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� No survival without computation!
� Finding food

� Avoiding predators

� How do they compute?
� Clearly doing “information processing”

� Based on complex, higher-order interactions
� MAPKKK = MAP Kinase Kinase Kinase =

that which operates on that which operates on 
that which operates on protein.

� How ‘sophisticated’ are natural algorithms?

Cells Compute
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Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



Outline
� Analyzing biomolecular networks

� Try do understand the function of a network

� But also try to understand its structure, and what determines it

� The Cell-Cycle Switches
� Some of the best studied molecular networks

� Important because of their fundamental function (cell division) 
and the stability of the network across evolution

� We ask:
� What does the cell cycles switch compute?

� How does it compute it?
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� This network is universal in all Eukaryotes [P. Nurse]
� I.e., the network at the core of cell division is the same from yeast to us

� Not the components of the network, nor the rates

� The function is very well-studied. But why this structure?

� I.e., why this algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
What on earth … ???



How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states. 
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population” Switches
� Populations of identical agents (molecules) with the whole population 

switching from one state to another as a whole

� Highly concurrent (stochastic)
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A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y



A Very Good Algorithm
� Approximate Majority (AM)

� Decide which of two populations is in majority

� A fundamental ‘population protocol’
� Agents in a population start in state x or state y

� A pair of agents is chosen randomly at each step, 
they interact (‘collide’) and change state

� The whole population must eventually agree on a 
majority value (all-x or all-y) with probability 1

7

Third ‘undecided’ state

1) Disagreements cause agents to 
become undecided

2) Undecided agents believe any
non-undecided agent they meet



Properties
� With high probability, for n agents

� The total number of interactions before converging is O(n log n)

⇒ fast

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)
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[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]



Chemical Implementation
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x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

Chemistry as a 
programming 
language for 
population 
algorithms!

Worse-case scenario example, 
starting with x=y, b=0:Bistable

Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



A Biological Implementation
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Back to the Cell Cycle
� The AM algorithm has ideal properties for settling a 

population into one of two states

� But that is not what the cell cycle uses

� Or is it?
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Influence Network Notation
� Catalytic reaction

� ‘Double kinase-phosphatase’ motif
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x + z → z + y

z is the catalyst

influence node catalytic node



Influence Network Duality
� Let ~x be the species such that 

(~x)0= x2,    (~x)1= x1, (~x)2= x0

so that promoting x is the same as inhibiting ~x etc. Then:
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AM and CC Influence Networks
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Convergence Analysis
� Switches as computational systems
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DC AM SC CC

1.0

0.00355
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2.0
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0
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← tp →0

0
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xp

↓

Pr(xp|tp)

1.00

15000

0

1.00

↑
xs

↓

← ts →

NEW!
CC appears to converge in log time

Start symmetrical
(x0=x1=x2 etc.)

Black lines: several stochastic simulation traces
Color: full probability distribution of small-size system



Steady State Analysis
� Switches as dynamical systems
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↑
xp

↓

← sxp → 150
0

15

Pr(xp|sxp)

150

150
0

0

↑
xs

↓

← sxs →

DC AM SC CC

NEW!
AM shows hysteresis

Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system



Contextual Analysis
� AM switches in the context of oscillators
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Trammel

Shishi Odoshi
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Modularity Analysis
� CC swapped in for AM
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ri/re = 0.5

0.010
0
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↑
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↓
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0
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↑
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↓
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sy = 10
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↑
x

↓
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sy = 10

← sx → 200
0



Evidence that CC is ‘similar’ to AM
� But there is a difference

� The classical cell cycle switch, CC, works ok but never as well as AM

� The output of CC does not go ‘fully on’:

� Because s continuously inhibits x through z, so that x cannot fully express 

� Q: Why didn’t nature do better than that?
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Nature fixed it!
� There is another known feedback loop

� By which x suppresses s “in retaliation” via the so-called Greatwall loop

� Also, s and t happen to be the same molecule

� s and x now are antagonists: they are the two halves of the switch, mutually 
inhibiting each other (through intermediaries).

20

1.0

9

0

0.0025

← tp →0

0

↑
xp

↓

Pr(xp|tp)

15000

0

↑
xs

↓

← ts →

Full activation!
GW

(Gwl)

cdc25

cdk/cyc

wee1

PP2A



More surprisingly
� Made it faster too!

� The extra feedback also speeds up the decision time of the switch, 
making it about as good as the ‘optimal’ AM switch:
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0.004← ts →0

15000

0

↑
xs

↓

AM

GW

CC

Conclusion (in our published paper):
Nature is trying as hard as it can to 
implement an AM-class algorithm!

The “classical” cell cycle switch does
not appear to be the full picture: 
the extra feedback completes it 
algorithmically.



The Greatwall Kinase
� Our paper appeared:

� Suggesting GW is a better switch 
than CC

� Another paper the 
same week:
� Showing experimentally that the 

Greatwall loop is a necessary
component of the switch, i.e. the 
not-as-good-as-AM network
has been ‘refuted’
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A new cell cycle switch candidate: GW
� Will it work in the normally-wired oscillator?

� Absolutely not!  �
� The x stable state is just too strong: a high x will shut down s completely; which means 

that r will be fully on, and it in turn will reinforce x fully. And y can never be strong 
enough to push down x when x-r are in such a strong mutual feedback. No amount of 
fiddling seems to give enough control on that situation.
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However this will
� Put s under control of y so it can undermine x
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x

Robust full-on oscillation with all-default parameters 
(all black rates 1.0, all gray rates 0.5, all initial quantities 
equal)



Suggests a new interaction

� Either Gwl or PP2A or 
something along that path 
must be under control of 
cdc20.

� There are some hints in the 
literature that this may be the 
case, but no direct 
experimental validation.
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(Gwl)

cdc25

cdk/cyc

wee1

PP2A

cyc 
synthesis

checkpoint

cdc20



Part II: What is network structure 
really telling us about kinetics?
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An Analytical Theory of Network 
Emulation (with thanks to David Soloveichik)

� So far, our evidence is empirical
� Although based on numerical simulations 

and covering both kinetic and steady state behavior

� Analytical evidence is harder to obtain
� The proof techniques for the AM algorithm are hard and do not generalize 

easily to more complex networks

� Quantitative theories of behavioral equivalence and behavioral approximation, 
e.g. in process algebra, are still lacking (although rich qualitative theories exist)
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Mutual Inhibition
� A recent paper suggests that all cellular switches in all phases of the cell 

cycle follow (abstractly) a mutual inhibition pattern:

� Also found in other areas
(cell polarity establishment):
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MI



Septation Initiation
� Other (inherently different) biological networks are based on mutual inhibition, 

and share characteristics with AM
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SIN inhibiting Byr4,
absence of SIN promoting Byr4



New Cell Cycle Network
� A recent paper presents a more complete view of the cell cycle switch

� N.B. “phosphorylation network dynamics” is the same as our x0-x1-x2 motif
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NCC



Network Emulation: NCC to MI
� For any initial state of MIMIMIMI we can find some initial state of NCCNCCNCCNCC (actually by copying

the state of MIMIMIMI) such that NCCNCCNCCNCC exactly emulates MIMIMIMI

� Why does this work so well?
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(6 species on 6 trajectories)

MI

(18 species on 6 trajectories)

NCC

z,r,p ⇢ z
y,q,s ⇢ y

initialize z,r,p, 
identically to z;

initialize y,q,s
identically to y



Network Emulation: MI to AM
� For chosen initial conditions of MIMIMIMI, the (6) trajectories of MIMIMIMI emulate those (3) of AMAMAMAM:
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(6 species on 3 trajectories) (3 species on 3 trajectories)

~y,z⇢ x

MI AM

initialize ~y,z, 
identically to x



MI to AM mapping in detail

33

MI

initial conditions:

z0 = y2 = x0

z1 = y1 = x1 

z2 = y0 = x2

AM

homomorphic mapping

any initial conditions



Network Emulation Composes: NCC to AM
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� For chosen initial conditions of NCCNCCNCCNCC, the (18) trajectories of NCCNCCNCCNCC emulate those (3) of AMAMAMAM

(18 species on 3 trajectories) (3 species on 3 trajectories)

AM
NCC

The new cell cycle switch 
can emulate AM exactly.

For any initial conditions 
of AM.

And for any rates of AM.

Why?

This works also for 
GW, but not for the 
original CC.

z,~y⇢ x

z,r,p ⇢ x
~y,~q,~s ⇢ x

z,r,p ⇢ z
y,q,s ⇢ y



Chemical Reaction Networks
� A CRN is a pair �, 	 where

� � = {�, … , ��} is a finite set of species

� 	 = {�, … , ��} is a finite set of reactions over �

� Reactions � = �, �, � written  Σ�∈�  �� · � →� Σ�∈�  �� · �

� Ex.: � =  2� + � →� � + 3!
� with �" = 2, �# = 1, �% = 0 reactant stoichiometric numbers

�" = 1, �# = 0, �% = 3 product stoichiometric numbers 

� The stoichiometry of a species � in a reaction � is:

'(�, (�, �, �)) =  �� − �� net stoichiometry      ' �, � = −1

+(�, (�, �, �)) = � · (�� − ��) (instantaneous) stoichiometry    + �, � = −�

35
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Species Maps and Reaction Maps
� A species map is a map - ∈ � → �.

� Ex:  - �0 = - �1 =�̂

� It induces a canonical reaction map 	 → 	0

� Ex:  -(�0 + �1 → �1) = 2�̂ → �̂

� Where - �, �, � = - � , - � , �

� And - � (similarly - � ) is the sum over fibers:

- � �̂ = Σ�∈�12(�̂) ��

in case two species in the same reaction are mapped to the same species.
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- �̂

��


ℕ

- � �̂

, ,4

0 1 2

the fiber of �̂: -5(�̂)

�0

�1

��
6Σ =



CRN Isomorphisms
� A CRN morphism is a map - ∈ �, 	 → �., 	0 = -7 , -ℛ

with -7 ∈ � → �. and -ℛ ∈ 	 → 	0 .

� A CRN isomorphism - ∈ �, 	 → �., 	0 is a morphism made of two bijections 
on � and 	 that agree on stoichiometric numbers and rate:

-ℛ �, �, � = -7 � , -7 � , �

� As a consequence they also agree on stoichiometry:

+ �, � = + -7 � , -ℛ �

� But what if - is not injective or surjective on species or reactions?
� We need to generalize “agreement  on stoichiometry” to such cases.
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Σ�∈   + �, �   =   +    , -(�)CRN Homomorphisms
� - ∈ �, 	 → �., 	0 is a CRN homomorphism

if -ℛ is determined by -7: 

-ℛ �, �, � = -7 � , -7 � , �

� Ex:
�6:     -ℛ �6, �, � = �̂6, �̂, � = (-� �6 , -� � , �)
�:     -ℛ �6, �:, � = �̂6, �̂, � = (-� �6 , -� �: , �)

� It implies that for each reaction it preserves stoichiometry 
summed over species fibers

∀�̂ ∈ �..
   

∀� ∈ 	.  Σ�∈�12 �̂  + �, � = + �̂, -(�)

� But  + �6, �6 + + �6, � =  −2� ≠  −1� =  + �̂6, �̂6 (see next slide)

, ,4

-� -(�)

Homomorphism 
(but not stoichiomorphism)

�̂
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CRN Stoichiomorphisms
� - ∈ �, 	 → �., 	0 is a CRN stoichiomorphism if for each 

species it preserves stoichiometry summed over reaction fibers

∀� ∈ �.
   

∀�̂ ∈ 	0.  Σ>∈�12 >̂  + �, � = + - � , �̂

� This condition can be checked over the syntax of CRNs, 
without any consideration of their kinetics

� Ex:
�6, �̂6:     + �6, �6 + + �6, � = 0 =  + �̂6, �̂6

�, �̂6:     + �, �6 + + �, � = 1� =  + �̂, �̂6
�:, �̂6:     + �:, �6 + + �:, � = 1� =  + �̂, �̂6

� We will show that existence of a stoichiomorphism implies 
identical network kinetics (in certain conditions).

? ?4

- �̂

Σ>∈   + �, �   =   + - � ,    

Homomorphism and
stoichiomorphism.



CRN Morphism Conditions
� Homomorphism consequence:

∀�̂ ∈ �..
   

∀� ∈ 	.  Σ�∈�12 �̂  + �, � = + �̂, -(�)

� Stoichiomorphism condition:

∀� ∈ �.   ∀�̂ ∈ 	0.  Σ>∈�12 >̂  + �, � = + - � , �̂

� If - is an isomorphism (injective and surjective, with singleton fibers) 
then they both reduce to the isomorphism consequence:

∀� ∈ �.   ∀� ∈ 	.   + �, � = + - � , - �

� But we will be typically interested in mappings that “simplify” networks 
and that are at least not injective.
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Checking the Stoichiomorphism Condition
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-5(�̂)

-@6, -@A -@, -@B -@:, -@C -@D, -@E

F6 0 1 -1 0 G6

F 1 -1 1 -1 G

F: -1 0 0 1 G:

H6 -1 0 0 1 G:

H 1 -1 1 -1 G

H: 0 1 -1 0 G6

I-6 I- I-: I-D

∀�̂ ∈ AM

+ H6, -@6 + + H6, -@A =  −1 = + G:, I-6

am0am1

am2 am3

mi0mi1

mi2 mi3

mi4mi5

mi6 mi7

∀� ∈ �.   ∀�̂ ∈ 	0.  Σ>∈�12 >̂ + �, � = + - � , �̂

MI AM

All unit rates (for simplicity)

-(H6)

- ∈ MI → AM

This is both a homomorphism 
and a stoichiomorphism

-5 I-6



CRN Kinetics
� A state of a CRN (�, 	) is a vector of concentrations for each species: M ∈ ℝO�

.

� The mass action [�] ∈  ℝO�
→ ℝO of a reaction � ∈ 	 is:

[�]M = [(�, �, �)]M = Π�∈� M�
ST

= MS

� The differential system of a CRN (�, 	) is the map U ∈ ℝO�
→ ℝ�

(for each state, gives the differential of concentration for each species):      

U(M)(�) = Σ>∈V  +(�, �) · [�]M

� Normally written as a system of concentration ODEs, integrated over time: 

WM�

WX
= U(M)(�) = Σ(S,Y,�)∈V  � · (�� − ��) · MS

42

X

M
M�

� U(M)(�)



Kinetic Emulation
� A map - ∈ �, 	 → �., 	0 is a CRN emulation if the following 

holds for the respective differential systems U, U. :

∀MZ ∈ ℝO�.
. ∀� ∈ �.  U MZ ∘ - � = U. MZ - �

(the derivative of � in state M\ ∘ - is equal to the derivative of - � in state M\)

� It follows that for any initial state MZ of �., 	0 there is an initial 
state M (=MZ ∘ -) of �, 	 such that the trajectory of any � in 
�, 	 is identical to (emulates) the trajectory of -(�) in �., 	0 .

(With minor caveats if m is not surjective.)
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X

M = MZ ∘ -
M�

� U M � =

X

MZ

MZ�(�)
-(�) U0 MZ - �

�, 	

�0, 	4



Emulation Theorem
� Theorem: If - is a CRN homomorphism and stoichiomorphism 

then it is a CRN emulation.

that is, for any initial conditions we can match trajectories.

� Actually, - need not be a homomorphism for this to hold: it is enough for - to be a reactant morphism and a stoichiomorphism. A reactant 
morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of 
network mappings that preserve kinetics.
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⇒MI

AM

MI

AM



Change of Rates Theorem
� A change of rates for �, 	 is bijection ] ∈ �, 	 → �, 	′ such that ] �, �, � = �, �, �_ .

� Theorem: If - ∈ �, 	 → �., 	0 is a stoichiomorphism, then for any change of 
rates ] ̂ of �., 	0 there is a change of rates ] of �, 	 such that ] ̂ ∘ - ∘ ]5 is a 
stoichiomorphism.

� In fact, ] changes rates by the ratio with which ] ̂ changes rates:

] �, �, � = �, �, � ·
�0 `

�0
where - �, �, � = (�\, �\, �0) and ] ̂ �\, �\, �0 = (�\, �\, �0′).

� Corollary: If - ∈ �, 	 → �., 	0 is a stoichiomorphism and homomorphism, 
then for any change of rates ] ̂ of �., 	0 there is a change of rates ] of �, 	 such 
that ] ̂ ∘ - ∘ ]5 is an emulation.

45



Any Rates, Any Initial Conditions
� A stoichiomorphism - ∈ �, 	 → �., 	0  that is also a homomorphism, 

determines an emulation for any choice of rates of �., 	0 . 

� Those emulations can match any initial conditions of any choice of rates of �., 	0

with some initial conditions of some choice of rates of �, 	 .
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directive sample 10.0 100

init z0 2 |

init z1 0 |

init z2 1 |

init y0 0.9 |

init y1 0.2 |

init y2 1.9 |

y2 + y0 ->{0.9} y0 + y1 |

y1 + y0 ->{1.0} y0 + y0 |

z0 + y0 ->{1.1} y0 + z1 |

z1 + y0 ->{1.2} y0 + z2 |

y0 + z0 ->{0.7} z0 + y1 |

y1 + z0 ->{0.8} z0 + y2 |

z2 + z0 ->{0.5} z0 + z1 |

z1 + z0 ->{0.6} z0 + z0

directive sample 10.0 100

init z0 2 |

init z1 0 |

init z2 1 |

init s0 0.9 |

init s1 0.2 |

init s2 1.9 |

init r0 2 |

init r1 0 |

init r2 1 |

init y0 0.9 |

init y1 0.2 |

init y2 1.9 |

s2 + y0 ->{0.9} y0 + s1 |

s1 + y0 ->{1.0} y0 + s0 |

r0 + y0 ->{1.1} y0 + r1 |

r1 + y0 ->{1.2} y0 + r2 |

s0 + z0 ->{0.7} z0 + s1 |

s1 + z0 ->{0.8} z0 + s2 |

r2 + z0 ->{0.5} z0 + r1 | 

r1 + z0 ->{0.6} z0 + r0 |

y2 + s0 ->{0.9} s0 + y1 |

y1 + s0 ->{1.0} s0 + y0 |

z0 + s0 ->{1.1} s0 + z1 |

z1 + s0 ->{1.2} s0 + z2 |

y0 + r0 ->{0.7} r0 + y1 |

y1 + r0 ->{0.8} r0 + y2 |

z2 + r0 ->{0.5} r0 + z1 |

z1 + r0 ->{0.6} r0 + z0

MI with completely heterogeneous rates and initial conditions                       QI with matching rates and initial conditions



Stoichiomorphism Zoo
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p ⇢ r

q ⇢ s

p ⇢ r
q ⇢ s

p ⇢ r

q ⇢ s

(          homomorphism and stoichiomorphism (transitive))

MI

QI

AM

z,~y⇢ x
z,r ⇢ z
y,s ⇢ y

z,~y ⇢ z
s,~r ⇢ y

z,~y⇢ x

CCr

z,~y ⇢ x r,~s ⇢ x

SI

r,~s ⇢ x

s ⇢ y
r ⇢ z

x ⇢ z
s,~r ⇢ y

s ⇢ y

SCr

SCr’

CCr’

r ⇢ z

r,~s ⇢ x

r,~s ⇢ x

NCC

GW



Old Friends
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SCr CCr

SC CC



Interpretation of Stoichiomorphism
� Ignorance about initial conditions

� We may not know the concentrations of species in the more complex network, but at 
least we know that if they satisfy certain conditions, then it behaves like the simpler 
network.

� Neutral paths in network space (evolution)
� If an evolutionary event happens to be a stoichiomorphism, or close to it, it will not be 

immediately selected against, because it is “kinetically neutral”.

� This allows the network to increase its complexity without kinetic penalty.

� Later, the extra degrees of freedom can lead to kinetic differentiation.

� But meanwhile, the organism can explore variations of network structure.

� Relationship to abstraction / coarse-graining
� Stoichiomorphism are not about abstractions that preserve behavior, 

on the contrary, they are about concretions that preserve behavior.
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Conclusions
� The cell cycle switch can exactly emulate AM

� Nature likes a good algorithm!

50

emulates: emulates:

(New) cell cycle switch
Approximate majority

algorithm

NCC

AMMI


