

Challenges in Massive Concurrency

Luca Cardelli Microsoft Research & University of Oxford

Oxford, 2014-01-15

Research

Outline

- Computational Models
 - The 'massive concurrency' of molecular soups
- Discrete-state Molecular Systems
 - Combinatorial verification of (DNA) Chemical Reaction Networks
- Continuous-state Molecular Systems
 - \cdot Morphisms of Chemical Reaction Networks that preserve kinetics

Computational Models

A computational model

Molecular 'Soups'

- Molecules randomly collide and can change state or composition.
 - Can we compute with that?
- Based on the classical atomic theory of matter
 - probability of collision independent of location ("well-mixed" / "totally connected")

• Related to:

- For "small number of agents" (macroscopic systems):
 - Process Algebra, Petri Nets
- For "large numbers of agents" (microscopic systems):
 - Population Protocols [Angluin et al.], Amorphous Computing [Abelson et al.] Swarm Intelligence – Ant Colonies, Epidemiology, Morphology, Chemistry

A notion of algorithm

- Data as populations
 - Inputs and outputs are composed of uniform *populations* of agents that do *not* have an identity
 - Algorithms emerge from the 'dumb' interactions of 'simple' agents
- In computing
 - \cdot Mostly assuming discrete or nondeterministic time
- In science and nature
 - Mostly assuming stochastic or continuous time
 - Stochastic because interactions typically correspond to random collisions or chance meetings

A mathematical model

- Continuous-Time (Discrete-Space) Markov Chains
 - Also underlies chemistry via the Chemical Master Equation (changes of probabilities of discrete states over continuous time).
 - In the limit of infinite molecules at finite concentration, it converges to the deterministic continuous-state continuous-time (ODE) model.

• NOT a probabilistic (-only) model

- Probabilities emerge from the stochastic structure (the underlying DMC), but are not primary. We are in continuous time and we care about how long things take.
- Non-determinism exists only in the form of 'quantitative races': who is faster is more likely to win. There is no speed-independent probability.
- \cdot Interleaving holds by the Markov axiom: no two events ever happen at the same time.

• What can we compute in this model?

Programming Languages

- Reaction-Based (A + B \rightarrow C + D) (Chemical Reactions)
 - · Finite set of species (no polymerization): finite Markov chains.
- Interaction-Based (A = !c. B) (Process Algebra)
 - Unbounded set of species: infinite Markov chains. Molecular state and identity.
 - Reduces combinatorial complexity of models by sharing *channels* between submodels.
- Rule-Based (A{-}:B{p} \rightarrow A{p}:B{-}) (Logic, Graph Rewriting)
 - A *rule* is a reaction in a partially unspecified context.
 - Further reduces model complexity by abstracting over context.
 - · Compatible with informal descriptions of biochemical events ("narratives").
- Relationships
 - The latter two can be translated to each other.
 - When they can be translated to the first, they may introduce an *extremely large* number of species.

Basic Results

• The class of functions 'over individuals' that are computable

- A finite number of chemical reactions can encode Turing machines (only) up to an arbitrarily small uniform error bound. "Approximately Turing-Complete". [1,2]
- With polymerization, fully Turing completeness can be achieved.
- But all these rely on 'single-molecule populations' that are difficult to achieve.
- The class of predicates 'over populations' that are 'stably computable' (population protocols)
 - Semi-linear predicates (first-order theory of (ℕ,+,<)). [3]
 - If you cannot distinguish individual molecules, you are much more restricted.
- 1. David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, Computation with Finite Stochastic Chemical Reaction Networks. Natural Computing, 2008.
- 2. Luca Cardelli, Gianluigi Zavattaro. Termination Problems in Chemical Kinetics. CONCUR 2008.
- 3. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. **The computational power of population protocols.** Distributed Computing, 2007.

Semantics of Chemistry (Chemical Kinetics)

• A connection with the theory of concurrency

More Languages & Models

• Gene Networks

- Synchronous Boolean networks
 - Stewart Kauffman, etc.
- Asynchronous Boolean networks
 - René Thomas, etc.

Protein Networks

- Process Algebra (stochastic π-calculus etc.)
 - Priami, Regev-Shapiro, etc.
- Graph Rewriting (kappa, BioNetGen etc.)
 - Danos-Laneve, Fontana & al., etc.

Membrane Networks

- Membrane Computing
 - Gheorghe Păun, etc.
- Brane Calculi
 - Luca Cardelli, etc.

Challenges in Discrete-State Molecular Systems

> In collaboration with: Microsoft Biological Computation Group U.Oxford PRISM group U.Washington Seelig Lab

'Writing' Molecular Programs

- Chemistry is not a computational science
 - We can read (nature's) molecular programs, but we cannot write them (in general)!
 - We cannot find molecules that do whatever we want them to do!
- But we can fake it (encode it)
 - Find some 'universal molecules' that *we* can build, and that can *do* what *all* other molecules, real or hypothetical, can do.
 - Ok, not quite '*do*', but '*behave like*' any other molecules.

• With DNA

• These are molecules we can read *and write*! The folding problem for DNA/RNA is solvable, and they can be produced on industrial scale.

Soloveichik, D., Seelig, G., Winfree, E., **DNA as a Universal Substrate for Chemical Kinetics.** PNAS, 2010.

Why write molecular programs?

Non-goals

- Not to solve NP-complete problems with large vats of chemicals
 (even massive concurrency does not help!)
- Not to replace silicon-based technology DNA is slow(er), but compatible with life processes

Bootstrapping a programmable carbon-based technology

- To precisely control the organization and dynamics of matter and information at the molecular level
 - Nanotechnology
 - Medicine and Biology
- DNA is "just" the most convenient material for the task
 - It is an information-bearing programmable material; other such materials are actively being developed

Domains

Subsequences on a DNA strand are called domains
 provided they are "independent" of each other

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

oriented DNA

single strand

- x y z single stand
 Differently named domains must not hybridize
 - With each other, with each other's complement, with subsequences of each other, with concatenations of other domains (or their complements), etc.

Short Domains

DNA double strand

Reversible Hybridization

Long Domains

Irreversible Hybridization

"Toehold Mediated"

Toehold Binding

Branch Migration

Displacement

Irreversible release

Cannot proceed Hence will undo

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: "top-nicked double strands" with open toeholds

Two-Domain DNA Strand Displacement

Luca Cardelli

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): Developments in Computational Models (DCM 2010). EPTCS 25, 2010, pp. 33-47. May 2010. Garbage collection "built into" the gate operation

Plasmidic Gate Technology

- Synthetic DNA is length-limited
 - Finite error probability at each nucleotide addition, hence ~ 200nt max
- Bacteria can replicate
 plasmids for us
 - Loops of DNA 1000's nt, with extremely high fidelity
 - Practically no structural limitations on fan-in/fan-out

Transducer

Join half

ta is a private signal (a different 'a' for each xy pair)

So far, a **tx** signal has produced an **at** cosignal. But we want signals as output, not cosignals.

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Done.

N.B. the gate is consumed: it is the energy source (no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

General n×m Join-Fork = $A_1 + ... + A_n \rightarrow B_1 + ... + B_m$

- Easily generalized to 2+ inputs (with 1+ collectors).
- Easily generalized to 2+ outputs.

Figure 9: 3-Join $J_{wxyz} | tw | tx | ty \rightarrow tz$: initial state plus inputs tw, tx, ty.

With that, we can 'implement chemistry'

- That is, we can implement *arbitrary* chemistry ...
 - ... by using *specific* (DNA) chemistry
 - ... up to an equivalence (same approximate kinetics, up to time dilation)

Computing power equivalent to Stochastic Petri Nets

- Not Turing complete, but as good as chemistry itself.
- The correspondence is not completely trivial: gates are consumed by activation, hence a persistent Petri net transition requires a stable population of gates.
- Many other mechanisms are expressible with Petri Nets like Boolean networks and state machines

Challenges of Correct Design: Proofs

- Does the two-domain architecture correctly
 implement Stochastic Petri Nets (and chemistry)?
 - A rather difficult problem (which I left open). By modelchecking we can verify specific constructions, but only for limited range of inputs.
 - This was only recently settled using techniques form the theory of concurrency (serializability):

Matthew R. Lakin, Andrew Phillips, and Darko Stefanovic, <u>Modular verification of DNA strand displacement networks</u> <u>via serializability analysis</u>, in *International Conference on DNA Computing and Molecular Programming*, Springer Verlag, September 2013

Simulation

- Stochastic
- Deterministic

Modelchecking PRISM probabilistic modelchecker JOURNAL THE ROYAL Interface 1 0.9 Design and analysis of DNA strand 0.8 displacement devices using probabilistic model checking 0.7 Probability Matthew R. Lakin^{1,3,†}, David Parker^{2,†}, Luca Cardelli¹, 0.6 Marta Kwiatkowska² and Andrew Phillips¹/* 0.5 Terminate 0.4 Error 0.3 0.2 Success 0.1 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 T (s) [x 10^4]

Verification

• Quantitative theories of system equivalence and approximation.

CONTINUOUS MARKOVIAN LOGICS AXIOMATIZATION AND QUANTIFIED METATHEORY

RADU MARDARE, LUCA CARDELLI, AND KIM G. LARSEN

Scaling Up DNA Circuits

• Can verification catch up?

Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades

3 JUNE 2011 VOL 332 SCIENCE

Scaling Up DNA Computation

John H. Reif

"In addition to biochemistry laboratory techniques, computer science techniques were essential."

"Computer simulations of seesaw gate circuitry optimized the design and correlated experimental data." Challenges in Continuous-State Molecular Systems

> In collaboration with: Attila Csikász-Nagy and thanks to David Soloveichik

Networks

- Informal ideas in Biology
 - \cdot Usually communicated by some kind of network or graph
 - \cdot These networks are often at best ambiguous [Kitano]
- Many kinds of networks, including:
 - Chemical Reaction Networks (species A becomes species B and C)
 - Influence Networks (species A promotes or inhibits species B)
- Networks convey meaning
 - Can network relationships convey meaning too?

Mutual Inhibition

• A recent paper suggests that all cellular switches in all phases of the cell cycle follow (abstractly) a mutual inhibition pattern:

Cell Cycle Switch Network

• A recent paper presents a more complete view of the classical cell cycle switch

Phosphorylation network dynamics in the control of cell cycle transitions

Network Emulation: NCC to MI

 For any initial state of MI we can find some initial state of NCC (actually by copying the state of MI) such that NCC exactly emulates MI

Network Emulation: MI to AM

• For chosen initial conditions of MI, the (6) trajectories of MI emulate those (3) of AM:

Network Emulation Composes: NCC to AM

• For chosen initial conditions of NCC, the (18) trajectories of NCC emulate those (3) of AM

An Analytical Theory of Network Emulation

- An emulation is an "implementation"
 - "for every input produces the same output" →
 "for every initial conditions produces the same trajectories"
 - A refined network that works just as well as the coarser network in the context of the inputs of the coarser network (not arbitrary inputs)
- When can a network emulate another one?
 - Theories of behavioral equivalence and behavioral approximation, e.g. like in process algebra, are still lacking in this quantitative field
 - So we look at the continuous-state semantics of these networks, and see what we can do there

Chemical Reaction Networks

- A CRN is a pair (S, R) where
 - $\cdot S = \{s_1, \dots, s_n\}$ is a finite set of *species*
 - $R = \{r_1, \dots, r_m\}$ is a finite set of *reactions* over S
- Reactions $r = (\rho, \pi, k)$ written $\Sigma_{s \in S} \rho_s \cdot s \rightarrow^k \Sigma_{s \in S} \pi_s \cdot s$

• Ex.:
$$r = 2A + B \rightarrow^k A + 3C$$

 \cdot with

 $\rho_A = 2, \ \rho_B = 1, \ \rho_C = 0$ *reactant stoichiometric numbers* $\pi_A = 1, \ \pi_B = 0, \ \pi_C = 3$ *reactant stoichiometric numbers*

• The *stoichiometry* of a species s in a reaction r is:

 $\eta(s,(\rho,\pi,k)) = \pi_s - \rho_s$ net stoichiometry $\eta(A,r) = -1$ $\varphi(s, (\rho, \pi, k)) = k \cdot (\pi_s - \rho_s)$ (instantaneous) stoichiometry $\varphi(A, r) = -k$

Species Maps and Reaction Maps

- A species map is a map $m \in S \to \hat{S}$
 - Ex: $m(s_0) = m(s_1) = \hat{s}$
- · It induces a canonical reaction map $R \to \hat{R}$
 - Ex: $m(s_0 + s_1 \rightarrow^1 s_1) = 2\hat{s} \rightarrow^1 \hat{s}$
- Where $m(\rho, \pi, k) = (m(\rho), m(\pi), k)$
- And $m(\rho)$ (similarly $m(\pi)$) is the sum over fibers:

 $m(\rho)_{\hat{s}} = \Sigma_{s \in m^{-1}(\hat{s})} \rho_s$

in case two species in the same reaction are mapped to the same species.

CRN Morphisms

- A CRN morphism is a map $m \in (S, R) \to (\hat{S}, \hat{R}) = (m_S, m_R)$ with $m_S \in S \to \hat{S}$ and $m_R \in R \to \hat{R}$.
 - We are interested in morphisms that are *not* injective, that represent *implementations*

CRN Homomorphisms

• $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a CRN homomorphism if $m_{\mathcal{R}}$ is determined by $m_{\mathcal{S}}$:

 $m_{\mathcal{R}}(\rho,\pi,k) = (m_{\mathcal{S}}(\rho),m_{\mathcal{S}}(\pi),k)$

• Ex:

 $r_0: \quad m_{\mathcal{R}}(s_0, s_1, k) = (\hat{s}_0, \hat{s}_1, k) = (m_S(s_0), m_S(s_1), k)$ $r_1: \quad m_{\mathcal{R}}(s_0, s_2, k) = (\hat{s}_0, \hat{s}_1, k) = (m_S(s_0), m_S(s_2), k)$

 It implies that <u>for each reaction it preserves stoichiometry</u> <u>summed over species fibers</u>

$$\forall \hat{s} \in \hat{S}. \ \forall r \in R. \ \Sigma_{s \in m^{-1}(\hat{s})} \varphi(s, r) = \varphi(\hat{s}, m(r))$$

(see next slide)

• But
$$\varphi(s_0, r_0) + \varphi(s_0, r_1) = -2k \neq -1k = \varphi(\hat{s}_0, \hat{r}_0)$$

Homomorphism (but not *stoichiomorphism*)

CRN Stoichiomorphisms

• $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a CRN stoichiomorphism if for each species it preserves stoichiometry summed over reaction fibers

 $\forall s \in S. \ \forall \hat{r} \in \hat{R}. \ \Sigma_{r \in m^{-1}(\hat{r})} \varphi(s, r) = \varphi(m(s), \hat{r})$

- This condition can be checked over the *syntax* of CRNs, without any consideration of their kinetics
 - Ex:
- $\begin{array}{ll} s_0, \hat{r}_0 \colon & \varphi(s_0, r_0) + \varphi(s_0, r_1) = 0 = \varphi(\hat{s}_0, \hat{r}_0) \\ s_1, \hat{r}_0 \colon & \varphi(s_1, r_0) + \varphi(s_1, r_1) = 1k = \varphi(\hat{s}_1, \hat{r}_0) \\ s_2, \hat{r}_0 \colon & \varphi(s_2, r_0) + \varphi(s_2, r_1) = 1k = \varphi(\hat{s}_1, \hat{r}_0) \end{array}$
- We will show that existence of a stoichiomorphism implies identical network kinetics (in certain conditions).

Homomorphism and stoichiomorphism.

CRN Morphism Conditions

Homomorphism consequence:

 $\forall \hat{s} \in \hat{S}. \ \forall r \in R. \ \Sigma_{s \in m^{-1}(\hat{s})} \varphi(s, r) = \varphi(\hat{s}, m(r))$

• Stoichiomorphism condition:

 $\forall s \in S. \ \forall \hat{r} \in \hat{R}. \ \Sigma_{r \in m^{-1}(\hat{r})} \varphi(s, r) = \varphi(m(s), \hat{r})$

• If m is an isomorphism (injective and surjective, with singleton fibers) then they both reduce to the simple property:

 $\forall s \in S. \ \forall r \in R. \ \varphi(s,r) = \varphi(m(s),m(r))$

• The above are generalization for when m is not injective.

CRN Kinetics

- A *state* of a CRN (S, R) is a vector of concentrations for each species: $v \in \mathbb{R}^{+S}$.
- The mass action $[r] \in \mathbb{R}^{+^S} \to \mathbb{R}^+$ of a reaction $r \in R$ is:

$$[r]_{\boldsymbol{v}} = [(\rho, \pi, k)]_{\boldsymbol{v}} = \Pi_{s \in S} \, \boldsymbol{v}_s^{\rho_s} = \boldsymbol{v}^{\rho}$$

• The differential system of a CRN (S, R) is the map $F \in \mathbb{R}^{+S} \to \mathbb{R}^{S}$ (for each state, gives the differential of concentration for each species): v_{s}

$$F(\boldsymbol{\nu})(s) = \Sigma_{r \in R} \ \varphi(s, r) \cdot [r]_{\boldsymbol{\nu}}$$

Normally written as a system of concentration ODEs, integrated over time:

$$\frac{d\boldsymbol{v}_s}{dt} = F(\boldsymbol{v})(s) = \Sigma_{(\rho,\pi,k)\in R} \ k \cdot (\pi_s - \rho_s) \cdot \boldsymbol{v}^{\rho}$$

71

 $F(\boldsymbol{v})(s)$

Kinetic Emulation

• A map $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a *CRN emulation* if the following holds for the respective differential systems F, \hat{F} :

 $\forall \widehat{\boldsymbol{\nu}} \in \mathbb{R}^{+\hat{S}}. \forall s \in S. F(\widehat{\boldsymbol{\nu}} \circ m)(s) = \widehat{F}(\widehat{\boldsymbol{\nu}})(m(s))$

(the derivative of s in state $\hat{v} \circ m$ is equal to the derivative of m(s) in state \hat{v})

• It follows that for *any* initial state \hat{v} of (\hat{S}, \hat{R}) there is an initial state $v (= \hat{v} \circ m)$ of (S, R) such that the trajectory of any s in (S, R) is identical to (*emulates*) the trajectory of m(s) in (\hat{S}, \hat{R}) .

(With minor caveats if m is not surjective.)

Emulation Theorem

- Theorem: If m is a CRN homomorphism and stoichiomorphism then it is a CRN emulation.

that is, for any initial conditions we can match trajectories.

Actually, *m* need not be a homomorphism for this to hold: it is enough for *m* to be a *reactant morphism* and a stoichiomorphism. A reactant morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of network mappings that preserve kinetics.

Change of Rates Theorem

- A change of rates for (S,R) is bijection $\iota \in (S,R) \to (S,R')$ such that $\iota(S)$ is the identity and $\iota(\rho,\pi,k) = (\rho,\pi,k')$.
- Theorem: If $m \in (S, R) \to (\hat{S}, \hat{R})$ is a stoichiomorphism, then for *any* change of rates $\hat{\iota}$ of (\hat{S}, \hat{R}) there is a change of rates ι of (S, R) such that $\hat{\iota} \circ m \circ \iota^{-1}$ is a stoichiomorphism.
 - In fact, ι changes rates by the ratio with which $\hat{\iota}$ changes rates: $\iota(\rho, \pi, k) = \left(\rho, \pi, k \cdot \frac{\hat{k}'}{\hat{k}}\right)$ where $m(\rho, \pi, k) = (\hat{\rho}, \hat{\pi}, \hat{k})$ and $\hat{\iota}(\hat{\rho}, \hat{\pi}, \hat{k}) = (\hat{\rho}, \hat{\pi}, \hat{k}')$.
- Corollary: If $m \in (S, R) \to (\hat{S}, \hat{R})$ is a stoichiomorphism and homomorphism, then for any change of rates $\hat{\iota}$ of (\hat{S}, \hat{R}) there is a change of rates ι of (S, R) such that $\hat{\iota} \circ m \circ \iota^{-1}$ is an emulation.

Any Rates, Any Initial Conditions

- A stoichiomorphism $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ that is also a homomorphism, determines an emulation for any choice of rates of (\hat{S}, \hat{R}) .
- Those emulations can match any initial conditions of any choice of rates of (\hat{S}, \hat{R}) with some initial conditions of some choice of rates of (S, R).

Interpretation of Stoichiomorphism

Ignorance about initial conditions

• We may not know the concentrations of species in the more complex network, but at least we know that if they satisfy certain conditions, then it behaves like the simpler network.

Neutral paths in network space (evolution)

- If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is "kinetically neutral".
- · This allows the network to increase its complexity without kinetic penalty.
- · Later, the extra degrees of freedom can lead to kinetic differentiation.
- But meanwhile, the organism can explore variations of network structure.

Relationship to abstraction / coarse-graining

- Stoichiomorphism are not about abstractions that preserve behavior, on the contrary, they are about *concretions* that preserve behavior.
- They describe *implementations* of abstract specs, where the specs themselves may not be (biologically) implementable because of excessive demands on individual species.

Conclusions

Conclusions

- \cdot The promise of nanotechnology
 - $\cdot\,$ Controlling matter and information in detail at the molecular scale
 - This can only be achieved by *digital* (combinatorial) techniques
 - · Interfacing to natural (biological) systems, which often have analog properties
 - This usually involves using continuous modeling/techniques
- Discrete systems are hard to engineer
 - We need combinatorial analysis techniques that scale up (massively!)
 - $\cdot\,$ We need verification and approximation techniques for massive concurrency
- Continuous systems are hard to understand
 - Calculus is the weapon of choice, but even there *qualitative* understanding is king
 - $\cdot\,$ We need quantitative methods that support qualitative reasoning