in © The Company of Biologists Limi

®
Numerical analysis of a comprehensive model of M-phase control in
unreplicated Xenopus oocyte extracts and intact embryos
DNA
Bela Novak* and John J. Tysont
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
G kv ‘é - 0 3 of Agri i nical University of Budapest, 1521 Budapest Gellert Ter 4, Hungary
ore MPF Double positive feedback on x
ey Double negative feedback on x
_— No feedback ony

Why 2?7

- The function is very well-studied. But why this structure?
- e, why this algorithm?




How to Build a Good Switch
- What is a "good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population” Switches

- Populations of identical agents (molecules) with the whole population switching
from one state to another as a whole

+ Highly concurrent. Stochastic symmetry breaking




A Bad Algorithm [

—_—
X —y

- Direct Competition | T
- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Y+ XX+ X
X+ty—=y+y

1111111




Approximate Majority

N Dana Angluin - James Aspnes - David Eisenstat
e ry OO g O rl | | | A Simple Population Protocol for Fast Robust

- Approximate Majority (AM) | [
- Decide which of two populations is in majority X —= b2y

[ 7T

- A fundamental ‘population protocol’

- Agents in a population start in state x or state y

- A pair of agents is chosen randomly at each step,
they interact (‘collide’) and change state ,
1) Disagreements cause agents to

- The whole population must eventually agree on a become undecided

majority value (all-x or all-y) with probability 1 2) Undecided agents believe any
non-undecided agent they meet

Third ‘undecided’ state




Properties
- With high probability, for n agents

- The total number of interactions before converging is O(n log n)
= fast (optimal)

- The final outcome is correct if the initial disparity is w(sgrt(n) log n)
= solution states are robust to perturbations

- Logarithmic time bound in parallel time

- Parallel time is the number of steps divided by the number of agents
- In parallel time the algorithm converges with high probability in O(log n)

[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]




Chemical Implementation

Chemistry as a X+y—y+b

programming y+X—->x+b
language for b+ N

population X=X+ X
algorithms! b+y—-y+y
Bistable

Even when x=y! (stochastically)

1

Fast
O(log n) convergence time

1

Robust to perturbation
above a threshold, initial majority wins whp

88888

44444
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Worse-case scenario example,
starting with x=y, b=0:

SPiM
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Back to Biology

- The AM algorithm has ideal properties for settling a
population into one of two states

- Seems like this would be useful in Biology
- Can we find biological implementations of this algorithm?
- Can that explain some biological features?

- Could the cell cycle switch be operating this way?
(Looks unlikely...)
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(Aside) A Biological Implementation
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Figure 1. Basic Ingredients of the Model

Population of histones
reaching agreement

Theoretical Analysis of Epigenetic
Cell Memory by Nucleosome Modification
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Detour) How to model “Influence”

"True” molecular interactions. “Equivalent” influence interactions.

-
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Figure 4: a) Schematic diagram of a primitive cell cycle in the reinitz framework.

Figure 3: a) Schematic diagram of a simplified SIMM model [17]. The activa-

N

Instead of modeling basic interactions, such as binding, synthesis, and degra-

3 - g v ] =1 & Ti 1 Ll =} 1 T ) J s}
E\-(J]\-ng a pf]lll]’[ﬂ- € Elll\dT} otic C{H C“ : l{’ ?\I()d{'l dation of molecular components, this framework models interactions simply as
- ] i activation or inhibition. This approach also reduces the number of nodes nec-
Malte Liicken, Jotun Hein, Bela Novak essary In the network, as e.g. the inhibitor binding tightly to the activator to

form a complex, which produces phosphorylated inhibitor to be degraded un-
der catalysis by the activator, is now simply a double negative feedback loop
shown in Figure[I} This type of interaction is the basis of both aforementioned
molecular model, therefore they can both be summarized in a single Reinitz
model.




The Reinitz Model of Influence

Based on early connectionist (neural (/X\:\ Biochemcal Reacton
: Networks
network) mOdehng Y _. Z John J. Tyson' and Béla Novik?
- Each activation/inhibition interaction is s wao m
modeled as a flexible sigmoid function with e e o

4+ parameters per node amenafone Zons)|. neenlo o)

. . L inhibition
- We prefer to stick to mass action kinetics
- It will later become clear why effect —x-
L o inhibition
- We model activation/inhibition nodes activation i fre
by a mass action motif: R W 5o
. effect — x, 77— X, —= X,—
Using 4 rate parameters per node o o

Akin to multisite modification T l— ——
activation 1




The Triplet Model of Influence mhisition -

koo kize ~  (other

Solving this mass action model at steady state | effect — x,7 X, ——
With tot = x + x; + x,, Obtain x4 as a function of aand i : effect)
_ k10k21t0t az . .
X0 S R oka1a? + korkarai + ko1 ka2 activation
) =
\ x0 §§;

Assuming i = tot — a (inhibition decreases as activation increases) L x1
obtain x, as a function of ae[0..tot] (max stimulus = max response) N\ x2
[
kyoky tot a?
Xn =
° 7 (kiokar — kotkzy + ko1ki2)a? + (koikar — 2koikiz)tot a+ koi ki tot?

|
|

s

By regulating the rates of flow through x4 within 2 orders of
magnitude we can obtain a range of linear, hyperbolic and
sigmoid responses in the range [0.1] to linear activation a[0..1]. , .

steady state transitions ¥
from inhibited to activated . ]
with tot = 1 and a<[0..1] '

o
d




Influence Network Notation

- Catalytic reaction T z z zis the catalyst
y L XLZ»V

X—y — X+Z—2Z+Yy

- Triplet motif

middle state

inhibit x ”"M””i.i”“(E.nsures nonlinearity) |

(promote X5) “"'"“‘* J - Duality
r—)T(" = _'_ X0oe— X| — ij.’_ - _/rNTX_*\_

promote X -——-7[” \ f X, %
(promote X,) f N e - e
Xo X, state where state where (~X)o= Xy,

output output X is promoted x is inhibited (~X)1= Xq,

(~X)2= Xo

influence node catalytic node




Cell Cycle Switch vs. AM

CcC
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Convergence Analysis

- Switches as computational systems

| |
[ o A
=y 44 B
I_T |__1 f_T i_T
t i cCcC

—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system

NEW!
CC appears to converge in log time
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Steady State Analysis

- Switches as dynamical systems

bias

ll_l bias bias
Xe—Y ] L

l_x'
L f7 K -i-_TSTx
SX SX

t
DC AM SC

LN e—

0 o sx, - 150

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system

i bias
1

?jSTX

t  cc
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| Prix|sx,)

. 10°
- 10
. 10°
0.01
01
. 1
B
X,
!
0
« sX, > 15
NEW!

AM shows hysteresis
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Contextual Analysis
- AM switches in the context of oscillators

30

Pr(ylx)
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. LI oo =
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Xo y

TT !
en.wikipedia.org/wiki/Trammel_of_Archimedes O L

Trammel of Archimedes
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Modularity Analysis
- CC swapped in for AM

2? ....... . Jr =06
N sy = 10
0 et

25
T e . r/r, = 0.675
)f ﬁ::;;_j-u--:;;/ sy =10
o —

0 «sx—-> 20
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Fvidence that CC is 'similar’ to AM

- But there is a difference

- The classical cell cycle switch, CC, works ok but never as well as AM
- The output of CC does not go ‘fully on”:

| o

Z

0.00710

®
r

iy
1

C
t

- Because s continuously inhibits x through z, so that x cannot fully express

- Engineering question: could we fix it? (Yes: let x inhibit s and t)

- Q: Why didn't nature fix it?

21




Nature did!

‘here is another known feedback loop

+ By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule (=s)

( F to 0. / >

—lz 150005 t 0.0025 Pgr(xnlt) . ele]

—mp
S / \ T_Sl( ! E pp2A - _dT|<'
l )i i - cdk/cyc

T— r —T 'y cdc25 —T

_T GwW 0 “t,- 10 ° \ T

Full activation!

s and x now are antagonists: they are the two halves of the switch,
mutually inhibiting each other (through intermediaries).

22




More surprisingly

- Makes it faster too!

- The extra feedback also speeds up the decision time of the switch,

making it about as good as the ‘optimal’ AM switch:

Conclusion (in our published paper):
Nature is trying as hard as it can to
implement an AM-class algorithm!

The “classical” cell cycle switch seems
to be only half of the picture: the extra

feedback completes it algorithmically.

15000

<_m>< -

AM
GW
CcC

T
<t

—
0.004
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The Greatwall Kinase

SCIENTIFIC 02
REPg}RTS {
- Our paper appeared: Z
+ Suggesting GW is a better switch i—\_l:)l( @ The Cell Cycle Switch Computes
than CC. September 2012 ¢ 1 ... Approximate Majority

Luca Cardelli’ & Attila Csikasz-Nagy™*
COMPUTATIONAL
BIOIOGY

- Another paper that
same week:

- Showing experimentally that the
Greatwall loop is a necessary
component of the switch, i.e. the
not-as-good-as-AM network
has been ‘refuted’

— AN
nature \ ————— @
COMMUNICATIONS

ARTICLE

D 6 Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | pOt:10. /i 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'! Yusuke Abelt, Toshiaki Tanaka?, Takayoshi Yamamota® !, Eiichi Okumura' & Takeo Kishimoto!
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A new cell cycle switch candidate: GW

- Will it work in the normally-wired oscillator?

- Absolutely not! ®

- The x stable state is just too strong: a high x will shut down s completely; which means that r
will be fully on, and it in turn will reinforce x fully. And y can never be strong enough to push
down x when x-r are in such a strong mutual feedback. No amount of fiddling seems to give

enough control on that situation.
25




However this will

- Put s under control of y so it can undermine x

sly
L5

V_

le

X

&
AN
L\

-l
1

SX

X

SPiM

3000

b()
2250

1500

=
oo

750

0
0 021901

Robust full-on oscillation with all-default parameters

(all black rates 1.0, all gray rates 0.5, all initial quantities
equal)
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Suggests a new interaction

+ Either Gwl or PP2A or something
along that path must be under | |
control of cdc20.

cdc20 —
- There are some hints in the T_, i l
literature that this may be the i weel
case, but no direct experimental ! (Gwl) T |
validation. ---@ PP2A F---- cdk/cyc

cdc25

27




Part Il What Is network structure
really telling us about kinetics?




An Analytical Theory of Network
Emulation with thanks to David Soloveichik)

- SO far, our evidence is empirical

- Although based on numerical simulations
and covering both kinetic and steady state behavior

- Analytical evidence is harder to obtain

- The proof techniques for the AM algorithm are hard and do not generalize easily
to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation, e.qg.
in process algebra, are still lacking (although rich qualitative theories exist)

29




Mutual Inhibition

- A recent paper suggests that all cellular switches in all phases of the cell

cycle follow (abstractly) a mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle
transitions

Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

- Also found in other areas
(cell polarity establishment):

PHILOSOPHICAL :
PHILOSQRHICAL The PAR network: redundancy and

U oF D robustness in a symmetry-breaking
THE ROYAL Dj system
SOCIETY

umio

rsth.royalsocietypublishing.org

signal

™~

activator

|
G0

aPAR feedback loop  mutual exclus
CDC-42 > myosin (sebox D PAR.2 self recritmet
endocytosis resistance against PKC-3

PPAR feedback loo

—< o

o N —

\
/'
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Septation Initiation

- Other (inherently different) biological networks are based on mutual inhibition,
and share characteristics with AM

——————— | I— e ™ i |
I I
I v I
1 /Byrédye > BYyrd g Byrdow |
I \\ ~ " s 1 ‘
[ R RS I S
I | SINyew T——2 SIN. &=——=% SINoig | | > '[
I I I I
1 | I | -
I I | I Z
Y, ¥
Cdcll &= Cdcl1i-P Cdcll—P“__) Cdci1 T

SIN inhibiting Byr4,
absence of SIN promoting Byr4
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New Cell Cycle Network

+ A recent paper presents a more complete view of the cell cycle switch
+ N.B. “phosphorylation network dynamics” is the same as our X,-x;-X, motif

Phosphorylation network dynamics in the control of
cell cycle transitions

oudreuse®* an:
'NRS UMR 553 rsité llier | and II, 34293 lier, France
IMR 6290, 350 nes, Fra
anment of Biochemist rersity of Oxford, South Parks d, Oxford OX1 U, UK
108351
— 1
B -
S . PP1 ee
£\ r/" AED™ £
RR1D FF"I?i\. SGwll® Gl [ ]
'\_.) i ppzaT \
B 2 R

—  PP2A

S de —_—
Weel® wméf’ .\'ECdcﬁ@ Gdazs WL CdC25

NCC

)

32




Network Emulation: NCC to M|

+ For any initial state of Ml we can find some initial state of NCC (actually by copying

the state of M) such that NCC exactly emulates Ml

&'N_é
I T 1
Y

t/

(18 species on 6 trajectories) (6 species on 6 trajectories)

NCC Ml

Zrp -z
quls ---> y 0.5—;

a

S S S
[
[T

1 ’

ES Falire} S Mmoo N NN
a yN P ONHONRONHO
] < »

T
3

w —

+ Also for any rates of Ml we can find rates for NCC such that
the average behavior is exactly the same

-+ Why does this work so well?

(3 species each)

initialize z,r,p,
identically to z;

initialize y,q,s
identically toy
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Network Emulation: Ml to AM

- For chosen initial conditions of M, the (6) trajectories of MI emulate those (3) of AM:
MI exactly emulates AM

1
D —X-
Ty X —T \ (3 species)
AM

2.5+ z1 2.5 A\, x1
] » ] N
] " ] initialize ~y,z,
1.5—7 1.5—_ . .
] ] identically to x
"""""""""""""""" & —_—
(6 species on 3 trajectories) (3 species on 3 trajectories)
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Network Emulations Compose: NCC to AM

- For chosen initial conditions of NCC, the (18) trajectories of NCC emulate those (3) of AM

’T_Dﬁ

1_ __I_ ZnLp -z Z,~y-> X
NCC exactly T sy — X ___\ The new cell cycle switch

emulates AM -I-_ JT__// _T Z?m) ) | I can emu.la't.e AM ex'a.cz‘[y.

~Y,~Q,~S > X For any initial conditions

NeCC AM of AM.

. . — . > And for any rates of AM.
e §§
E s . Why?

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
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Ml to AM mappin

g in detail

‘ ] N0
2500 N\ x1
E \t\fne
KI . | x _+X _+x 1500—;
U+_ 1 f— 2 1000-]
o | \\ g,
[
homomorphic mapping
e —_— ]
Yo Y1 < Yo 2o
ql E | z 1500—;
i * e— 7, (S AP MBS NAR MR MR

any initial conditions

initial conditions:

Z5=Y2 =X
1=Y15X
Z;=Yo =X,
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An Analytical Theory of Network Emulation

- An emulation is an “implementation”
- "for every input produces the same output” (algorithms)
“for every initial conditions produces the same trajectories” (dynamical systems)

- A refined network that works just as well as the coarser network
in the context of the inputs of the coarser network (not arbitrary inputs)

- When can a network emulate another one?

- Theories of behavioral equivalence and behavioral approximation,
e.q. like in process algebra, are still lacking in this quantitative field ®

- So we look at the continuous-state semantics of these networks,
and see what we can do there ©

- |f you get lost, just read the green stuffl kS etaXm
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Chemical Reaction Networks

- A CRNis a pair (S, R) where

- S ={s1,...,5,} is a finite set of species
- R={r,..,n,} s afinite set of reactions over S

- Reactionsr = (p,m, k) written Zgeg ps+ s =F S ms- S

- Ex: r =2A+B->A+3C
- with pa=2, pg=1 p=0 reactant stoichiometric numbers
my=1 ng =0, mo =3 product stoichiometric numbers

+ The stoichiometry of a species s in a reaction r is:

nes,(p,mk)) = ng — ps net stoichiometry n4,r) =-1
o(s,(p,m k) =k- (g —ps) (instantaneous) stoichiometry @ (A, 1) = —k

38




Species Maps and Reaction Maps

- A species mapisamapm €S — S the fiber of §: m~1(%)
- Exi m(sy) = m(sy) =8

+ It induces a canonical reaction map R = R
- Ex: m(sy+ s, 21s)=28-158

- Where m(p,m, k) = (m(p), m(m), k)

- And m(p) (similarly m(m)) is the sum over fibers:
m(p)s = ZSEm_l(S‘) Ps

in case two species in the same reaction are mapped to the same species.

39




CRN Morphisms

- Mappings (potential symmetries) between two networks

+ A CRN morphism is a map m € (S,R) — (S,R) = (ms, my)
withms € S - S and mgz € R - R.

- We are interested in morphisms
that are not injective,
that represent implementations
or refinements of simpler networks

40




CRN Homomorphisms

- Preserve the graph structure of the network

- m € (S,R) - (S,R) is a CRN homomorphism
if mg is determined by mg:

mR(pi TT, k) - (mS (,0); mg (T[), k)
- Ex

To: Mg(Se,S1, k) = (?o:?p k) = (ms(so), ms(s1), k)
r1: Mg (S, S2, k) = (80,51, k) = (ms(so), ms(s2), k)

- It implies that for each reaction m preserves stoichiometry
summed over species fibers

VS €S. Vr €R. Zgem105 (s,1) = @ (8, m(r))

- But it may not preserve stoichiometry Homomorphism
@ (S0, 19) + ©(Sg,11) = =2k # =1k = @(8,79) (see next slide)




CRN Stoichiomorphisms

- Preserve the stoichiometry of the network

- m € (S,R) - (S,R) is a CRN stoichiomorphism if for each
species m preserves stoichiometry summed over reaction fibers

Vs €S. VP ER. Zrem-1i0) (s, 7) = p(m(s), )

- This condition can be checked over the syntax of CRNs,
without any consideration of their kinetics

- Ex

So»f”oi (50, 70) + @(sg,11) =0 = <P(§9,f9)
S1,To: @(s1,19) + (s, 1y) = 1k = <P(§1»7:0) V ()
So,for @(s2,10) + @(s,11) = 1k = @(84,7) kv

G PG

- We will show that existence of a stoichiomorphism implies
identical network kinetics (in certain conditions). Homomorphism and

stoichiomorphism.
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CRN Morphism Conditions

- Homomorphism: preserves the graph structure of the network
V8 €S. Vr €R. Tgepm10s @(s,7) = 9§, m(1))

- Stoichiomorphism: preserves the stoichiometry of the network
Vs €S. VP ER. Zem1(py 9(s,7) = p(m(s),7)

- Ifm is an isomorphism (injective and surjective, with singleton fibers)
then both properties reduce to the simple property:
preserves the stoichiometry of each species in each reaction

Vs€S. Vr €R. ¢(s,r) = <p(m(s),m(r))

- The above are thus generalization for when m is not injective.
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Checking the Stoichiomorphism Condition

m € Ml - AM

- 0
_ Z Y o 1 -1 X,
All unit rates (for simplicity) = Z A 0 0 1 X =
prcity s Vo—ul__A1 0 o T X, &
= v, T 1 1 1 X1
This is both a homomorphism Y2 \ar% — — — %
. . . 0 1 2 3
and a stoichiomorphism VF € AM
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CRN Kinetics

- A state of a CRN (S, R) is a vector of concentrations for each species: v € Ry.

- The mass action [r] € RS - Rt of a reactionr € R is:

7]y = [(o, 0, k)] = Hges Vs
- The differential system of a CRN (S, R) isthe map F € R} - RS

(for each state, gives the differential of concentration for each species):

pS:vp

F)(s) = Zreg @(s,7) - [r], s

S

| F)(s)

- Normally written as a system of concentration ODEs, integrated over time: .

Vs

dt =FW)(s) = z:(p,n,k)ER k- (s — ps) - VP
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Kinetic Emulation b= Dom

Vs
- Amapm € (S,R) - (S, R) is a CRN emulation if the following NP
holds for the respective differential systems F, ' s IR) t

VD ERS. Vs €. F(Dom)(s) = F(®)(m(s))

(the derivative of s in state ¥ o m equals the derivative of m(s) in state ) 3;

- It follows that for any initial state  of (8, R) there is an initial b
state v (=0 o m) of (S, R) such that the trajectory of any s in_ ( g R‘)
(S,R) is identical to (emulates) the trajectory of m(s) in (S, R). ’

(the trajectory of s from ¥ o m equals the trajectory of m(s) from v) vem  F
]RS —_— ]RS
Fom)=F@) om  —mf . f-om
(With minor caveats if m is not surjective.) RS LN RS

7 F®)
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Fmulation Theorem

Theorem: If m is a CRN homomorphism and stoichiomorphism

then it is a CRN emulation.

AM | | I
|: X X1 e— X2

Yoe—Y1e— Yo —
—— —

[~ Zoe— Z1e— 22

L[ 1

That is, for any initial conditions we can match trajectories.

Actually, m need not be a homomorphism for this to hold: it is enough for m to be a reactant morphism and a stoichiomorphism. A reactant
morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of

network mappings that preserve kinetics.
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Change of Rates Theorem

- A change of rates for (S, R) is bijectiont € (S,R) — (S, R’) such that «(S) is the identity and
Wp,m, k) = (p,m k).

- Theorem: If m € (S,R) - (S, R) is a stoichiomorphism, then for any change of
rates £ of (S, R) there is a change of rates 1 of (S, R) suchthat? em o 1is a
stoichiomorphism.

- In fact, « changes rates by the ratio with which  changes rates:
p,m k)= (p m, k- —) where m(p, 7, k) = (p, 1, k) and i(p 7, k) = (p, 11, k.

- Corollary: If m € (S,R) - (S, R) is a stoichiomorphism and homomorphism,
then for any change of rates t of (S, R) there is a change of rates ¢ of (S, R) such
that { om o1 is an emulation.

- That is, for any rates we can match trajectories. 4s




Any Rates, Any Initial Conditions

A stoichiomorphismm € (S, R) — (S, R) that is also a homomorphism, determines an

emulation for any choice of rates of (S, R).

Those emulations can match any initial conditions of any choice of rates of (8§, R) with some
initial conditions of some choice of rates of (S, R).

Automatically substitutive for catalytic networks

Rewire in larger network according to m (shared i

directive sample 10.0 100

initz02 |
initz10 |
initz21 |
inity0 0.9 |
inity10.2 |
inity21.9 |

y2 +y0->{0.9}y0 +y1 |
y1+y0->{1.0}y0+yO |
z0+y0->{1.1}y0 +z1 |
z1+y0->{1.2}y0+22 |

y0+20->{0.7} 20 + y1 |
y1+20->{0.8}z0 +y2 |
22 +20->{0.5} 20 + z1 |
21+ 20 ->{0.6} z0 + z0

MI with completely heterogeneous rates and initial conditions

puts, single copy outputs).
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Cell Cycle Stoichiomorphism Zoo
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From Empirical to Analytical
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These additional feedbacks do exist

in real cell cycles (via indirections)
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Another
/00
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Network Perturbations

Network

xa xb xc xd

XX

ya yb yc yd

A complex but robust
implementation of the
simple network

Normal Behavior

¢ 1 2 3 4 5 & 7 8 9 1

Removing each link in turn

2 N0
N NG
4 -

N sumOa0;xb0;xc0:xd0)

\ sum(xa0;xb0;xc0;xd0) N sum(xa0;xb0;xc0;xdo)

N sum(xa0;xb0;xc0;xd0)

N\ sum(vazivb2ive2ivd2) Nsom(yazivbaiye2ivd2)

JRARRA ARSI Rk LRSS s ) sk st S L LARE LAk taaaa rat

~_never dead

\ sum(xa0;xb0;xc0;xdo) 1 (x30;xb0;0;30)

\ sum(xa0;x60;xc0;xd0)

sumGcaLAbLxeLxa1)
N sum(eatiabcinds) NS
N sum(eazinbixc2int2) N sumGcazinb2ixezing2)
suma0, Sum(ya0iyb0rvco:vao)
Sumtyat sumyaziybLveLval)
242 N somiyazivo2 Nsumyaz, N sumiyaziybziveaiydz)
e
2e

A AL aaasd st st e e
o 1 2 3 4 s & 7 8 3
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Interpretation of Stoichiomorphism

lgnorance about initial conditions

We may not know the concentrations of species in the more complex network, but at least we know that if they satisfy certain
conditions, then it behaves like the simpler network.

Robust implementation of simpler function

Redundant symmetries are implicit in the stoichiomorphism relationships

Neutral paths in network space (evolution)

If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because
it is "kinetically neutral”,

This allows the network to increase its complexity without kinetic penalty.
Later, the extra degrees of freedom can lead to kinetic differentiation.
But meanwhile, the organism can explore variations of network structure.

Network implementation (not abstraction!)

Stoichiomorphisms are not about abstraction / coarse-graining that preserve behavior,
on the contrary, they are about refinement / fine-graining that preserve behavior.

They describe implementations of abstract networks, where the abstract networks themselves may not be (biologically)
implementable because of excessive demands on species interactions.
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Conclusions

- The cell cycle switch can exactly emulate AM

l_ _l T 1
.I. / T emulates: S X emulates: )JZ_I
T_ /4 T [ [
L/ mi AM
nee Approximate majority
(New) cell cycle switch algorithm

- Nature likes a good algorithm!
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In separate work...

- We produced a chemical implementation of AM using DNA gates
- le., a 'synthetic reimplementation’ of the central cell-cycle switch.
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