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Outline
� Computational Models

� The ‘massive concurrency’ of molecular soups

� Discrete-state Molecular Systems
� Combinatorial verification of (DNA) Chemical Reaction Networks

� Continuous-state Molecular Systems
� Morphisms of Chemical Reaction Networks that preserve kinetics
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Computational Models



A computational model
� Molecular ‘Soups’

� Molecules randomly collide and can change state or composition. 

� Can we compute with that?

� Based on the classical atomic theory of matter

� probability of collision independent of location (“well-mixed” / “totally connected”)

� Related to:
� For “small number of agents” (macroscopic systems):

� Process Algebra, Petri Nets

� For “large numbers of agents” (microscopic systems):

� Population Protocols [Angluin et al.], Amorphous Computing [Abelson et al.]
Swarm Intelligence – Ant Colonies, Epidemiology, Morphology, Chemistry
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A notion of algorithm
� Data as populations

� Inputs and outputs are composed of uniform populations of agents 
that do not have an identity

� Algorithms emerge from the ‘dumb’ interactions of ‘simple’ agents

� In computing
� Mostly assuming discrete or nondeterministic time

� In science and nature
� Mostly assuming stochastic or continuous time

� Stochastic because interactions typically correspond to 
random collisions or chance meetings
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A mathematical model
� Continuous-Time (Discrete-Space) Markov Chains

� Also underlies chemistry via the Chemical Master Equation 
(changes of probabilities of discrete states over continuous time).

� In the limit of infinite molecules at finite concentration, it converges to the
deterministic continuous-state continuous-time (ODE) model.

� NOT a probabilistic (-only) model
� Probabilities emerge from the stochastic structure (the underlying DMC), but are not 

primary. We are in continuous time and we care about how long things take.

� Non-determinism exists only in the form of ‘quantitative races’: 
who is faster is more likely to win. There is no speed-independent probability.

� Interleaving holds by the Markov axiom: no two events ever happen at the same time.

� What can we compute in this model?
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Programming Languages
� Reaction-Based  (A + B  → C + D)  (Chemical Reactions)

� Finite set of species (no polymerization): finite Markov chains.

� Interaction-Based  (A  =  !c. B)  (Process Algebra)
� Unbounded set of species: infinite Markov chains. Molecular state and identity.

� Reduces combinatorial complexity of models by sharing channels between submodels.

� Rule-Based  (A{-}:B{p}  → A{p}:B{-})  (Logic, Graph Rewriting)
� A rule is a reaction in a partially unspecified context.

� Further reduces model complexity by abstracting over context.

� Compatible with informal descriptions of biochemical events (“narratives”).

� Relationships
� The latter two can be translated to each other.

� When they can be translated to the first, they may introduce an extremely large number of species.
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Basic Results
� The class of functions ‘over individuals’ that are computable 

� A finite number of chemical reactions can encode Turing machines (only) up to an arbitrarily small 
uniform error bound. “Approximately Turing-Complete”. [1,2]

� With polymerization, fully Turing completeness can be achieved.

� But all these rely on ‘single-molecule populations’ that are difficult to achieve.

� The class of predicates ‘over populations’ that are 
‘stably computable’ (population protocols)
� Semi-linear predicates (first-order theory of (ℕ,+,<)). [3]

� If you cannot distinguish individual molecules, you are much more restricted.

1. David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, Computation with Finite Stochastic Chemical Reaction Networks. Computation with Finite Stochastic Chemical Reaction Networks. Computation with Finite Stochastic Chemical Reaction Networks. Computation with Finite Stochastic Chemical Reaction Networks. Natural Computing, 2008.

2. Luca Cardelli, Gianluigi Zavattaro. Termination Problems in Chemical Kinetics.Termination Problems in Chemical Kinetics.Termination Problems in Chemical Kinetics.Termination Problems in Chemical Kinetics. CONCUR 2008. 

3. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of population protocols.The computational power of population protocols.The computational power of population protocols.The computational power of population protocols. Distributed Computing, 2007.
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Semantics of Chemistry (Chemical Kinetics)

� A connection with the theory of concurrency
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More Languages & Models
� Gene Networks

� Synchronous Boolean networks

� Stewart Kauffman, etc.

� Asynchronous Boolean networks

� René Thomas, etc.

� Protein Networks
� Process Algebra (stochastic π-calculus etc.)

� Priami, Regev-Shapiro, etc.

� Graph Rewriting (kappa, BioNetGen etc.)

� Danos-Laneve, Fontana & al., etc.

� Membrane Networks
� Membrane Computing

� Gheorghe Păun, etc.

� Brane Calculi

� Luca Cardelli, etc.



Challenges 
in Discrete-State
Molecular Systems



‘Writing’ Molecular Programs
� Chemistry is not a computational science

� We can read (nature’s) molecular programs, but we cannot write them (in general)!

� We cannot find molecules that do whatever we want them to do!

� But we can fake it (encode it)
� Find some ‘universal molecules’ that we can build, and that can do

what all other molecules, real or hypothetical, can do.

� Ok, not quite ‘do’, but ‘behave like’ any other molecules.

� With DNA
� These are molecules we can read and write!

The folding problem for DNA/RNA is solvable,
and they can be produced on industrial scale.
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Soloveichik, D., Seelig, G., Winfree, E., 
DNA as a Universal Substrate for 
Chemical Kinetics. PNAS, 2010.



Why write molecular programs?
� Non-goals

� Not to solve NP-complete problems with large vats of chemicals
(even massive concurrency does not help!)

� Not to replace silicon-based technology
DNA is slow(er), but compatible with life processes

� Bootstrapping a programmable carbon-based technology
� To precisely control the organization and dynamics 

of matter and information at the molecular level

� Nanotechnology

� Medicine and Biology

� DNA is “just” the most convenient material for the task
� It is an information-bearing programmable material;

other such materials are actively being developed
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Domains
� Subsequences on a DNA strand are called domains

� provided they are “independent” of each other

� Differently named domains must not hybridize
� With each other, with each other’s complement, with subsequences of each 

other, with concatenations of other domains (or their complements), etc.

x zy

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA 
single strand
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t
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Reversible Hybridization

Short Domains

DNA double 
strand



Long Domains
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Strand Displacement
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Strand Displacement
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Strand Displacement
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Strand Displacement
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Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gate 
operation



Plasmidic Gate Technology
� Synthetic DNA is 

length-limited
� Finite error probability at each 

nucleotide addition, 
hence ~ 200nt max

� Bacteria can replicate 
plasmids for us
� Loops of DNA 1000’s nt, with 

extremely high fidelity

� Practically no structural 
limitations on fan-in/fan-out

Only possible with 
two-domain 
architecture



Transducer



t a

xt t a t a x t y t a t
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Transducer x→y

t x

Input



Transducer x→y

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Join half Fork half



Transducer x→y

x
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t t a t a x t y t a t

y t



Transducer x→y
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Transducer x→y

xt t a t a x t y t a t

y t

x t



Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer x→y

t axt a x t y t a t
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x t
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Transducer x→y

t a

a tt axt a x t y
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Transducer x→y

t a

a tt axt a x t y t

x t

t



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer x→y
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t a

a tt axt a x y t
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Output
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Transducer x→y

t y

t a

a tt axt a x y tt

Output
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Transducer x→y
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t y
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a tt axt a y tx t

Output
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Transducer x→y

x

t y

t a tt axt a y tx t

Output



Transducer x→y

a x

t y

t a a tt axt y tx t

Output



a x

t a a tt axt y tx t

Transducer x→y

Done.

N.B. the gate is consumed: it is the energy source
(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)

t y

Output



Transducer x→y



General n×m Join-Fork = A1+...+An → B1+...+Bm

� Easily generalized to 2+ inputs (with 1+ collectors).

� Easily generalized to 2+ outputs.
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With that, we can ‘implement chemistry’
� That is, we can implement arbitrary chemistry ...

� ... by using specific (DNA) chemistry

� ... up to an equivalence (same approximate kinetics, up to time dilation)

� Computing power equivalent to Stochastic Petri Nets
� Not Turing complete, but as good as chemistry itself.

� The correspondence is not completely trivial: gates are 
consumed by activation, hence a persistent Petri net 
transition requires a stable population of gates.

� Many other mechanisms are expressible with Petri Nets
like Boolean networks and state machines
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Challenges of Correct Design:
Proofs
� Does the two-domain architecture correctly 

implement Stochastic Petri Nets (and chemistry)?
� A rather difficult problem (which I left open). By modelchecking we can verify 

specific constructions, but only for limited range of inputs.

� This was only recently settled using techniques form the theory of concurrency 
(serializability):
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Matthew R. Lakin, Andrew Phillips, and Darko Stefanovic, 
Modular verification of DNA strand displacement networks 
via serializability analysis, in International Conference on 
DNA Computing and Molecular Programming, Springer 

Verlag, September 2013



Simulation
� Stochastic

� Deterministic
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State Space Analysis
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Modelchecking
� PRISM probabilistic modelchecker
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Verification
� Quantitative theories of system equivalence and 

approximation.

52



Scaling Up DNA Circuits

53

“In addition to biochemistry 
laboratory techniques, computer 
science techniques were essential.”

“Computer simulations of
seesaw gate circuitry optimized
the design and correlated 
experimental data.”

� Can verification catch up?



Challenges 
in Continuous-State
Molecular Systems

Attila Csikász-Nagy



Networks
� Informal ideas in Biology 

� Usually communicated by some kind of network or graph

� These networks are often at best ambiguous [Kitano] 

� Many kinds of networks, including:
� Chemical Reaction Networks (species A becomes species B and C)

� Influence Networks (species A promotes or inhibits species B)

� Networks convey meaning
� Can network relationships convey meaning too?
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Mutual Inhibition
� A recent paper suggests that all cellular switches in all phases of the cell 

cycle follow (abstractly) a mutual inhibition pattern:

� Also found in other areas
(cell polarity establishment):
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Cell Cycle Switch Network
� A recent paper presents a more complete view 

of the classical cell cycle switch
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Network Emulation: NCC to MI
� For any initial state of MIMIMIMI we can find some initial state of NCCNCCNCCNCC (actually by copying

the state of MIMIMIMI) such that NCCNCCNCCNCC exactly emulates MIMIMIMI

� Why does this work so well?
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize z,r,p, 
identically to z;

initialize y,q,s
identically to y

(3 species each)



Network Emulation: MI to AM
� For chosen initial conditions of MIMIMIMI, the (6) trajectories of MIMIMIMI emulate those (3) of AMAMAMAM:
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(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize ~y,z, 
identically to x

(3 species)



Influence Network Notation
� Catalytic reaction

� ‘Double kinase-phosphatase’ motif
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x + z → z + y

z is the catalyst

influence node catalytic node



MI to AM mapping in detail

61

MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions



Network Emulation Composes: NCC to AM
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� For chosen initial conditions of NCCNCCNCCNCC, the (18) trajectories of NCCNCCNCCNCC emulate those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

The new cell cycle switch 
can emulate AM exactly.

For any initial conditions 
of AM.

And for any rates of AM.

Why?

This works also for 
GW, but not for the 
original CC.

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y



An Analytical Theory of Network Emulation

� An emulation is an “implementation”
� “for every input produces the same output” �

“for every initial conditions produces the same trajectories”

� A refined network that works just as well as the coarser network
in the context of the inputs of the coarser network (not arbitrary inputs)

� When can a network emulate another one?
� Theories of behavioral equivalence and behavioral approximation, 

e.g. like in process algebra, are still lacking in this quantitative field

� So we look at the continuous-state semantics of these networks, 
and see what we can do there
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Chemical Reaction Networks
� A CRN is a pair �, � where

� � = {
�, … , 
} is a finite set of species

� � = {��, … , ��} is a finite set of reactions over �

� Reactions � = �, �, � written  Σ�∈�  �� · 
 →� Σ�∈�  �� · 


� Ex.: � =  2� + � →� � + 3�
� with � = 2, �! = 1, �# = 0 reactant stoichiometric numbers

� = 1, �! = 0, �# = 3 product stoichiometric numbers 

� The stoichiometry of a species 
 in a reaction � is:

%(
, (�, �, �)) =  �� − �� net stoichiometry      % �, � = −1

)(
, (�, �, �)) = � · (�� − ��) (instantaneous) stoichiometry    ) �, � = −�
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Species Maps and Reaction Maps
� A species map is a map + ∈ � → �,

� Ex:  + 
0 = + 
1 =
̂

� It induces a canonical reaction map � → �.

� Ex:  +(
0 + 
1 →� 
1) = 2
̂ →� 
̂

� Where + �, �, � = + � , + � , �

� And + � (similarly + � ) is the sum over fibers:

+ � �̂ = Σ�∈�/0(�̂) ��

in case two species in the same reaction are mapped to the same species.

65

+ 
̂

��
�

ℕ

+ � �̂

* *1

0 1 2

the fiber of 
̂: +2�(
̂)


0


1

��
3Σ =



CRN Morphisms
� A CRN morphism is a map + ∈ �, � → �,, �. = +4 , +ℛ

with +4 ∈ � → �, and +ℛ ∈ � → �. .

� We are interested in morphisms 
that are not injective,
that represent implementations
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Σ�∈   ) 
, �   =   )    , +(�)CRN Homomorphisms
� + ∈ �, � → �,, �. is a CRN homomorphism

if +ℛ is determined by +4: 

+ℛ �, �, � = +4 � , +4 � , �

� Ex:
�3:     +ℛ 
3, 
�, � = 
̂3, 
̂�, � = (+� 
3 , +� 
� , �)
��:     +ℛ 
3, 
7, � = 
̂3, 
̂�, � = (+� 
3 , +� 
7 , �)

� It implies that for each reaction it preserves stoichiometry 
summed over species fibers

∀
̂ ∈ �,.
   

∀� ∈ �.  Σ�∈�/0 �̂  ) 
, � = ) 
̂, +(�)

� But  ) 
3, �3 + ) 
3, �� =  −2� ≠  −1� =  ) 
̂3, �̂3 (see next slide)

* *1

+� +(�)

Homomorphism 
(but not stoichiomorphism)


̂
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CRN Stoichiomorphisms
� + ∈ �, � → �,, �. is a CRN stoichiomorphism if for each 

species it preserves stoichiometry summed over reaction fibers

∀
 ∈ �.
   

∀�̂ ∈ �..  Σ;∈�/0 ;̂  ) 
, � = ) + 
 , �̂

� This condition can be checked over the syntax of CRNs, 
without any consideration of their kinetics

� Ex:

3, �̂3:     ) 
3, �3 + ) 
3, �� = 0 =  ) 
̂3, �̂3


�, �̂3:     ) 
�, �3 + ) 
�, �� = 1� =  ) 
̂�, �̂3

7, �̂3:     ) 
7, �3 + ) 
7, �� = 1� =  ) 
̂�, �̂3

� We will show that existence of a stoichiomorphism implies 
identical network kinetics (in certain conditions).

< <1

+ �̂

Σ;∈   ) 
, �   =   ) + 
 ,    

Homomorphism and
stoichiomorphism.



CRN Morphism Conditions
� Homomorphism consequence:

∀
̂ ∈ �,.
   

∀� ∈ �.  Σ�∈�/0 �̂  ) 
, � = ) 
̂, +(�)

� Stoichiomorphism condition:

∀
 ∈ �.   ∀�̂ ∈ �..  Σ;∈�/0 ;̂  ) 
, � = ) + 
 , �̂

� If + is an isomorphism (injective and surjective, with singleton fibers) 
then they both reduce to the simple property:

∀
 ∈ �.   ∀� ∈ �.   ) 
, � = ) + 
 , + �

� The above are generalization for when + is not injective.
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Checking the Stoichiomorphism Condition
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+2�(�̂)

+=3, +=> +=�, +=? +=7, +=@ +=A, +=B

C3 0 1 -1 0 D3

C� 1 -1 1 -1 D�

C7 -1 0 0 1 D7

E3 -1 0 0 1 D7

E� 1 -1 1 -1 D�

E7 0 1 -1 0 D3

F+3 F+� F+7 F+A

∀�̂ ∈ AM

) E3, +=3 + ) E3, +=> =  −1 = ) D7, F+3

am0am1

am2 am3

mi0mi1

mi2 mi3

mi4mi5

mi6 mi7

∀
 ∈ �.   ∀�̂ ∈ �..  Σ;∈�/0 ;̂ ) 
, � = ) + 
 , �̂

MI AM

All unit rates (for simplicity)

+(E3)

+ ∈ MI → AM

This is both a homomorphism 
and a stoichiomorphism

+2� F+3



CRN Kinetics
� A state of a CRN (�, �) is a vector of concentrations for each species: J ∈ ℝL�

.

� The mass action [�] ∈  ℝL�
→ ℝL of a reaction � ∈ � is:

[�]J = [(�, �, �)]J = Π�∈� J�
PQ

= JP

� The differential system of a CRN (�, �) is the map R ∈ ℝL�
→ ℝ�

(for each state, gives the differential of concentration for each species):      

R(J)(
) = Σ;∈S  )(
, �) · [�]J

� Normally written as a system of concentration ODEs, integrated over time: 

TJ�

TU
= R(J)(
) = Σ(P,V,�)∈S  � · (�� − ��) · JP
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U

J
J�


 R(J)(
)



Kinetic Emulation
� A map + ∈ �, � → �,, �. is a CRN emulation if the following 

holds for the respective differential systems R, R, :

∀JW ∈ ℝL�,
. ∀
 ∈ �.  R JW ∘ + 
 = R, JW + 


(the derivative of 
 in state JY ∘ + is equal to the derivative of + 
 in state JY)

� It follows that for any initial state JW of �,, �. there is an initial 
state J (=JW ∘ +) of �, � such that the trajectory of any 
 in 
�, � is identical to (emulates) the trajectory of +(
) in �,, �. .

(With minor caveats if m is not surjective.)
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U

J = JW ∘ +
J�


 R J 
 =

U

JW

JW�(�)
+(
) R. JW + 


�, �

�., �1



Emulation Theorem
� Theorem: If + is a CRN homomorphism and stoichiomorphism 

then it is a CRN emulation.

that is, for any initial conditions we can match trajectories.

� Actually, + need not be a homomorphism for this to hold: it is enough for + to be a reactant morphism and a stoichiomorphism. A reactant 
morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of 
network mappings that preserve kinetics.
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⇒MI

AM

MI

AM



Change of Rates Theorem
� A change of rates for �, � is bijection Z ∈ �, � → �, �′ such that Z(�) is the identity and 

Z �, �, � = �, �, �\ .

� Theorem: If + ∈ �, � → �,, �. is a stoichiomorphism, then for any change of 
rates Z ̂ of �,, �. there is a change of rates Z of �, � such that Z ̂ ∘ + ∘ Z2� is a 
stoichiomorphism.

� In fact, Z changes rates by the ratio with which Z ̂ changes rates:

Z �, �, � = �, �, � ·
�. ]

�.
where + �, �, � = (�Y, �Y, �.) and Z ̂ �Y, �Y, �. = (�Y, �Y, �.′).

� Corollary: If + ∈ �, � → �,, �. is a stoichiomorphism and homomorphism, 
then for any change of rates Z ̂ of �,, �. there is a change of rates Z of �, � such 
that Z ̂ ∘ + ∘ Z2� is an emulation.
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Any Rates, Any Initial Conditions
� A stoichiomorphism + ∈ �, � → �,, �.  that is also a homomorphism, 

determines an emulation for any choice of rates of �,, �. . 

� Those emulations can match any initial conditions of any choice of rates of �,, �.

with some initial conditions of some choice of rates of �, � .

75

directive sample 10.0 100

init z0 2 |

init z1 0 |

init z2 1 |

init y0 0.9 |

init y1 0.2 |

init y2 1.9 |

y2 + y0 ->{0.9} y0 + y1 |

y1 + y0 ->{1.0} y0 + y0 |

z0 + y0 ->{1.1} y0 + z1 |

z1 + y0 ->{1.2} y0 + z2 |

y0 + z0 ->{0.7} z0 + y1 |

y1 + z0 ->{0.8} z0 + y2 |

z2 + z0 ->{0.5} z0 + z1 |

z1 + z0 ->{0.6} z0 + z0

directive sample 10.0 100

init z0 2 |

init z1 0 |

init z2 1 |

init s0 0.9 |

init s1 0.2 |

init s2 1.9 |

init r0 2 |

init r1 0 |

init r2 1 |

init y0 0.9 |

init y1 0.2 |

init y2 1.9 |

s2 + y0 ->{0.9} y0 + s1 |

s1 + y0 ->{1.0} y0 + s0 |

r0 + y0 ->{1.1} y0 + r1 |

r1 + y0 ->{1.2} y0 + r2 |

s0 + z0 ->{0.7} z0 + s1 |

s1 + z0 ->{0.8} z0 + s2 |

r2 + z0 ->{0.5} z0 + r1 | 

r1 + z0 ->{0.6} z0 + r0 |

y2 + s0 ->{0.9} s0 + y1 |

y1 + s0 ->{1.0} s0 + y0 |

z0 + s0 ->{1.1} s0 + z1 |

z1 + s0 ->{1.2} s0 + z2 |

y0 + r0 ->{0.7} r0 + y1 |

y1 + r0 ->{0.8} r0 + y2 |

z2 + r0 ->{0.5} r0 + z1 |

z1 + r0 ->{0.6} r0 + z0

MI with completely heterogeneous rates and initial conditions                       QI with matching rates and initial conditions



Stoichiomorphism Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

(          homomorphism and stoichiomorphism (transitive))

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,~s ⇢ x

NCC

GW



Interpretation of Stoichiomorphism
� Ignorance about initial conditions

� We may not know the concentrations of species in the more complex network, but at least we know 
that if they satisfy certain conditions, then it behaves like the simpler network.

� Neutral paths in network space (evolution)
� If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately 

selected against, because it is “kinetically neutral”.

� This allows the network to increase its complexity without kinetic penalty.

� Later, the extra degrees of freedom can lead to kinetic differentiation.

� But meanwhile, the organism can explore variations of network structure.

� Relationship to abstraction / coarse-graining
� Stoichiomorphism are not about abstractions that preserve behavior, 

on the contrary, they are about concretions that preserve behavior.

� They describe implementations of abstract specs, where the specs themselves may not be 
(biologically) implementable because of excessive demands on individual species.
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Conclusions



Conclusions
� The promise of nanotechnology

� Controlling matter and information in detail at the molecular scale

� This can only be achieved by digital (combinatorial) techniques

� Interfacing to natural (biological) systems, which often have analog properties

� This usually involves using continuous modeling/techniques

� Discrete systems are hard to engineer
� We need combinatorial analysis techniques that scale up (massively!)

� We need verification and approximation techniques for massive concurrency

� Continuous systems are hard to understand
� Calculus is the weapon of choice, but even there qualitative understanding is king

� We need quantitative methods that support qualitative reasoning
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