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Calbiochem’ MAPK Family Pathways

Cells Compute

» No survival without computation!
- Finding food
- Avoiding predators

- How do they compute?
. "e . . " ¥
- Clearly doing “information processing MAPKKK <% MAPKKK"
. . . +
- Based on complex, higher-order interactions £2 |
: MAPKKK = MAP K|nase K|nase K|nase = MAPKK T_> MAPKK-P 7> MAPKK-PP
that which operates on that which operates on 1
that which operates on protein. MAPKK Prase
1 . 4t / . MAPK 5= MAPK-P 5= MAPK-PP
- How ‘sophisticated’ are natural algorithms? T ; ‘
MAPK Pase
Ultrasensitivity in the mitogen-activated protein cascade, Chi-Ying F. Huang QuUTPUT
and James E. Ferrell, Jr,, 1996, Proc._ Natl Acad. Sci USA, 93, 10078-10083.




Outline

- Analyzing biomolecular networks

- Try do understand the function of a network
- But also try to understand its structure, and what determines it

- The Cell-Cycle Switches

- Some of the best studied molecular networks

- Important because of their fundamental function (cell division)
and the stability of the network across evolution

- We ask:

- What does the cell cycles switch compute?
+ How does it compute it?




ne Cell Cycle Switch

'his network is universal in all Eukaryotes [P Nurse]

- lL.e.,, the network at the core of cell division is the same from yeast to us
- Not the components of the network, nor the rates

11 Science 106, 1153-1168 (
in © The Compan: iologi

Numerical analysis of a comprehensive model of M-phase control in

unreplicated Xenopus oocyte extracts and intact embryos
DNA
Bela Novak* and John J. Tysont
Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA
G 5 g - 0 3 of ical University of Budapest, 1521 Budapest Gellert Ter 4, Hungary
ore MPF Double positive feedback on x
ey Double negative feedback on x
_— No feedback ony

What on earth ... ??7?

- The function is very well-studied. But why this structure?
- l.e., why this algorithm?




How to Build a Good Switch
- What is a "good” switch?

- We need first a bistable system: one that has two distinct and stable states.
l.e., given any initial state the system must settle into one of two states

- The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

- Finally, we need to be able to flip the switch by external inputs

"Population” Switches

- Populations of identical agents (molecules) with the whole population
switching from one state to another as a whole

- Highly concurrent (stochastic)




A Bad Algorithm [

—_—
X —y

- Direct Competition | T
- X catalyzes the transformation of y into x
-y catalyzes the transformation of x into y
- when all-x or all-y, it stops

- This system has two end states, but

- Convergence to an end state is slow (a random walk)

- Any perturbation of an end state can start a random
walk to the other end state (hence not really bistable)

Yy + X=X+ X
X+ty—=Yy+y

1111111




Dana Angluin « James Aspnes - David Eisenstat

A Simple Population Protocol for Fast Robust
Approximate Majority

We analyze the behavior of the following population pro-

. . . tocol with states @ = {b, }[Ill:::l:tr{‘"’:I:ILIH.(RIS;:I:I
° ApprOX| mate M a-JOrlty (AM) -]‘:Il'}:le EI:‘\\M};II;(”IHiv:\:5:;1::(“1“ : 1 col
‘ I 1 M M . . T b v
- Decide which of two populations is in majority e

b (b,x) (b,b) (b, y)
y (b)) (w.y) (w.y)

- A fundamental ‘population protocol’

- Agents in a population start in state x or state y C y !C y ,_,C
- A pair of agents is chosen randomly at each step, x x

they interact (‘collide’) and change state Third ‘undecided’ state
- The whole population must eventually agree on a
majority value (all-x or all-y) with probability 1 1) Disagreements cause agents to

become undecided
2) Undecided agents believe any
non-undecided agent they meet




P ro pe rtl e S [Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]
- With high probability, for n agents

- The total number of interactions before converging is O(n log n)
— fast

- The final outcome is correct if the initial disparity is w(sgrt(n) log n)
= solution states are robust to perturbations

- Logarithmic time bound in parallel time

- Parallel time is the number of steps divided by the number of agents
- In parallel time the algorithm converges with high probability in O(log n)




Chemical Implementation

Chemistry as a X+y—y+b

programming y+X—->x+b
language for b+ N

population X=X+ X
algorithms! b+y—-y+y
Bistable

Even when x=y! (stochastically)

1

Fast
O(log n) convergence time

1

Robust to perturbation
above a threshold, initial majority wins whp
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Worse-case scenario example,
starting with x=y, b=0:
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A Biological Implementation
T i 1 1
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Figure 1. Basic Ingredients of the Model
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Back to the Cell Cycle

- The AM algorithm has ideal properties for settling a
population into one of two states

- But that is not what the cell cycle uses
- Or s it?




Influence Network Notation

- Catalytic reaction T z z zis the catalyst
y L XLZ»V

X—y — X+Z—>7Z+Yy

- '‘Double kinase-phosphatase” motif

middle state

inhibit x ”-_M””i.i.“.(E.nsures nonlinearity)
(promote X,) “'""“‘* l
l L L ‘.
r— X e=ee= = _'_ Xopt— X —— x2_..’_
(promote Xg) "’71” i e T
Xo X5 state where state where
output output X is promoted x is inhibited
influence node catalytic node
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Influence Network Duality

- Let ~x be the species such that

(~X)o= %o (“X)= X, (~X),= X
so that promoting x is the same as inhibiting ~x etc. Then:

N

f._r__f:'{\ /r'\

XD Xz --...Xz MXO

output output output output
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AM and CC Influence Networks




Convergence Analysis

- Switches as computational systems

| |
[ o A
=y 44 B
I_T |__1 f_T i_T
t i cCcC

—t— 0.00355 0 0.00710 0 0.00710

. 15000 15
Start symmetrical roxlt,
(Xo=X{=X, etc.) -

Black lines: several stochastlc simulation traces
Color: full probability distribution of small-size system

NEW!
CC appears to converge in log time

15




Steady State Analysis

- Switches as dynamical systems

bias

ll_l bias bias
Xe—Y ] L

l_x'
L f7 K -i-_TSTx
SX SX
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Black lines: deterministic ODE bifurcation diagrams
Red lines: noisy stochastic simulations
Color: full probability distribution of small-size system
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AM shows hysteresis
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Contextual Analysis

- AM switches in the context of oscillators
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Modularity Analysis
- CC swapped in for AM

2? ....... . Jr =06
N sy = 10
0 et

25
T e . r/r, = 0.675
)f ﬁ::;;_j-u--:;;/ sy =10
o —

0 «sx—-> 20
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Fvidence that CC is 'similar’ to AM

- But there is a difference

- The classical cell cycle switch, CC, works ok but never as well as AM
- The output of CC does not go ‘fully on’:

0 0.00710 1

iN &— N

o

— X
;__T
t cC

- Because s continuously inhibits x through z, so that x cannot fully express
- Q: Why didn’t nature do better than that?

19




Nature fixed it!

- o

‘here is another known feedback loop

- By which x suppresses s “in retaliation” via the so-called Greatwall loop
- Also, s and t happen to be the same molecule

( F to 0. / >

—lz 150005 t 0.0025 Pgr(xnlt) . ele]

—mp
S / \ T_Sl( ! E pp2A - _dT|<'
l xl i - cdk/cyc

T— r —T 'y cdc25 —T

_T GwW 0 “t,- 10 ° \ T

Full activation!

s and x now are antagonists: they are the two halves of the switch, mutually
inhibiting each other (through intermediaries).

20




More surprisingly

- Made it faster too!

- The extra feedback also speeds up the decision time of the switch,
making it about as good as the ‘optimal’ AM switch:

15000

Conclusion (in our published paper):
Nature is trying as hard as it can to

implement an AM-class algorithm! ow

GW
CcC

<_m>< -

The “classical” cell cycle switch does
not appear to be the full picture:
the extra feedback completes it
algorithmically.

21




The Greatwall Kinase

SCIENTIFIC (SE N
REP({;}RTS {
- Our paper appeared: Z
- Suggesting GW is a better switch i—\_l:)l( @ The Cell Cycle Switch Computes
than CC | N Approximate Majority

Luca Cardelli’ & Attila Csikasz-Nagy™*
COMPUTATIONAL

BIOIOGY

- Another paper the
—
same week: s —— -

- Showing experimentally that the
Greatwall loop is a necessary
component of the switch, i.e. the
not-as-good-as-AM network
has been 'refuted’

ARTICLE

D 6 Jul 2012 | Accepted 14 Aug 2012 | Published 11 Sep 2012 | pOt:10. /i 2062 |
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

MasatoshiHara'! Yusuke Abelt, Toshiaki Tanaka?, Takayoshi Yamamota® !, Eiichi Okumura' & Takeo Kishimoto!

22




A new cell cycle switch candidate: GW

- Will it work in the normally-wired oscillator?

- Absolutely not! ®

- The x stable state is just too strong: a high x will shut down s completely; which means
that r will be fully on, and it in turn will reinforce x fully. And y can never be strong
enough to push down x when x-r are in such a strong mutual feedback. No amount of

fiddling seems to give enough control on that situation.
23




However this will

- Put s under control of y so it can undermine x

sly
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0
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Robust full-on oscillation with all-default parameters

(all black rates 1.0, all gray rates 0.5, all initial quantities
equal)
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Suggests a new interaction

- Either Gwl or PP2A or

something along that path |__L
must be under control of
cdc20. cdc20

- There are some hints in the

weel
literature that this may be the (Gwl) T |

case, but no direct ---@ PP2A F---- cdk/cyc
experimental validation.

cdc25

25




Part Il What Is network structure
really telling us about kinetics?




An Analytical Theory of Network
Emulation with thanks to David Soloveichik)

- SO far, our evidence is empirical

- Although based on numerical simulations
and covering both kinetic and steady state behavior

- Analytical evidence is harder to obtain

- The proof techniques for the AM algorithm are hard and do not generalize
easily to more complex networks

- Quantitative theories of behavioral equivalence and behavioral approximation,
e.g. in process algebra, are still lacking (although rich qualitative theories exist)

27




Mutual Inhibition

- A recent paper suggests that all cellular switches in all phases of the cell

cycle follow (abstractly) a mutual inhibition pattern:

Molecular mechanisms creating bistable switches at cell cycle
transitions

Anael Verdugo, P. K. Vinod, John J. Tyson and Bela Novak
Open Biol. 2013 3, 120179, published 13 March 2013

- Also found in other areas
(cell polarity establishment):

PHILOSOPHICAL :
PHILOSQRHICAL The PAR network: redundancy and

U oF D robustness in a symmetry-breaking
THE ROYAL Dj system
SOCIETY

umio

rsth.royalsocietypublishing.org

signal

™~

activator

|
G0

aPAR feedback loop  mutual exclus
CDC-42 > myosin (sebox D PAR.2 self recritmet
endocytosis resistance against PKC-3

PPAR feedback loo

—< o

o N —

\
/'
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Septation Initiation

- Other (inherently different) biological networks are based on mutual inhibition,
and share characteristics with AM

——————— | I— e ™ i |
I I
I v I
1 /Byrédye > BYyrd g Byrdow |
I \\ ~ " s 1 ‘
[ R RS I S
I | SINyew T——2 SIN. &=——=% SINoig | | > '[
I I I I
1 | I | -
I I | I Z
Y, ¥
Cdcll &= Cdcl1i-P Cdcll—P“__) Cdci1 T

SIN inhibiting Byr4,
absence of SIN promoting Byr4
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New Cell Cycle Network

+ A recent paper presents a more complete view of the cell cycle switch
+ N.B. “phosphorylation network dynamics” is the same as our X,-x;-X, motif

Phosphorylation network dynamics in the control of
cell cycle transitions

Daniel Fisher'”, Lillana Krasinska'*, Damien Coudreuse?* and Béla Novak®!

i 'S UMR 5535, Université Montpellier | and Il, 34293 Montpellier, France

90, 35043 Rennes, France

1 Biochemistry, Universty of Oxlord, South Parks Road, Oxford OX1 3QU, UK

FER
PPZA-

PP{;\FM 7‘/1 ME@D?— Gw{;“éwn

St \
s 58 | —
(_ .Ed_k{l‘ ) 1 /
Weel8 -'ll\\;ee1 If- *\ Cdci‘ﬁ;\ﬂdd.ﬁ p
U Nead’ |\ e

1
1
LT

/

NCC
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Network Emulation: NCC to M|

+ For any initial state of Ml we can find some initial state of NCC (actually by copying
the state of M) such that NCC exactly emulates Ml

&'N_é
I T 1
Y

L! mj
L/

(18 species on 6 trajectories) (6 species on 6 trajectories) initialize zrp,
identically to z;

NCC Ml

d

w Zrp -z
quls ---> y 0.5—;

L T T o ||||||||||||||||77|||||
3 5 o] 1 2 3 4

S S S

1 ’

IS Q03000606 NNN
i Iy N ONHONHONKRDO
] < »

—< o—
o N —

+ Why does this work so well?

initialize y,q,s
identically toy

31




Network Emulation: Ml to AM

- For chosen initial conditions of M, the (6) trajectories of MI emulate those (3) of AM:

initialize ~y,z,
identically to x

(6 species on 3 trajectories) (3 species on 3 trajectories)

32




Ml to AM mapping in detall

2500 N xl

[—1-1 ] N any initial conditions
X . | _+ _+ 1500—:

D [ Kpe— X1 e— X2 s
AM —T h \\

o S ——r——
V] 0.002 0.004 0.006 0.008 o.(

homomorphic mapping I

: initial conditions:
é | 1 : Zo=Y2 =%
)I/: | zl ] 1= Y15 X
N 2, =Yo =X,

o 0.002 0.004 0.006 0.008 0.




Network Emulation Composes: NCC to AM

- For chosen initial conditions of NCC, the (18) trajectories of NCC emulate those (3) of AM

d i o«

{ Lp -z Z,~y-> X

1_ J_ // T _'I' YAy » — X ___] The new cell cycle switch
late AM exactly.

T_ _T Zrp - X _ I - emg » iy

This works also for ~Y,~Q,~S > X For any initial conditions
GW, but not for the NCC AM of AM.

original CC. - . — = > = And for any rates of AM.
] A ] N\, x0
2.5 22 7 2.5_2 \:;
2_\/ : 2_/ AN Why?

IS SIS S
EREREAAD

(18 species on 3 trajectories) (3 species on 3 trajectories)
34




Chemical Reaction Networks

- A CRNis a pair (S, R) where

- S ={sq,...,Sy} is a finite set of species
- R=1{r,..,n,} s afinite set of reactions over S

- Reactionsr = (p,m, k) written Zgeg ps+ s =F S ms- S

- Ex. r =24A+B-FA+3C
- with pa=2 pg=1 pc=0 reactant stoichiometric numbers
my=1 mg =0, i =3 product stoichiometric numbers

+ The stoichiometry of a species s in a reaction r is:

nes,(p,mk)) = ng — ps net stoichiometry n4,r) =-1
o(s,(p,m k) =k (g —ps) (instantaneous) stoichiometry @(A,r) = —k

35




Species Maps and Reaction Maps

- A species mapisamapm €S — S the fiber of §: m~1(%)
- Exi m(sy) = m(sy) =8

+ It induces a canonical reaction map R = R
- Ex: m(sg+ s, ots)=28-158

- Where m(p,m, k) = (m(p), m(m), k)

- And m(p) (similarly m(m)) is the sum over fibers:
m(p)s = ZSEm_l(S‘) Ps

in case two species in the same reaction are mapped to the same species.

36




CRN Isomorphisms

- A CRN morphism is a map m € (S,R) - (S,R) = (ms, my)
withms € S - § and myz € R > R.

- A CRN isomorphismm € (S,R) = (S, R) is a morphism made of two bijections
on S and R that agree on stoichiometric numbers and rate:

mge (P; TT, k) — (mS (,0); mg (T[); k)
- As a consequence they also agree on stoichiometry:
(p(S, T') = (p(mg(S),mgg(T))

+ But what if m is not injective or surjective on species or reactions?
- We need to generalize "agreement on stoichiometry” to such cases.

37




CRN Homomorphisms

- m € (S,R) - (S,R) is a CRN homomorphism
if mg is determined by mg:
mge(ﬂ; TT, k) = (mS(p)rmS(T[); k)

- Ex:

mﬁ(so' S1, k) = (§0; §1, k) = (mS(SO)' mS(Sl)' k)

TO:
mx(So, S2, k) = (80,51, k) = (ms(sp), ms(sz), k)

r:
- It implies that for each reaction it preserves stoichiometry
summed over species fibers

V$§ €S. Vr €R. Zsem-1(s) (s,1) = (8, m(r))

- But @(sg,10) + @(sg,11) = =2k # —1k = @(8y,Ty) (see next slide)

Iy

O«a 1!
]
t,

Homomorphism
(but not stoichiomorphism)




CRN Stoichiomorphisms

- m € (S,R) » (S,R) is a CRN stoichiomorphism if for each
species it preserves stoichiometry summed over redaction fibers

Vs €S. VI €R. Zem-1ip) (5, 1) = o(m(s), )

- This condition can be checked over the syntax of CRNs,
without any consideration of their kinetics

- Ex:
So»f”oi (50, 70) + @(sg,11) =0 = <P(§9,f9)
S1,7o- @(s1,79) + @(sy,11) = 1k = <P(§1»7:0)
S, Tor @(s2,10) + @(s2,11) = 1k = @(84,7)

b

- We will show that existence of a stoichiomorphism implies CdhpE)
identical network kinetics (in certain conditions).

Homomorphism and
stoichiomorphism.
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CRN Morphism Conditions

+ Homomorphism consequence:

V8 €S. Vr €R. Tgepm10s @(s,7) = 9§, m(1))
- Stoichiomorphism condition:

Vs €S. VP ER. Zem1(py 9(s,7) = p(m(s),7)

- Ifm is an isomorphism (injective and surjective, with singleton fibers)
then they both reduce to the isomorphism consequence:

Vs€S. Vr €R. ¢(s,r) = (p(m(s),m(r))

- But we will be typically interested in mappings that “simplify” networks
and that are at least not injective.

40




Checking the Stoichiomorphism Condition

m € Ml - AM

- 0
_ Z Y o 1 -1 X,
All unit rates (for simplicity) = Z A 0 0 1 X =
prcity s Vo—ul__A1 0 o T X, &
= v, T 1 1 1 X1
This is both a homomorphism Y2 \ar% — — — %
. . . 0 1 2 3
and a stoichiomorphism VF € AM

41




CRN Kinetics

- A state of a CRN (S, R) is a vector of concentrations for each species: v € R+
. The mass action [r] € R*> > R* of areactionr € R is
7]y = [(0, T, k)] = Hges Vs

- The differential system of a CRN (S, R) is the map F € R* >S5RS

pS=vp

(for each state, gives the differential of concentration for each species): b v
5 F(w)(s
FW)(s) = Zyeg @(s,7) - [r]y S @)(s)

- Normally written as a system of concentration ODEs, integrated over time:

Vs

E == F(v)(s) pr— Z(,D,ﬂ,k)ER k . (n-s _ ,05) . vp

42




Kinetic Emulation

- Amapm € (S,R) - (S, R) is a CRN emulation if the following
holds for the respective differential systems F, F:

v=vVom
~ .8 ~ A ]
VODER™.VSs€S. FWom)(s) = F(v)(m(s)) Vs s S F(v)(s) =
(the derivative of s in state © o m is equal to the derivative of m(s) in state D) Z T
. . o (S,R)
-+ It follows that for any initial state  of (8, R) there is an initial

state v (=0 o m) of (S, R) such that the trajectory of any s in_ D

(S, R) is identical to (emulates) the trajectory of m(s) in (S,R). Do) rﬁ(s) PP (m(s))
(With minor caveats if m is not surjective.) Z?/:

43




Fmulation Theorem

+ Theorem: If m is a CRN homomorphism and stoichiomorphism

then it is a CRN emulation.

AM | | '
[ Xoe— X14e— X2

Mi [ I
Yoe— Y1e— Yo
7 —ly

—_—
—
[~ Zoe— Z1e— 22

that is, for any initial conditions we can match trajectories.

Actually, m need not be a homomorphism for this to hold: it is enough for m to be a reactant morphism and a stoichiomorphism. A reactant
morphism agrees with the species map on the reactant species, but allows rates and product species to disagree. This allows a wider range of

network mappings that preserve kinetics.
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Change of Rates Theorem

- A change of rates for (S, R) is bijectiont € (S,R) — (S,R") such that «(p,, k) = (p, m,k').

- Theorem: If m € (S,R) - (S, R) is a stoichiomorphism, then for any change of
rates £ of (S, R) there is a change of rates 1 of (S, R) suchthat? em o 1is a
stoichiomorphism.

- In fact, « changes rates by the ratio with which  changes rates:
p,m k)= (p m, k- —) where m(p, 7, k) = (p, 1, k) and i(p 7, k) = (p, 11, k).

- Corollary: If m € (S,R) - (S, R) is a stoichiomorphism and homomorphism,
then for any change of rates t of (S, R) there is a change of rates ¢ of (S, R) such
that { om o1 is an emulation.
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Any Rates, Any Initial Conditions

A stoichiomorphismm € (S,R) - (S, R) that is also a hormomorphism,
determines an emulation for any choice of rates of (S, R).

Those emulations can match any initial conditions of any choice of rates of (S, R)
with some initial conditions of some choice of rates of (S, R).

directive sample 10.0 100

initz02 |
initz10 |
initz21 |
inity0 0.9 |
inity10.2 |
inity21.9 |

y2 +y0->{0.9}y0 +y1 |
y1+y0->{1.0}y0+yO |
z0+y0->{1.1}y0 +z1 |
z1+y0->{1.2}y0+22 |

y0+20->{0.7} 20 + y1 |
y1+20->{0.8}z0 +y2 |
22 +20->{0.5} 20 + z1 |
21+ 20 ->{0.6} z0 + z0

MI with completely heterogeneous rates and initial conditions

m
|

EN}E

t;

d

[N R

S S

—

q—
= Iy
SR =
.2<N-ﬂqmm 4
E e

o
-
~
w
IS
n
@
~
0 —
-
=}

QI with matching rates and initial conditions




Stoichiomorphism Z00

o

1 s
AR B e [i} '
al ! I CCr
‘y '

NCC

GW
( » homomorphism and stoichiomorphism (transitive)) r




Old Friends
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Interpretation of Stoichiomorphism

- We may not know the concentrations of species in the more complex network, but at
least we know that if they satisfy certain conditions, then it behaves like the simpler
network.

- Neutral paths in network space (evolution)

- If an evolutionary event happens to be a st0|ch|omorph|sm or close to it, it will not be
immediately selected against, because it is "kinetically neutral”.

- This allows the network to increase its complexity without kinetic penalty.

- Later, the extra degrees of freedom can lead to kinetic differentiation.

- But meanwhile, the organism can explore variations of network structure.

- Relationship to abstraction / coarse-graining

- Stoichiomorphism are not about abstractions that preserve behavior,
on the contrary, they are about concretions that preserve behavior.
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Conclusions

- The cell cycle switch can exactly emulate AM

l_ _l T 1
.I. / T emulates: S X emulates: )JZ_I
T_ /4 T [ [
L/ mi AM
nee Approximate majority
(New) cell cycle switch algorithm

- Nature likes a good algorithm!
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