

The Cell Cycle Switch Computes Approximate Majority

Luca Cardelli, Microsoft Research & Oxford University

Joint work with Attila Csikász-Nagy, CoSBi & King's College London

Warwick, 2014-01-09

Research

Outline

- Analyzing biomolecular networks
 - $\cdot\,$ Try do understand the function of a network
 - $\cdot\,$ But also try to understand its structure, and what determines it
- The Cell-Cycle Switches
 - $\cdot\,$ Some of the best studied molecular networks
 - Important because of their fundamental function (cell division) and the stability of the network across evolution
- We ask:
 - · What does the cell cycles switch compute?
 - · How does it compute it?

The Cell Cycle Switch

- This network is universal in all Eukaryotes [P. Nurse]
 - I.e., the *network* at the core of cell division is *the same* from yeast to us
 - Not the components of the network, nor the rates

Journal of Cell Science 106, 1153-1168 (1993) Printed in Great Britain © The Company of Biologists Limited 1993

Numerical analysis of a comprehensive model of M-phase control in *Xenopus* oocyte extracts and intact embryos

Bela Novak* and John J. Tyson[†]

Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA "Permanent address: Department of Agricultural Chemical Technology, Technical University of Budapest, 1521 Budapest Gellert Ter 4, Hungary "Author for consecondence"

Double positive feedback on x Double negative feedback on x No feedback on y What on earth ... ???

- $\cdot\,$ The function is very well-studied. But why this structure?
- I.e., why this algorithm?

How to Build a Good Switch

• What is a "good" switch?

- We need first a bistable system: one that has two distinct and stable states.
 I.e., given any initial state the system must settle into one of two states
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back)
- \cdot Finally, we need to be able to flip the switch by external inputs

"Population" Switches

- Populations of identical agents (molecules) with the whole population switching from one state to another as a whole
- Highly concurrent (stochastic)

A Bad Algorithm

- Direct Competition
 - $\cdot\,$ x catalyzes the transformation of y into x
 - $\cdot\,$ y catalyzes the transformation of x into y
 - \cdot when all-x or all-y, it stops
- This system has two end states, but
 - · Convergence to an end state is slow (a random walk)
 - Any perturbation of an end state can start a random walk to the other end state (hence not really *bistable*)

200

A Very Good Algorithm

- Approximate Majority (AM)
 - $\cdot\,$ Decide which of two populations is in majority
- A fundamental 'population protocol'
 - · Agents in a population start in state x or state y
 - A pair of agents is chosen randomly at each step, they interact ('collide') and change state
 - The whole population must eventually agree on a majority value (all-x or all-y) with probability 1

Dana Angluin · James Aspnes · David Eisenstat

A Simple Population Protocol for Fast Robust Approximate Majority

We analyze the behavior of the following population protocol with states $Q = \{b, x, y\}$. The state b is the **blank** state. Row labels give the initiator's state and column labels the responder's state.

 $\begin{array}{cccc} x & b & y \\ x & (x,x) & (x,x) & (x,b) \\ b & (b,x) & (b,b) & (b,y) \\ y & (y,b) & (y,y) & (y,y) \end{array}$

Third 'undecided' state

- 1) Disagreements cause agents to become undecided
- 2) Undecided agents believe any non-undecided agent they meet

Properties

[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]

- With high probability, for *n* agents
 - The total number of interactions before converging is O(n log n)
 ⇒ fast
 - The final outcome is correct if the initial disparity is $\omega(sqrt(n) \log n)$ \Rightarrow solution states are robust to perturbations
- Logarithmic time bound in parallel time
 - *Parallel time* is the number of steps divided by the number of agents
 - · In parallel time the algorithm converges with high probability in $O(\log n)$

Chemical Implementation

Chemistry as a programming language for population algorithms!

 $x + y \rightarrow y + b$ $y + x \rightarrow x + b$ $b + x \rightarrow x + x$ $b + y \rightarrow y + y$

Bistable Even when x=y! (stochastically)

Fast

O(log n) convergence time

Robust to perturbation above a threshold, initial majority wins *whp*

Back to the Cell Cycle

- The AM algorithm has ideal properties for settling a population into one of two states
- But that is not what the cell cycle uses
- Or is it?

Influence Network Duality

• Let $\sim x$ be the species such that

 $(\sim x)_0 = x_{2'}$ $(\sim x)_1 = x_{1'}$ $(\sim x)_2 = x_0$

so that promoting x is the same as inhibiting ~x etc. Then:

Contextual Analysis

• AM switches in the context of oscillators

30

Evidence that CC is 'similar' to AM

- But there is a difference
 - $\cdot\,$ The classical cell cycle switch, CC, works ok but never as well as AM
 - $\cdot\,$ The output of CC does not go 'fully on':

- Because s continuously inhibits x through z, so that x cannot fully express
- · Q: Why didn't nature do better than that?

19

Nature fixed it!

- There is another known feedback loop
 - $\cdot\,$ By which x suppresses s "in retaliation" via the so-called Greatwall loop
 - $\cdot\,$ Also, s and t happen to be the same molecule

Full activation!

• s and x now are antagonists: they are the two halves of the switch, mutually inhibiting each other (through intermediaries).

More surprisingly

- Made it faster too!
 - The extra feedback also speeds up the decision time of the switch, making it about as good as the 'optimal' AM switch:

Conclusion (in our published paper): Nature is trying as hard as it can to implement an AM-class algorithm!

The "classical" cell cycle switch does not appear to be the full picture: the extra feedback completes it algorithmically.

The Greatwall Kinase

- Our paper appeared:
 - Suggesting GW is a better switch than CC

The Cell Cycle Switch Computes Approximate Majority Luco Cardelli' & Attilo Csikász-Nagy^{2,3}

- Another paper the same week:
 - Showing experimentally that the Greatwall loop is a necessary component of the switch, i.e. the not-as-good-as-AM network has been 'refuted'

SCIENTIFIC REPORTS

A new cell cycle switch candidate: GW

• Will it work in the normally-wired oscillator?

- Absolutely not! ☺
 - The x stable state is just too strong: a high x will shut down s completely; which means that r will be fully on, and it in turn will reinforce x fully. And y can never be strong enough to push down x when x-r are in such a strong mutual feedback. No amount of fiddling seems to give enough control on that situation.

However this will

• Put s under control of y so it can undermine x

Robust full-on oscillation with all-default parameters (all black rates 1.0, all gray rates 0.5, all initial quantities equal)

Part II: What is network structure *really* telling us about kinetics?

An Analytical Theory of Network Emulation (with thanks to David Soloveichik)

- So far, our evidence is empirical
 - Although based on numerical simulations and covering both kinetic and steady state behavior
- Analytical evidence is harder to obtain
 - The proof techniques for the AM algorithm are hard and do not generalize easily to more complex networks
 - Quantitative theories of behavioral equivalence and behavioral approximation, e.g. in process algebra, are still lacking (although rich qualitative theories exist)

Mutual Inhibition

• A recent paper suggests that all cellular switches in all phases of the cell cycle follow (abstractly) a mutual inhibition pattern:

Septation Initiation

Other (inherently different) biological networks are based on mutual inhibition, and share characteristics with AM

29

New Cell Cycle Network

- A recent paper presents a more complete view of the cell cycle switch
- N.B. "phosphorylation network dynamics" is the same as our $x_0-x_1-x_2$ motif

Phosphorylation network dynamics in the control of cell cycle transitions

Network Emulation: NCC to MI

 For any initial state of MI we can find some initial state of NCC (actually by copying the state of MI) such that NCC exactly emulates MI

Network Emulation: MI to AM

• For chosen initial conditions of MI, the (6) trajectories of MI emulate those (3) of AM:

Network Emulation Composes: NCC to AM

• For chosen initial conditions of NCC, the (18) trajectories of NCC emulate those (3) of AM

Chemical Reaction Networks

- A CRN is a pair (S, R) where
 - $\cdot S = \{s_1, \dots, s_n\}$ is a finite set of *species*
 - $R = \{r_1, \dots, r_m\}$ is a finite set of *reactions* over S
- Reactions $r = (\rho, \pi, k)$ written $\Sigma_{s \in S} \rho_s \cdot s \rightarrow^k \Sigma_{s \in S} \pi_s \cdot s$

• Ex.:
$$r = 2A + B \rightarrow^k A + 3C$$

 \cdot with

 $\rho_A = 2, \ \rho_B = 1, \ \rho_C = 0$ *reactant stoichiometric numbers* $\pi_A = 1, \ \pi_B = 0, \ \pi_C = 3$ *reactant stoichiometric numbers*

• The *stoichiometry* of a species s in a reaction r is:

 $\eta(s,(\rho,\pi,k)) = \pi_s - \rho_s$ net stoichiometry $\eta(A,r) = -1$ $\varphi(s, (\rho, \pi, k)) = k \cdot (\pi_s - \rho_s)$ (instantaneous) stoichiometry $\varphi(A, r) = -k$

Species Maps and Reaction Maps

- A species map is a map $m \in S \to \hat{S}$
 - Ex: $m(s_0) = m(s_1) = \hat{s}$
- · It induces a canonical reaction map $R \to \hat{R}$
 - Ex: $m(s_0 + s_1 \rightarrow^1 s_1) = 2\hat{s} \rightarrow^1 \hat{s}$
- Where $m(\rho, \pi, k) = (m(\rho), m(\pi), k)$
- And $m(\rho)$ (similarly $m(\pi)$) is the sum over fibers:

 $m(\rho)_{\hat{s}} = \Sigma_{s \in m^{-1}(\hat{s})} \rho_s$

in case two species in the same reaction are mapped to the same species.

CRN Isomorphisms

- A CRN morphism is a map $m \in (S, R) \to (\hat{S}, \hat{R}) = (m_S, m_R)$ with $m_S \in S \to \hat{S}$ and $m_R \in R \to \hat{R}$.
- A CRN isomorphism $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a morphism made of two bijections on S and R that agree on stoichiometric numbers and rate:

 $m_{\mathcal{R}}(\rho, \pi, k) = (m_{\mathcal{S}}(\rho), m_{\mathcal{S}}(\pi), k)$

• As a consequence they also *agree on stoichiometry*:

 $\varphi(s,r) = \varphi\big(m_{\mathcal{S}}(s), m_{\mathcal{R}}(r)\big)$

- But what if m is not injective or surjective on species or reactions?
 - We need to generalize "agreement on stoichiometry" to such cases.

CRN Homomorphisms

• $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a CRN homomorphism if $m_{\mathcal{R}}$ is determined by $m_{\mathcal{S}}$:

 $m_{\mathcal{R}}(\rho,\pi,k) = (m_{\mathcal{S}}(\rho),m_{\mathcal{S}}(\pi),k)$

• Ex:

 $r_0: \quad m_{\mathcal{R}}(s_0, s_1, k) = (\hat{s}_0, \hat{s}_1, k) = (m_S(s_0), m_S(s_1), k)$ $r_1: \quad m_{\mathcal{R}}(s_0, s_2, k) = (\hat{s}_0, \hat{s}_1, k) = (m_S(s_0), m_S(s_2), k)$

 It implies that <u>for each reaction it preserves stoichiometry</u> <u>summed over species fibers</u>

$$\forall \hat{s} \in \hat{S}. \ \forall r \in R. \ \Sigma_{s \in m^{-1}(\hat{s})} \varphi(s, r) = \varphi(\hat{s}, m(r))$$

(see next slide)

• But
$$\varphi(s_0, r_0) + \varphi(s_0, r_1) = -2k \neq -1k = \varphi(\hat{s}_0, \hat{r}_0)$$

Homomorphism (but not *stoichiomorphism*)

CRN Stoichiomorphisms

• $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a CRN stoichiomorphism if for each species it preserves stoichiometry summed over reaction fibers

 $\forall s \in S. \ \forall \hat{r} \in \hat{R}. \ \Sigma_{r \in m^{-1}(\hat{r})} \varphi(s, r) = \varphi(m(s), \hat{r})$

- This condition can be checked over the *syntax* of CRNs, without any consideration of their kinetics
 - Ex:
- $\begin{array}{ll} s_0, \hat{r}_0 \colon & \varphi(s_0, r_0) + \varphi(s_0, r_1) = 0 = \varphi(\hat{s}_0, \hat{r}_0) \\ s_1, \hat{r}_0 \colon & \varphi(s_1, r_0) + \varphi(s_1, r_1) = 1k = \varphi(\hat{s}_1, \hat{r}_0) \\ s_2, \hat{r}_0 \colon & \varphi(s_2, r_0) + \varphi(s_2, r_1) = 1k = \varphi(\hat{s}_1, \hat{r}_0) \end{array}$
- We will show that existence of a stoichiomorphism implies identical network kinetics (in certain conditions).

Homomorphism and stoichiomorphism.

CRN Morphism Conditions

Homomorphism consequence:

 $\forall \hat{s} \in \hat{S}. \ \forall r \in R. \ \Sigma_{s \in m^{-1}(\hat{s})} \varphi(s, r) = \varphi(\hat{s}, m(r))$

• Stoichiomorphism condition:

 $\forall s \in S. \ \forall \hat{r} \in \hat{R}. \ \Sigma_{r \in m^{-1}(\hat{r})} \varphi(s, r) = \varphi(m(s), \hat{r})$

• If m is an isomorphism (injective and surjective, with singleton fibers) then they both reduce to the isomorphism consequence:

 $\forall s \in S. \ \forall r \in R. \ \varphi(s,r) = \varphi(m(s),m(r))$

• But we will be typically interested in mappings that "simplify" networks and that are at least not injective.

CRN Kinetics

- A *state* of a CRN (S, R) is a vector of concentrations for each species: $v \in \mathbb{R}^{+S}$.
- The mass action $[r] \in \mathbb{R}^{+^S} \to \mathbb{R}^+$ of a reaction $r \in R$ is:

$$[r]_{\boldsymbol{v}} = [(\rho, \pi, k)]_{\boldsymbol{v}} = \Pi_{s \in S} \boldsymbol{v}_s^{\rho_s} = \boldsymbol{v}^{\rho}$$

• The differential system of a CRN (S, R) is the map $F \in \mathbb{R}^{+S} \to \mathbb{R}^{S}$ (for each state, gives the differential of concentration for each species): v_{s}

$$F(\boldsymbol{v})(s) = \Sigma_{r \in R} \ \varphi(s, r) \cdot [r]_{\boldsymbol{v}}$$

Normally written as a system of concentration ODEs, integrated over time:

$$\frac{d\boldsymbol{v}_s}{dt} = F(\boldsymbol{v})(s) = \Sigma_{(\rho,\pi,k)\in R} \ k \cdot (\pi_s - \rho_s) \cdot \boldsymbol{v}^{\rho}$$

42

 $F(\boldsymbol{v})(s)$

Kinetic Emulation

• A map $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ is a *CRN emulation* if the following holds for the respective differential systems F, \hat{F} :

 $\forall \widehat{\boldsymbol{\nu}} \in \mathbb{R}^{+\hat{S}}. \forall s \in S. F(\widehat{\boldsymbol{\nu}} \circ m)(s) = \widehat{F}(\widehat{\boldsymbol{\nu}})(m(s))$

(the derivative of s in state $\hat{v} \circ m$ is equal to the derivative of m(s) in state \hat{v})

• It follows that for *any* initial state \hat{v} of (\hat{S}, \hat{R}) there is an initial state $v (= \hat{v} \circ m)$ of (S, R) such that the trajectory of any s in (S, R) is identical to (*emulates*) the trajectory of m(s) in (\hat{S}, \hat{R}) .

(With minor caveats if m is not surjective.)

Emulation Theorem

- Theorem: If m is a CRN homomorphism and stoichiomorphism then it is a CRN emulation.

that is, for any initial conditions we can match trajectories.

Actually, *m* need not be a homomorphism for this to hold: it is enough for *m* to be a *reactant morphism* and a stoichiomorphism. A reactant morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of network mappings that preserve kinetics.

Change of Rates Theorem

- A change of rates for (S, R) is bijection $\iota \in (S, R) \to (S, R')$ such that $\iota(\rho, \pi, k) = (\rho, \pi, k')$.
- Theorem: If $m \in (S,R) \to (\hat{S},\hat{R})$ is a stoichiomorphism, then for *any* change of rates $\hat{\iota}$ of (\hat{S},\hat{R}) there is a change of rates ι of (S,R) such that $\hat{\iota} \circ m \circ \iota^{-1}$ is a stoichiomorphism.
 - In fact, ι changes rates by the ratio with which $\hat{\iota}$ changes rates: $\iota(\rho, \pi, k) = \left(\rho, \pi, k \cdot \frac{\hat{k}'}{\hat{k}}\right)$ where $m(\rho, \pi, k) = (\hat{\rho}, \hat{\pi}, \hat{k})$ and $\hat{\iota}(\hat{\rho}, \hat{\pi}, \hat{k}) = (\hat{\rho}, \hat{\pi}, \hat{k}')$.
- Corollary: If $m \in (S,R) \to (\hat{S},\hat{R})$ is a stoichiomorphism and homomorphism, then for any change of rates $\hat{\iota}$ of (\hat{S},\hat{R}) there is a change of rates ι of (S,R) such that $\hat{\iota} \circ m \circ \iota^{-1}$ is an emulation.

Any Rates, Any Initial Conditions

- A stoichiomorphism $m \in (S, R) \rightarrow (\hat{S}, \hat{R})$ that is also a homomorphism, determines an emulation for any choice of rates of (\hat{S}, \hat{R}) .
- Those emulations can match any initial conditions of any choice of rates of (\hat{S}, \hat{R}) with some initial conditions of some choice of rates of (S, R).

Interpretation of Stoichiomorphism

- Ignorance about initial conditions
 - We may not know the concentrations of species in the more complex network, but at least we know that if they satisfy certain conditions, then it behaves like the simpler network.

Neutral paths in network space (evolution)

- If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be immediately selected against, because it is "kinetically neutral".
- · This allows the network to increase its complexity without kinetic penalty.
- $\cdot\,$ Later, the extra degrees of freedom can lead to kinetic differentiation.
- But meanwhile, the organism can explore variations of network structure.
- Relationship to abstraction / coarse-graining
 - Stoichiomorphism are not about abstractions that preserve behavior, on the contrary, they are about *concretions* that preserve behavior.

Conclusions

• The cell cycle switch *can* exactly emulate AM

Nature likes a good algorithm!