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- Computational Models

- The 'massive concurrency’ of molecular soups

- Discrete-state Molecular Systems

- Combinatorial verification of (DNA) Chemical Reaction Networks

- Continuous-state Molecular Systems

- Morphisms of Chemical Reaction Networks that preserve kinetics




Computational Models




A computational model

- Molecular ‘Soups’

- Molecules randomly collide and can change state or composition.
- Can we compute with that?
- Based on the classical atomic theory of matter
- probability of collision independent of location (“well-mixed” / "totally connected”)

- Related to:

- For "small number of agents” (macroscopic systems):
- Process Algebra, Petri Nets
- For "large numbers of agents” (microscopic systems):

- Population Protocols [Angluin et al.], Amorphous Computing [Abelson et al ]
Swarm Intelligence — Ant Colonies, Epidemiology, Morphology, Chemistry




A notion of algorithm

- Data as populations

- Inputs and outputs are composed of uniform populations of agents
that do not have an identity

- Algorithms emerge from the dumb’ interactions of ‘simple’ agents

- In computing

+ Mostly assuming discrete or nondeterministic time

- In science and nature

+ Mostly assuming stochastic or continuous time

+ Stochastic because interactions typically correspond to
random collisions or chance meetings




A mathematical model

Continuous-Time (Discrete-Space) Markov Chains
Also underlies chemistry via the Chemical Master Equation
(changes of probabilities of discrete states over continuous time).

In the limit of infinite molecules at finite concentration, it converges to the
deterministic continuous-state continuous-time (ODE) model.

NOT a probabilistic (-only) model

Probabilities emerge from the stochastic structure (the underlying DMC), but are not
primary. We are in continuous time and we care about how long things take.

Non-determinism exists only in the form of ‘quantitative races”:
who is faster is more likely to win. There is no speed-independent probability.

Interleaving holds by the Markov axiom: no two events ever happen at the same time.

What can we compute in this model?

(finite or infinite)




Programming Languages

Reaction-Based (A + B — C + D) (Chemical Reactions)
- Finite set of species (no polymerization): finite Markov chains.

Interaction-Based (A = Ic. B) (Process Algebra)
- Unbounded set of species: infinite Markov chains. Molecular state and identity.
- Reduces combinatorial complexity of models by sharing channels between submodels.

Rule-Based (A{-}:B{p} — A{p}:B{-}) (Logic, Graph Rewriting)

- A rule is a reaction in a partially unspecified context.

+ Further reduces model complexity by abstracting over context.

- Compatible with informal descriptions of biochemical events (“narratives”).

Relationships
- The latter two can be translated to each other.
- When they can be translated to the first, they may introduce an extremely large number of species.




Basic Results

- The class of functions ‘over individuals’ that are computable

A finite number of chemical reactions can encode Turing machines (only) up to an arbitrarily small
uniform error bound. "Approximately Turing-Complete”. [1,2]

- With polymerization, fully Turing completeness can be achieved.
- But all these rely on ‘single-molecule populations’ that are difficult to achieve.

- The class of predicates ‘over populations’ that are
stably computable’ (population protocols)

- Semi-linear predicates (first-order theory of (N, +,<)). [3]
- If you cannot distinguish individual molecules, you are much more restricted.

1. David Soloveichik, Matt Cook, Erik Winfree, Shuki Bruck, Computation with Finite Stochastic Chemical Reaction Networks. Natural Computing, 2008.
2. Luca Cardelli, Gianluigi Zavattaro. Termination Problems in Chemical Kinetics. CONCUR 2008.

3. Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power of population protocols. Distributed Computing, 2007.




Semantics of Chemistry (Chemical Kinetics)

- A connection with the theory of concurrency

Combinatorial
Explosion

Continuous-state Semantics

(Mass Action Kinetics)

Continuous
Chemistry

Process Nondeterministic

A Algebra Semantics
Discrete

Chemist
. — Stochastic

CTMC — CTMC Semantics

Discrete-state Semantics
(Chemical Master Equation)

Luca Cardelli. On Process Rate Semantics.
Theoretical Computer Science 391(3) 190-215, Elsevier, 2008.
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More Languages & Models

Gene Networks

Synchronous Boolean networks
Stewart Kauffman, etc. Gines } Nucleocapsid

Asynchronous Boolean networks
René Thomas, etc.

Protein Networks

Process Algebra (stochastic m-calculus etc.)
Priami, Regev-Shapiro, etc.

Graph Rewriting (kappa, BioNetGen etc.)
Danos-Laneve, Fontana & al., etc.

Memlbrane Networks

Membrane Computing
Gheorghe Paun, etc.
Brane Calculi
Luca Cardelli, etc.




Challenges
in Discrete-State
Molecular Systems

In collaboration with:

Microsoft Biological Computation Group
U.Oxford PRISM group

U.Washington Seelig Lab




"Writing" Molecular Programs

- Chemistry is not a computational science

- We can read (nature’s) molecular programs, but we cannot write them (in general)!
- We cannot find molecules that do whatever we want them to do!

- But we can fake it (encode it)

- Find some “universal molecules’ that we can build, and that can do
what all other molecules, real or hypothetical, can do.

- Ok, not quite 'do’, but '‘behave like' any other molecules.

- With DNA

- These are molecules we can read ar]d write! Soloveichik, D, Seelig, G., Winfree, E,
The folding problem for DNA/RNA is solvable, DNA as a Universal Substrate for
and they can be produced on industrial scale. Chemical Kinetics. PNAS, 2010.

12




Why write molecular programs?

- Non-goals

- Not to solve NP-complete problems with large vats of chemicals
(even massive concurrency does not help!)

- Not to replace silicon-based technology
DNA is slow(er), but compatible with life processes

- Bootstrapping a programmable carbon-based technology

- To precisely control the organization and dynamics
of matter and information at the molecular level

- Nanotechnology
- Medicine and Biology

- DNA is "just” the most convenient material for the task

- Itis an information-bearing programmable material;
other such materials are actively being developed
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Domains

- Subsequences on a DNA strand are called domains

- provided they are "independent” of each other

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAAE O rl e n te d D N A
X y ~ single strand

- Differently named domains must not hybridize

- With each other, with each other’s complement, with subsequences of each
other, with concatenations of other domains (or their complements), etc.




Short Domains

DNA double
strand

Reversible Hybridization




Long Domains
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Strand Displacement

A
X
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X

“Toehold Mediated”




Strand Displacement
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Toehold Binding




Strand Displacement

Branch Migration




Strand Displacement
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Strand Displacement
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Irreversible release
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Bad Match

D, CE——

Cannot proceed
Hence will undo




Two-Domain Architecture

« Signals: 1toehold + 1 recognition region

A
X

« Gates: "top-nicked double strands” with open toeholds

Garbage collection
“built into” the gate
operation

Two-Domain DNA Strand Displacement
Luca Cardelli
In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):

Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.




Plasmidic Gate Technology
. Synthetlc DNA |S a DNA GATE PRODUCTION

CLONING AMPLIFICATION &
QUALITY CONTROL

length-limited —— b ) = | =
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Transducer




Transducer x—y

Input
LS

X




Transducer x—y

Input
pﬂ
X

— ——
X 5] X d
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Join half Fork half

ta is a private signal (a different ‘a’ for each xy pair)




Transducer x—y
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Transducer x—y
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Transducer x—y
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Transducer x—y

e

X d d X d

___— I

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.




Transducer x—y
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Transducer x—y
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Transaucer x—y

e

X d d X d
-— —
Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.

We can use (2) to achieve (1).
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Transducer x—y

= o

X d d X d




Transducer x—y

——
X

X d d X d




Transducer x—y

X d




Transducer x—y

Done.

N.B. the gate is consumed: it is the energy source

(no proteins, no enzymes, no heat-cycling, etc.; just DNA in salty water)







General nxm Join-Fork = Aj+..+A - B+..+B_

- Easily generalized to 2+ inputs (with 1+ collectors).
- Easily generalized to 2+ outputs.

Figure 9: 3-Join J,,,. | tw | tx | ry — tz: initial state plus inputs tw, tx, ty.
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With that, we can ‘implement chemistry’

- That is, we can implement arbitrary chemistry ...

- ... by using specific (DNA) chemistry
.. up to an equivalence (same approximate kinetics, up to time dilation)

Computmg power equivalent to Stochastic Petri Nets
- Not Turing complete, but as good as chemistry itself.
- The correspondence is not completely trivial: gates are o o

consumed by activation, hence a persistent Petri net . \/
" . . Join
transition requires a stable population of gates. | |

+ Many other mechanisms are expressible with Petri Nets Fork
like Boolean networks and state machines of
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Challenges of Correct Design:
Proofs

- Does the two-domain architecture correctly
implement Stochastic Petri Nets (and chemistry)?

- A rather difficult problem (which | left open). By modelchecking we can verify
specific constructions, but only for limited range of inputs.

- This was only recently settled using techniques form the theory of concurrency
(serializability):
Matthew R. Lakin, Andrew Phillips, and Darko Stefanovic,
Modular verification of DNA strand displacement networks
via serializability analysis, in International Conference on
DNA Computing and Molecular Programming, Springer
Verlag, September 2013
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Simulation

- Stochastic
- Deterministic

Compilation

Plot

Simulation

Table

Analysis

Initial state

[Show all|Hide all| (= <t x> |= <t" y>)

Last state

0.9

=)
n
PP FITHd T TTERY Froed PIOF] (e TYord FETTT O] T RTTe) FEOTT] FrrrT TP FYPR FeTed Fere Pon

o

50000 100000

150000 200000

[Fit|Hide >

\ <t x>
\ <ttt y>

250000 300000 350000 400000 450000 500000
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State Space Analysis

Compilation | Simulation | Analysis

Graph Text PRISM Visualise
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Modelchecking
+ PRISM probabilistic modelchecker

JOURNAL
1 — e INterface
0.9 / Design and analysis of DNA strand
0.8 displacement devices using probabilistic
0.7 / model checking
g 0.6 / Matthew R. Lakinl-3:T, David Parker2", Luca cardellil,
= . Marta Kwiat and illips1,~
€ 05 / Terminat
: erminate
E oa //— /
a / / Error

0.3
0.2 / / Success

T (s) [x 104
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Verification

- Quantitative theories of system equivalence and
approximation.

CONTINUOUS MARKOVIAN LOGICS
AXTOMATIZATION AND QUANTIFIED METATHEORY
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Scaling Up DNA Circuits

- Can verification catch up?

Scaling Up Digital Circuit
Computation with DNA Strand
Displacement Cascades

Llu Qian® and Erik Winfree!?:3*

Yoy = [VXaxoxoxs

X4
Xz

X2
; Yi X_Eqwg
X3 | @ =

X4

3 JUNE 2011 VOL 332 SCIENCE

Scaling Up DNA Computation

“In addition to biochemistry
laboratory techniques, computer
science techniques were essential.”

"Computer simulations of
seesaw gate circuitry optimized
the design and correlated
experimental data.”

JJUNE2011 WOL 332 SCIENCE >3




Challenges
in Continuous-State
Molecular Systems

In collaboration with:
Attila Csikasz-Nagy
and thanks to David Soloveichik




Networks

- Informal ideas in Biology

- Usually communicated by some kind of network or graph
- These networks are often at best ambiguous [Kitano]

- Many kinds of networks, including:

+ Chemical Reaction Networks (species A becomes species B and C)
- Influence Networks (species A promotes or inhibits species B)

- Networks convey meaning

- Can network relationships convey meaning too?
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Mutual Inhibition

- A recent paper suggests that all cellular switches in all phases of the cell

cycle follow (abstractly) a mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle
transitions

Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

- Also found in other areas
(cell polarity establishment):

PHILOSOPHICAL :
PHILOSQRHICAL The PAR network: redundancy and

U oF D robustness in a symmetry-breaking
THE ROYAL Dj system
SOCIETY

umio

rsth.royalsocietypublishing.org

signal

™~

activator

|
G0

aPAR feedback loop  mutual exclus
CDC-42 > myosin (sebox D PAR.2 self recritmet
endocytosis resistance against PKC-3

PPAR feedback loo

—< o

o N —

\
/'
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Cell Cycle Switch Network

- A recent paper presents a more complete view

of the classical cell cycle switch

Phosphorylation network dynamics in the control of

cell cycle transitions

Daniel Fisher'”, Lillana Krasinska'*, Damien Coudreuse?* and Béla Novak®!

'Institut de Génétique Moléculaire de Montpellier, IGMM, CNRS UMR 5535, Université Montpellier | and I, 34293 Montpellier, France

ilnsmu!e of Genetics and Development of Rennes, CNRS UMR 6230, 35043 Rennes, France

B igmm.crs.fr}

125,
2012, Published by The Company o Biclogists Lid
i 10,1242/ 106351
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Network Emulation: NCC to M|

+ For any initial state of Ml we can find some initial state of NCC (actually by copying
the state of M) such that NCC exactly emulates Ml

(3 species each)

NCC Mmi
3 3 a ———
E A 4 20
- l‘ 5 ?1) >3 21
4 22
[ ] 1 vo
yi
y2

31/_ 1 ?_% l D
L/

y.Qs =y o
Illlél ‘ I5 0_Olllllllll2lIll_'l<‘>llril4llll
(18 species on 6 trajectories) (6 species on 6 trajectories) initialize zrp,
identically to z;

S S S

1 ’

IS a0a o300 00a N
4 y N o NHONRON
] <

+ Why does this work so well?

initialize y,q,s
identically toy
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Network Emulation: Ml to AM

- For chosen initial conditions of M, the (6) trajectories of MI emulate those (3) of AM:

1
D —X-
Ty X —T \ (3 species)
AM

/ X
2.5 A\, x1
] N\, x2
: initialize ~y,z,
] identically to x
"""""""""""""""" & T
(6 species on 3 trajectories) (3 species on 3 trajectories)
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Influence Network Notation

- Catalytic reaction T z z zis the catalyst
y L XLZ»V

X—y — X+Z—>7Z+Yy

- '‘Double kinase-phosphatase” motif

middle state

inhibit x ”-_M””i.i.“.(E.nsures nonlinearity)
(promote X,) “'""“‘* l
l L L ‘.
r— X e=ee= = _'_ Xopt— X —— x2_..’_
(promote Xg) "’71” i e T
Xo X5 state where state where
output output X is promoted x is inhibited
influence node catalytic node
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Ml to AM mapping in detall

2500 N xl

I—l—_-l ] N any initial conditions
X ] Xo X, %, :

D [ 0e— X1 e— s
AM -—] _ \\

| EASRNARPRAPIRARD
homomorphic mapping I
: initial conditions:
T ZUUU—E ZO= y2 — XO
)I/: | zl : 2;=Y15X%
7\\ ZZ=yO=X2
mI % ZAE NS

o 0.002 0.004 0.006 0.008 0.




Network Emulation Composes: NCC to AM

- For chosen initial conditions of NCC, the (18) trajectories of NCC emulate those (3) of AM

d i o«

{ Lp -z Z,~y-> X

1_ J_ // T _'I' YAy » — X ___] The new cell cycle switch
late AM exactly.

T_ _T Zrp - X _ I - emg » iy

This works also for ~Y,~Q,~S > X For any initial conditions
GW, but not for the NCC AM of AM.

original CC. - . — = > = And for any rates of AM.
] A ] N\, x0
2.5 22 7 2.5_2 \:;
2_\/ : 2_/ AN Why?

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
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An Analytical Theory of Network Emulation

- An emulation is an “implementation”

- "for every input produces the same output” -2
“for every initial conditions produces the same trajectories”

- A refined network that works just as well as the coarser network
in the context of the inputs of the coarser network (not arbitrary inputs)

- When can a network emulate another one?

- Theories of behavioral equivalence and behavioral approximation,
e.qg. like in process algebra, are still lacking in this quantitative field

- So we look at the continuous-state semantics of these networks,
and see what we can do there
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Chemical Reaction Networks

- A CRNis a pair (S, R) where

- S ={sq,...,Sy} is a finite set of species
- R=1{r,..,n,} s afinite set of reactions over S

- Reactionsr = (p,m, k) written Zgeg ps+ s =F S ms- S

- Ex. r =24A+B-FA+3C
- with pa=2 pg=1 pc=0 reactant stoichiometric numbers
my=1 mg =0, i =3 product stoichiometric numbers

+ The stoichiometry of a species s in a reaction r is:

nes,(p,mk)) = ng — ps net stoichiometry n4,r) =-1
o(s,(p,m k) =k (g —ps) (instantaneous) stoichiometry @(A,r) = —k
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Species Maps and Reaction Maps

- A species mapisamapm €S — S the fiber of §: m~1(%)
- Exi m(sy) = m(sy) =8

+ It induces a canonical reaction map R = R
- Ex: m(sg+ s, ots)=28-158

- Where m(p,m, k) = (m(p), m(m), k)

- And m(p) (similarly m(m)) is the sum over fibers:
m(p)s = ZSEm_l(S‘) Ps

in case two species in the same reaction are mapped to the same species.
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CRN Morphisms

- A CRN morphism is a map m € (S,R) - (S,R) = (ms, my)
withms € S - S and my € R - R.

- We are interested in morphisms 5_—1
that are not injective, 4} 7
that represent implementations ¢ 1

r

—< o
—e N —
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CRN Homomorphisms

- m € (S,R) - (S,R) is a CRN homomorphism
if mg is determined by mg:
mge(ﬂ; TT, k) = (mS(p)rmS(T[); k)

- Ex:

mﬁ(so' S1, k) = (§0; §1, k) = (mS(SO)' mS(Sl)' k)

TO:
mx(So, S2, k) = (80,51, k) = (ms(sp), ms(sz), k)

r:
- It implies that for each reaction it preserves stoichiometry
summed over species fibers

V$§ €S. Vr €R. Zsem-1(s) (s,1) = (8, m(r))

- But @(sg,10) + @(sg,11) = =2k # —1k = @(8y,Ty) (see next slide)

Iy

O«a 1!
]
t,

Homomorphism
(but not stoichiomorphism)




CRN Stoichiomorphisms

- m € (S,R) » (S,R) is a CRN stoichiomorphism if for each
species it preserves stoichiometry summed over redaction fibers

Vs €S. VI €R. Zem-1ip) (5, 1) = o(m(s), )

- This condition can be checked over the syntax of CRNs,
without any consideration of their kinetics

- Ex:
So»f”oi (50, 70) + @(sg,11) =0 = <P(§9,f9)
S1,7o- @(s1,79) + @(sy,11) = 1k = <P(§1»7:0)
S, Tor @(s2,10) + @(s2,11) = 1k = @(84,7)

b

- We will show that existence of a stoichiomorphism implies CdhpE)
identical network kinetics (in certain conditions).

Homomorphism and
stoichiomorphism.
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CRN Morphism Conditions

+ Homomorphism consequence:

V8 €S. Vr €R. Tgepm10s @(s,7) = 9§, m(1))
- Stoichiomorphism condition:

Vs €S. VP ER. Zem1(py 9(s,7) = p(m(s),7)

- Ifm is an isomorphism (injective and surjective, with singleton fibers)
then they both reduce to the simple property:

Vs€S. Vr €R. ¢(s,r) = (p(m(s),m(r))

- The above are generalization for when m is not injective.
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Checking the Stoichiomorphism Condition

m € Ml - AM

- 0
_ Z Y o 1 -1 X,
All unit rates (for simplicity) = Z A 0 0 1 X =
prcity s Vo—ul__A1 0 o T X, &
= v, T 1 1 1 X1
This is both a homomorphism Y2 \ar% — — — %
. . . 0 1 2 3
and a stoichiomorphism VF € AM
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CRN Kinetics

- A state of a CRN (S, R) is a vector of concentrations for each species: v € R+
. The mass action [r] € R*> > R* of areactionr € R is
7]y = [(0, T, k)] = Hges Vs

- The differential system of a CRN (S, R) is the map F € R* >S5RS

pS=vp

(for each state, gives the differential of concentration for each species): b v
5 F(w)(s
FW)(s) = Zyeg @(s,7) - [r]y S @)(s)

- Normally written as a system of concentration ODEs, integrated over time:

Vs

E == F(v)(s) pr— Z(,D,ﬂ,k)ER k . (n-s _ ,05) . vp
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Kinetic Emulation

- Amapm € (S,R) - (S, R) is a CRN emulation if the following
holds for the respective differential systems F, F:

v=vVom
~ .8 ~ A ]
VODER™.VSs€S. FWom)(s) = F(v)(m(s)) Vs s S F(v)(s) =
(the derivative of s in state © o m is equal to the derivative of m(s) in state D) Z T
. . o (S,R)
-+ It follows that for any initial state  of (8, R) there is an initial

state v (=0 o m) of (S, R) such that the trajectory of any s in_ D

(S, R) is identical to (emulates) the trajectory of m(s) in (S,R). Do) rﬁ(s) PP (m(s))
(With minor caveats if m is not surjective.) Z?/:
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Fmulation Theorem

+ Theorem: If m is a CRN homomorphism and stoichiomorphism

then it is a CRN emulation.

AM | | '
[ Xoe— X14e— X2

Mi [ I
Yoe— Y1e— Yo
7 —ly

—_—
—
[~ Zoe— Z1e— 22

that is, for any initial conditions we can match trajectories.

Actually, m need not be a homomorphism for this to hold: it is enough for m to be a reactant morphism and a stoichiomorphism. A reactant
morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of

network mappings that preserve kinetics.
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Change of Rates Theorem

- A change of rates for (S, R) is bijectiont € (S,R) — (S, R’) such that «(S) is the identity and
Wp,m, k) = (p,m k).

- Theorem: If m € (S,R) - (S, R) is a stoichiomorphism, then for any change of
rates £ of (S, R) there is a change of rates 1 of (S, R) suchthat? em o 1is a
stoichiomorphism.

- In fact, « changes rates by the ratio with which  changes rates:
p,m k)= (p m, k- —) where m(p, 7, k) = (p, 1, k) and i(p 7, k) = (p, 11, k).

- Corollary: If m € (S,R) - (S, R) is a stoichiomorphism and homomorphism,
then for any change of rates t of (S, R) there is a change of rates ¢ of (S, R) such
that { om o1 is an emulation.
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Any Rates, Any Initial Conditions

A stoichiomorphismm € (S,R) - (S, R) that is also a hormomorphism,
determines an emulation for any choice of rates of (S, R).

Those emulations can match any initial conditions of any choice of rates of (S, R)
with some initial conditions of some choice of rates of (S, R).

directive sample 10.0 100

initz02 |
initz10 |
initz21 |
inity0 0.9 |
inity10.2 |
inity21.9 |

y2 +y0->{0.9}y0 +y1 |
y1+y0->{1.0}y0+yO |
z0+y0->{1.1}y0 +z1 |
z1+y0->{1.2}y0+22 |

y0+20->{0.7} 20 + y1 |
y1+20->{0.8}z0 +y2 |
22 +20->{0.5} 20 + z1 |
21+ 20 ->{0.6} z0 + z0

MI with completely heterogeneous rates and initial conditions
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Interpretation of Stoichiomorphism

lgnorance about initial conditions

- We may not know the concentrations of species in the more complex network, but at least we know
that if they satisfy certain conditions, then it behaves like the simpler network.

Neutral paths in network space (evolution)
If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately
selected against, because it is "kinetically neutral”.

- This allows the network to increase its complexity without kinetic penalty.

- Later, the extra degrees of freedom can lead to kinetic differentiation.

- But meanwhile, the organism can explore variations of network structure.

Relationship to abstraction / coarse-graining

- Stoichiomorphism are not about abstractions that preserve behavior,
on the contrary, they are about concretions that preserve behavior.

- They describe implementations of abstract specs, where the specs themselves may not be
(biologically) implementable because of excessive demands on individual species.
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Conclusions




Conclusions

- The promise of nanotechnology

- Controlling matter and information in detail at the molecular scale
- This can only be achieved by digital (combinatorial) techniques

- Interfacing to natural (biological) systems, which often have analog properties
- This usually involves using continuous modeling/techniques

- Discrete systems are hard to engineer

- We need combinatorial analysis techniques that scale up (massively!)
- We need verification and approximation techniques for massive concurrency

- Continuous systems are hard to understand

- Calculus is the weapon of choice, but even there gualitative understanding is king
- We need quantitative methods that support qualitative reasoning
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