Stochastic π -Calculus Revisited

Luca Cardelli Microsoft Research

with Radu Mardare University of Aalborg

also featuring the Biological Computation Group Microsoft Research

ICTAC 2013-09-05, Shanghai

The Eras of Programming Semantics

First Era: Natural language definitions

• Flexible but (often) inprecise (FORTRAN, LISP, Algol, ...)

Second Era: Denotational Semantics (+ logic/algebraic approaches)

• Precise but hard to adapt to some features (typically concurrency)

Third Era: Structural Operational Semantics

• *Free lunch!* Precise *and* flexible (ML, Java, CSP, π -Calculus, type systems, ...)

Fourth Era: Quantitative Semantics

- New families of languages being developed for
 - modeling of natural systems
 - compilation and execution of physical systems
 - (specification of engineering systems: not in this talk)
- Denotational/Mathematical/Logical approaches: deep, in progress
- Operational Approaches: fairly successful so far, but *no longer a free lunch*

Quantitative Languages include

Process algebras (and automata theories) for performance evaluation

- Initial inspiration and still growing application area
- The typical model here is discrete-time Markov chains (*transition probabilities*) and hybrid models with continuous time

Process algebras for Systems Biology

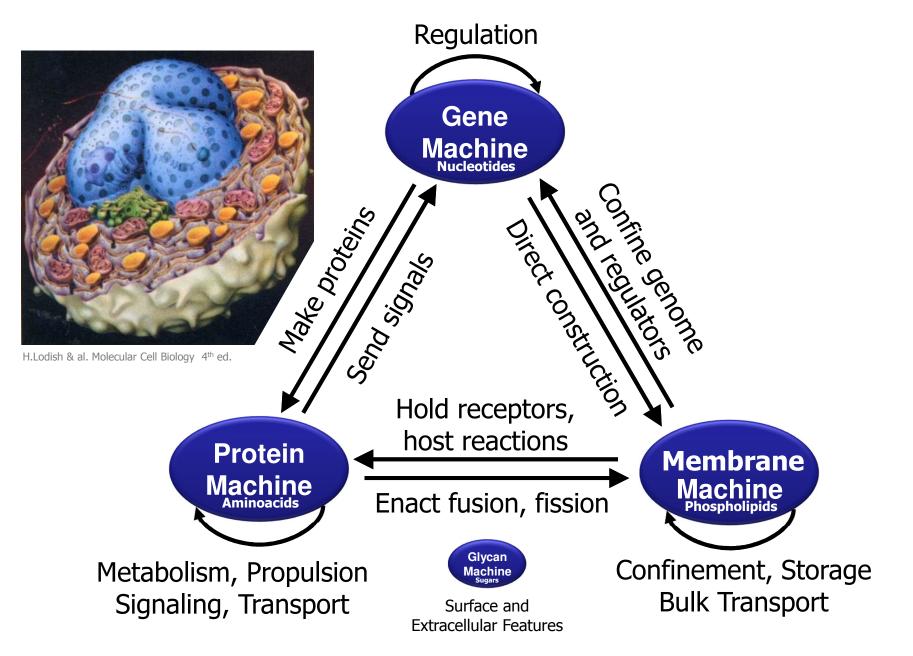
- Stochastic *π*-Calculus, (Bio)PEPA, ...
- The semantic model here is typically *continuous-time* Markov chains (transition *rates*): we want to know how fast the system runs. E.g. to relate to chemical kinetics

Process algebras for Synthetic Biology

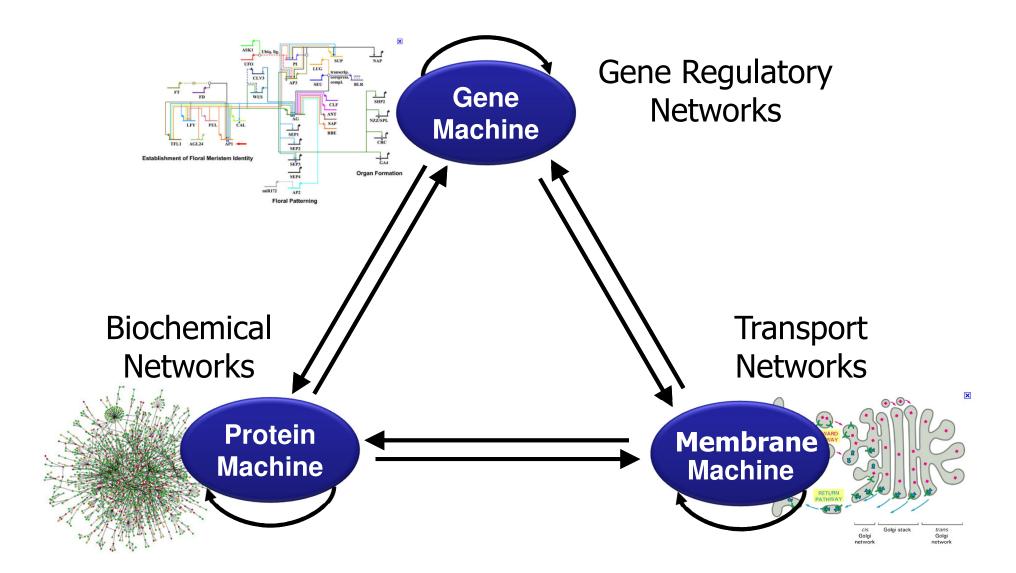
- DNA Computing, gene assembly, ...
- Chemistry as an executable programming language

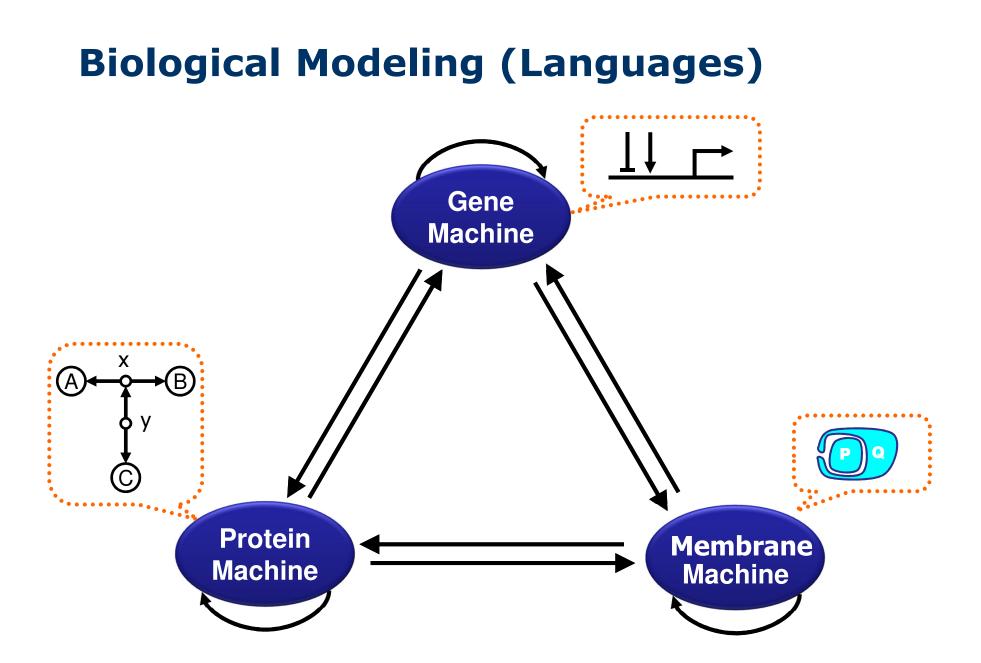
Applications in Systems Biology

Abstract Machines of Biochemistry



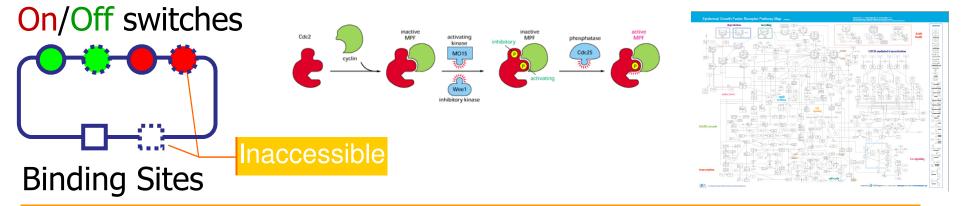
Systems Biology (Networks)





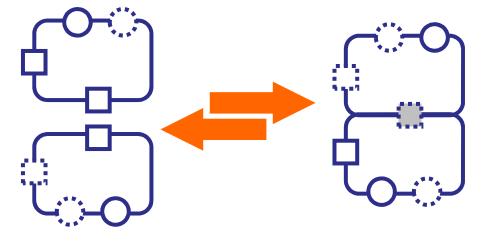
The Informal Model of Protein Interaction

cf. BioCalculus [Kitano&Nagasaki], κ-calculus [Danos&Laneve]



Switching accessible switches

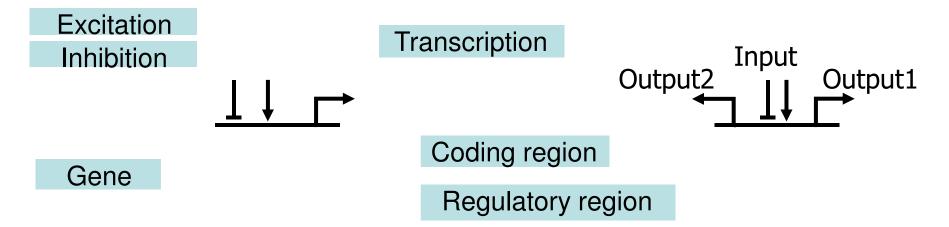
- Depending on current state
- May cause other switches and
- binding sites to become (in)accessible.



Binding accessible sites

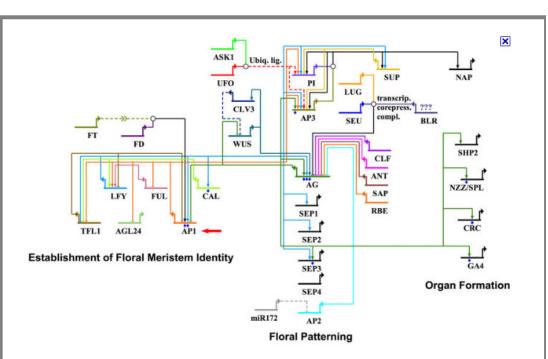
- Depending on current state
- May cause other switches and binding sites to become (in)accessible.

The Informal Model of Gene Interaction

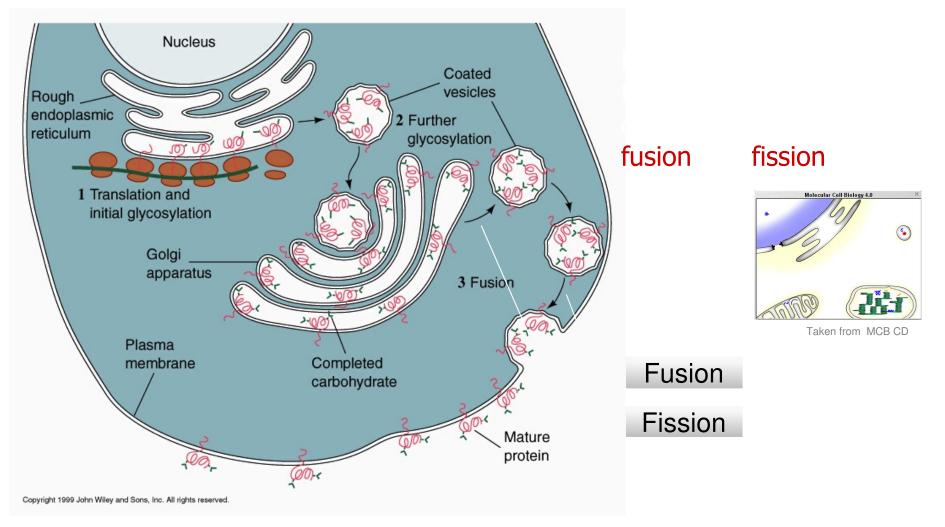


<u>Regulation</u> of a gene influences transcription. The regulatory region has precise DNA sequences meant for binding regulators.

<u>Transcription</u> produces molecules (RNA or, through RNA, proteins) that bind to regulatory region of other genes (or that are end-products).



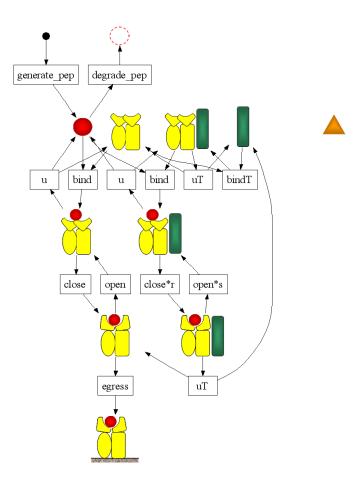
The Informal Model of Membrane Interaction



Voet, Voet & Pratt Fundamentals of Biochemistry Wiley 1999. Ch10 Fig 10-22.

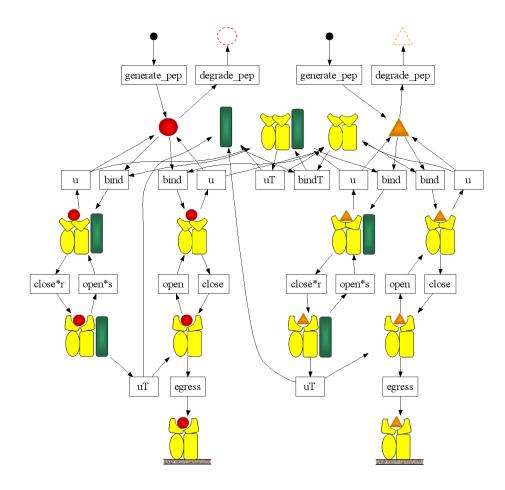
Biological Modelling Today

Describe individual reactions



Biological Modelling Today

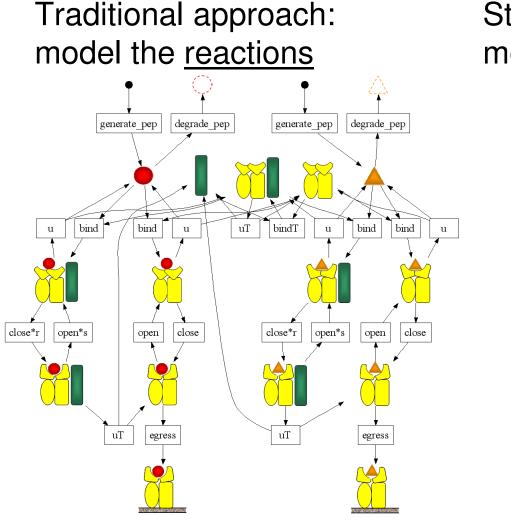
Add reactions for each new protein.



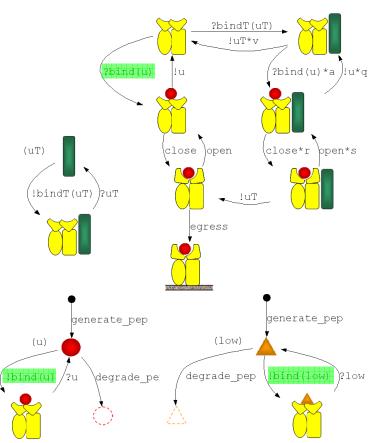
Leading to...

	A
	1990 - 1990 1990 - 1990
	4 Sectors

Biological Modelling Tomorrow

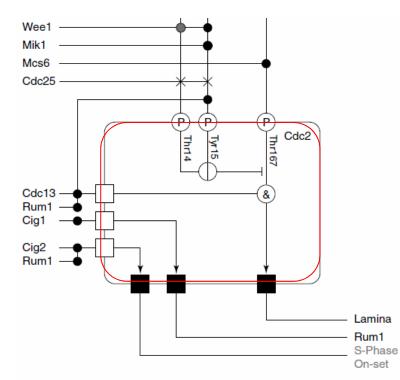


Stochastic Process Algebra: model the <u>components</u>



Problem: Molecules with State

• Combinatorial explosion of species, reactions, and their state space.



BIOSILICO Vol. 1, No. 5 November 2003

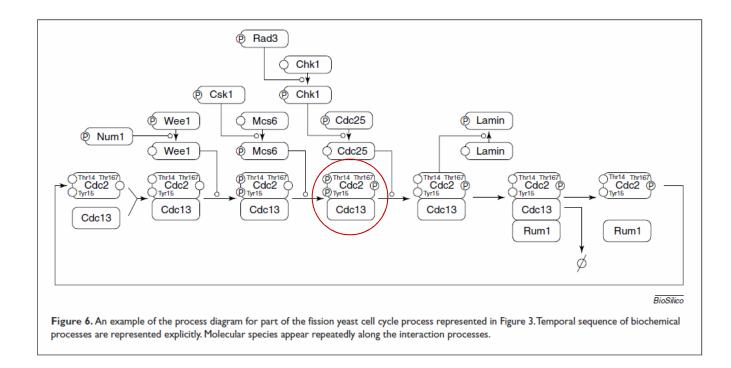
A graphical notation for biochemical networks

(b) Proposed improvements of graphical representation of fission yeast Cdc2

Hiroaki Kitano

Problem: Connected Molecules

• Further combinatorial explosion



BIOSILICO Vol. 1, No. 5 November 2003

A graphical notation for biochemical networks

Hiroaki Kitano

Problem: Polymers

• 'Infinite' explosion

Copolymer equation

[edit]

An alternating copolymer has the formula: -A-B-A-B-A-B-A-B-A-B-, or -(-A-B-)_n-. The molar ratios of the monomer in the polymer is close to one, which happens when the reactivity ratios $r_1 \& r_2$ are close to zero, as given by the Mayo-Lewis equation also called the **copolymerization equation**:^[11]

$$\frac{d [M_1]}{d [M_2]} = \frac{[M_1] (r_1 [M_1] + [M_2])}{[M_2] ([M_1] + r_2 [M_2])}$$

where $r_1 = k_{11}/k_{12} \& r_2 = k_{22}/k_{21}$

Solution: π -Calculus (or something comparable)

- A solution to combinatorial explosion
 - $-\pi$ -calculus does not have those problems, at least not when you are writing a model.
 - Models are more compact quadratically (for chemical reaction networks) or exponentially (for protein networks) or *infinitely* (for polymerization).
 - The combinatorial explosion still happens at execution (simulation time), but can be handled 'on demand'.
 - The state space is explored incrementally, and even if the state space is actually infinite (as with polymers) we can still simulate it with standard techniques, and (perhaps) analyze it.

π -Calculus for (Bio)Chemistry (stochastic π -calculus with mass-action interaction law)

- To represent soups P we need:
 - Stochastic channels:
- $(v X_r) P$ r is the rate of an exponential distribution: the rate of communication on that channel
- Composition:
- Recursion:

- **P** | **P** (with identity elem. 0) *P (equal to P | *P)
- To represent *species* we need:
 - Collision:
- **?x_r; P** (with no input variables)
 - Co-collision: $|x_r; P$ (with no output messages)
 - Delay:
- $\tau_r; P$ (= (v x_r) ?x_r;P|!x_r;0 for any x not in P)
- Choice: $P \oplus P$ (with identity elem. 0)

How (any small) Process Algebra Helps: Abstracting Interfaces in Catalysis

- Two reactions, same catalyst C
 - The catalyst uses one channel for each reaction it catalyzes

a: $A + C \rightarrow^{r} C + B$ b: $D + C \rightarrow^{r} C + E$ $C = !a_{r}; C \oplus !b_{r}; C$ $A = ?a_{r}; B$ $D = ?b_{r}; E$

 Modularizing: the catalyst has its own catalysis channel c, used for all the reactions it catalyzes:

	$C = !c_r; C$
(nothing comparable)	A = ?c _r ; B
	D = ?c _r ; E

How (full) π-Calculus helps: Representing Complexation

$A + B \xrightarrow{s} A:B$

There is no good notation for this reaction in chemistry: A:B is considered as a separate species (which leads to combinatorial explosion of models).

But there is a way to write this precisely in π -calculus. There is a single public *association* channel a_r at rate r, and many private *dissociations* channels d_s at rate s, one for each complexation event (created by v):

$$\begin{array}{ll} \mathsf{A}_{\text{free}} & = (v \ \mathsf{d}_{s}) \ !a_{r}(\mathsf{d}_{s}); \ \mathsf{A}_{\text{bound}}(\mathsf{d}_{s}) \\ \mathsf{A}_{\text{bound}}(\mathsf{d}_{s}) & = !\mathsf{d}_{s}; \ \mathsf{A}_{\text{free}} \end{array}$$

$$B_{free} = ?a_r(d_s); B_{bound}(d_s) B_{bound}(d_s) = ?d_s; B_{free}$$

Note that we are describing A *independently* of B: as in the catalysis example, A could form complexes with many different species over the a_r channel.

More compactly:

How π-Calculus helps (*infinitely*): Representing Polymerization

- Polymerization is iterated complexation
 - It can be represente in π -calculus *finitely*, with one process (definition) for each monomer.
 - Note that polymerization cannot be described *finitely* in chemistry (or ODEs) because there it needs one reaction for each *length* of polymer.
 - The reason it works in π -calculus is because of the v operator. It enables the finite representation of systems of potentially unbounded complexity.
 - Like in the genome: the structure of each monomer is coded in a finite description, and yet unbounded-length polymers happen. Otherwise, there would be no space in the genome to code all those reactions!

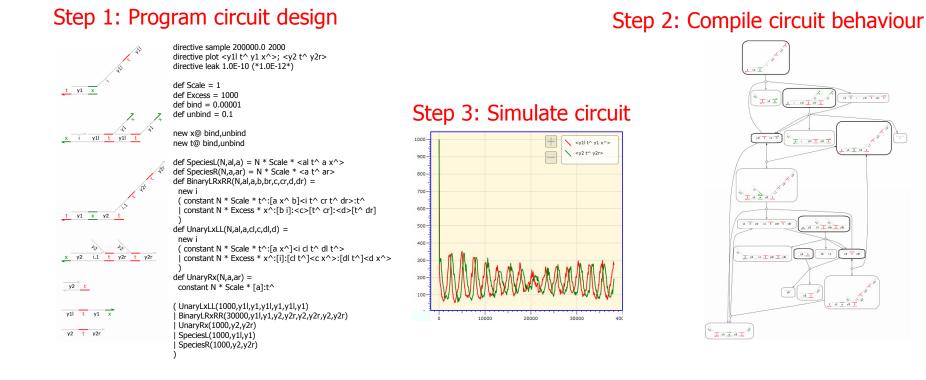
Recent Progress: A Host of New Molecular Process Algebras

- Activities have since moved away from classical "raw" process algebras, for more domain-specificity
 - Reaction-Based (A + B \rightarrow C + D) (Chemistry)
 - Limited to finite set of species (no polymerization)
 - Practically limited to small number of species (no run-away complexation)
 - Interaction-Based (A = !c. B) (Specialized Process Algebra)
 - Reduces combinatorial complexity of models by combining independent submodels connected by interactions.
 - Rule-Based (A{-}:B{p} \rightarrow A{p}:B{-}) (Logic, Graph Rewriting)
 - Further reduces model complexity by describing molecular state, and by allowing one to 'ignore the context': a *rule* is a reaction in an unspecified (complexation/phosphorylatio) context.
 - Similar to informal descriptions of biochemical events ("narratives").
 - Formal connections
 - The latter two can be translated (to each other and) to the first, but doing so may introduce an infinite, or anyway *extremely large*, number of species.
- But these are still process algebras (interaction/composition based) with all the basic semantic requirements of classical process algebras, and in addition quantitative requirements, and requirement of flexible high-level modeling in certain domains.

Applications in Synthetic Biology

DNA Strand Displacement (DSD)

Designing DNA Hardware: computers inside cells



Step 4: Compile program to DNA

focus E

A programming language for composable DNA circuits J. R. Soc. Interface

Published online

doi:10.1098/rsif 2009.0072 focus

Andrew Phillips^{*} and Luca Cardelli

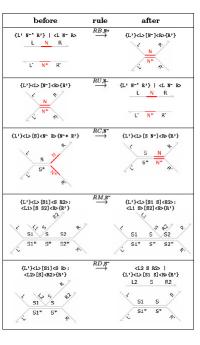
Microsoft Research, Cambridge CB3 0FB, UK

Step 5: Insert DNA into cells

Formal Syntax and Stochastic Semantics

D	syntax	description
М	N	Long Domain
	N^	Short domain
S	М	Domain
	M*	Complement Domain
	S1 S2	Concatenation of $S1$ and $S2$
L,R	-	Empty Concatenation
	S	Domain Concatenation

	syntax	description
A	<\$> 5	Upper strand with domain concatenation S
	{S}	Lower strand with domain concatenation ${\tt S}$
G	{L'} <l>[S]<r>{R'} 5 5 5 5*</r></l>	Double stranded complex [S] with overhanging single strands <l>, <r> and {L'}, {R'}</r></l>
	G1:G2	Gates joined along a lower strand
	G1::G2	Gates joined along an upper strand
D	A	Strand A
	G	Gate G
	D1 D2	Parallel systems D1, D2
	new N D	System D with private domain N
	X(ñ)	Module X with parameters ñ

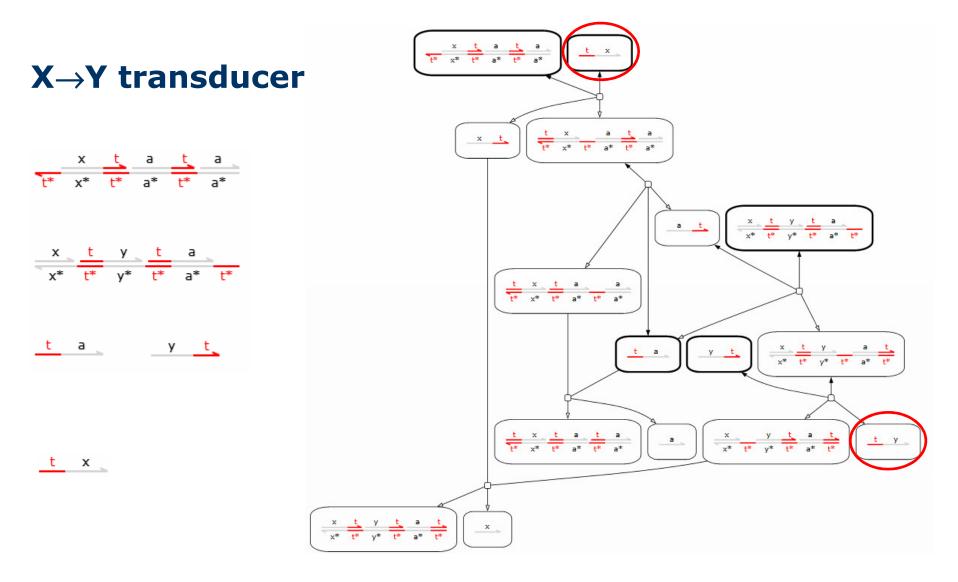


rule	condition	before	reduce	after
RGA1	${S1} \langle S2 \rangle \xrightarrow{R,r} G$	<l>{S1}[S]{R'}<r> <s2></s2></r></l>	$\xrightarrow{R,r}$	G: <l>[S]{R'}<r></r></l>
RGA2	$G \xrightarrow{R,r} {S1} $	G: <l>[S]{R'}<r></r></l>	$\xrightarrow{R,r}$	<l>{S1}[S]{R'}<r> <s2></s2></r></l>
RGB	$G \mid A \xrightarrow{R,r} G'$	U1:G:U2 A	$\xrightarrow{R,r}$	U1:G':U2
RGU	$G \xrightarrow{R,r} G' \mid A$	U1:G:U2	$\xrightarrow{R,r}$	U1:G':U2 A
RGL	$G \mid A \xrightarrow{R,r} G' \mid A'$	U1:G:U2 A	$\xrightarrow{R,r}$	U1:G':U2 A'
\mathbf{RG}	$G \xrightarrow{R,r} G$	U1:G:U2	$\xrightarrow{R,r}$	U1:G':U2
RV	$\mathbb{D} \xrightarrow{R,r} \mathbb{D}$	rev(D)	$\xrightarrow{R,r}$	rev(D')
\mathbf{RC}	$D \xrightarrow{R,r} D'$	com(D)	$\xrightarrow{R,r}$	com(D')
RE	$D1 \equiv_{\sigma} D2 \xrightarrow{R,r} D2' \equiv_{\sigma} D1'$	D1	$\xrightarrow{R,r}$	D1'

rule	condition	before	equal	after
EC		D1 D2	\equiv_{σ}	D2 D1
EA		D1 (D2 D3)	\equiv_{σ}	(D1 D2) D3
ED	X(m) = D	X(n)	\equiv_{σ}	$D{m:=n}$
ENP	$N \notin fn(D2)$	(new N D1) D2	\equiv_{σ}	new N (D1 D2)
ENN		new N1 new N2 D	\equiv_{σ}	new N2 new N1 D
END	$\texttt{N} \notin \texttt{fn}(\texttt{D})$	new N D	\equiv_{σ}	D
EP	D1 \equiv_{σ} D1'	D1 D2	\equiv_{σ}	D1' D2
EN	$D \equiv_{\sigma} D'$	new N D	\equiv_{σ}	new N D'
\mathbf{EL}	$G \equiv_{\sigma} G'$	G1:G	\equiv_{σ}	G1:G'
\mathbf{ER}	$G \equiv_{\sigma} G'$	G:G2	\equiv_{σ}	G':G2
EROTG		G	\equiv_{σ}	rotate(G)
EROTA		A	\equiv_{σ}	rotate(A)
ESL		{L1'} <l1>[S1]<r1>{R1' S}</r1></l1>	\equiv_{σ}	{L1'} <l1>[S1]<r1>{R1'}</r1></l1>
		:{L2'} <l2>[S2]<r2>{R2'}</r2></l2>		:{S L2'} <l2>[S2]<r2>{R2'}</r2></l2>
ESU		{L1'} <l1>[S1]<r1 s="">{R1'}</r1></l1>	\equiv_{σ}	{L1'} <l1>[S1]<r1>{R1'}</r1></l1>
		::{L2'} <l2>[S2]<r2>{R2'}</r2></l2>		::{L2'} <s l2="">[S2]<r2>{R2'</r2></s>

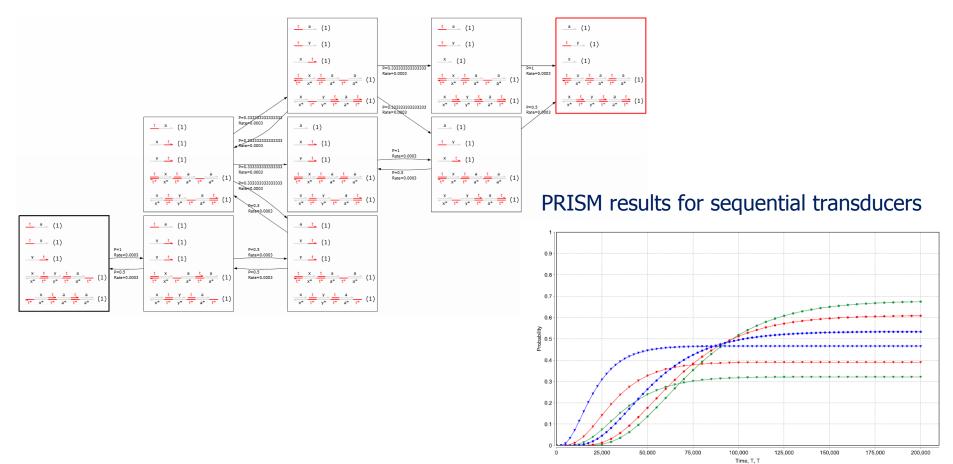
Based on the semantics: Stochastic or Deterministic Simulation

Generating the associated chemical reaction network for simulation



Based on the semantics: Stochastic Modelchecking

Generating the associated CTMC



- One (correct) - One (error) - Two (correct) - Two (error) - Three (correct) - Three (error)

Based on the semantics: Theorem Proving

Checking invariants in Z3

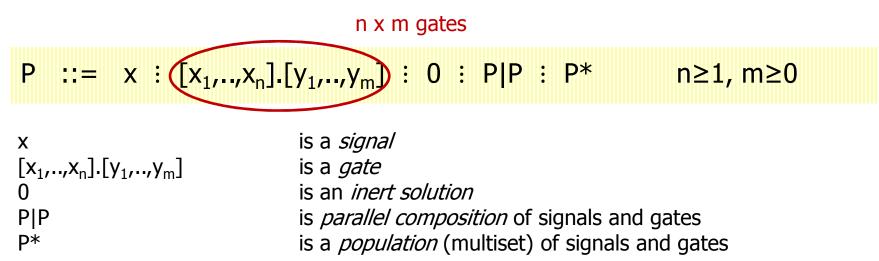
In progress ... (Biological Computation group & Constraint Reasoning group, MSRC)

We have integrated the Z3 theorem prover in our software to debug the circuit designs. Properties we have checked include whether circuits perform garbage-collection of DNA strands, which would otherwise interfere with the functioning of the circuit, and whether a well-formed terminal state is always reached. When a design error is detected, Z3 generates a counter example showing a path leading to the error.

A More Abstract View

- The semantics of DSD systems is very detailed, and talks about the physical structure of the components, so I will not present it here.
- But basically:
 - There are signals (single DNA strands)
 - There are gates that transduce signals (double DNA strands)
 - There are populations of those (consumed during computation)

Strand Algebra



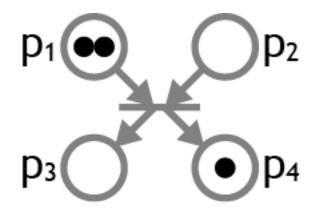
Reaction Rule

$x_1 \mid .. \mid x_n \mid [x_1, .., x_n] . [y_1, .., y_m] \rightarrow y_1 \mid .. \mid y_m$

Equivalent to place-transition Petri Nets. (Stochastic ones if adding rates)

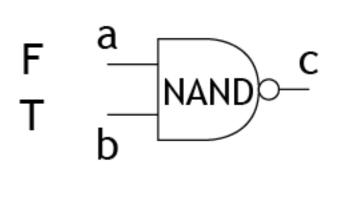
Representing Petri Nets

Transitions as Gates Place markings as Signals



([p₁,p₂].[p₃,p₄])*| p₁|p₁|p₄

Representing Boolean Networks



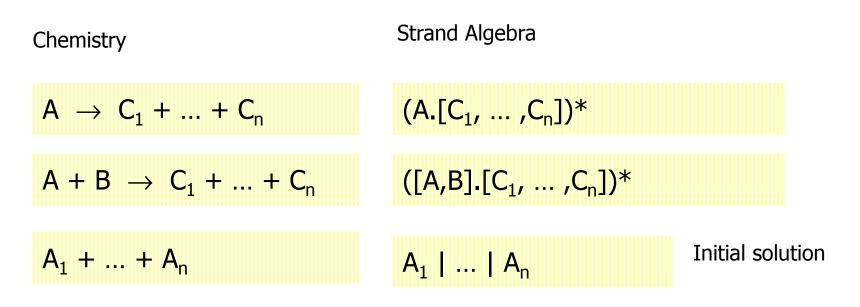
([a_F,b_F].c_T)* | ([a_F,b_T].c_T)* | ([a_T,b_F].c_T)* | ([a_T,b_T].c_F)* | a_F | b_T

This encoding is *compositional*, and can encode *any* Boolean network:

- multi-stage networks can be assembled (combinatorial logic)
- network loops are allowed (sequential logic)

Representing Chemistry

Translate reaction by reaction, and put everything in parallel with the initial molecules. (In a stochastic version, one must turn P^* into a k-weighted $P^{=k}$).



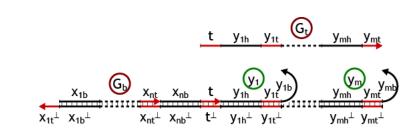
Almost trivial at this level, but by doing so, we transform chemistry into an executable programming language!

D. Soloveichik, G. Seelig, E. Winfree, "DNA as a Universal Substrate for Chemical Kinetics". PNAS 107 (12): 5393-5398, 2010

Compiling Strand Algebra to DNA

P ::= x : [x₁,..,x_n].[y₁,..,y_m] : 0 : P|P : P* n≥1, m≥0

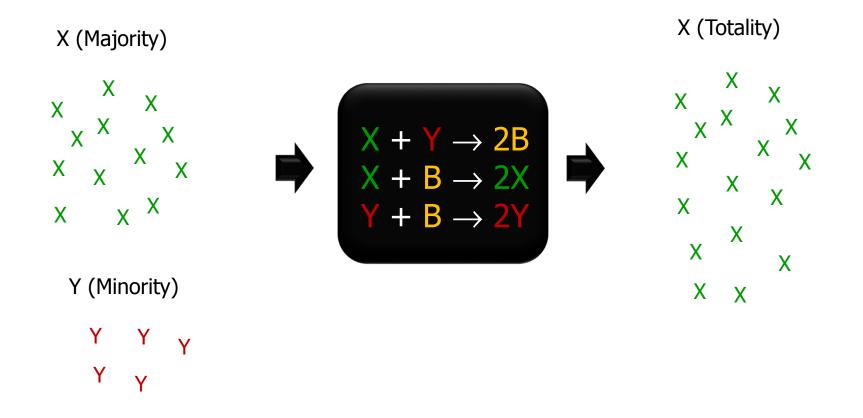
- compile(x) = $(x_h x_t x_b)$
- compile([x₁,..,x_n].[y₁,..,y_m]) =



- compile(0) = empty solution
- compile(P | P') = mix(compile(P), compile(P'))
- compile(P*) = population(compile(P))

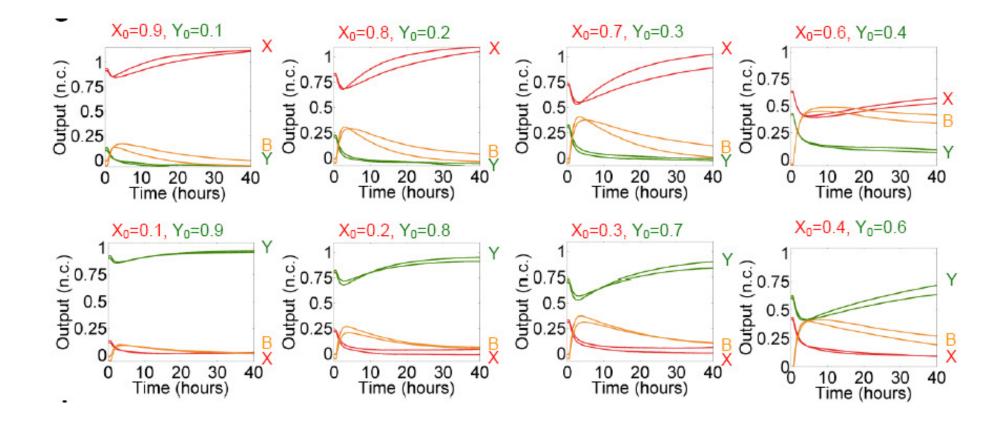
"Executable Chemical Algorithms"

A Consensus Algorithm (Approximate Majority)



Chemical Program => Strand Algebra => DSD structure => (real) DNA

Approximate Majority experiments (Seelig Lab, U.W.)



Correctness of Compilation

• The spec of a transducer:

 $x.y \mid x \to y$

- Is it true at all?
- Is it true *possibly, necessarily,* or *probabilistically* ?
- Is it true in the context of a population of identical transducers?
- Is it true *in all possible contexts?*
- Is it true (only) for *infinite populations*?

Stochastic Operational Semantics

Process Algebras in the Wet Lab

- Common to Systems and Syntetic Biology applications:
 - Need to describe real-time evolution of complex systems
 - both stochastic and deterministic
 - Need to relate our models to standard ones from the literature:
 - chemical reaction networks
 - ordinary differential equations (deterministic)
 - chemical master equations (stochastic)
 - Need to verify quantitiative properties
 - In experimental design (correctness)
 - In experimental validation (parameter inference)
 - Need to relate process algebras to "chemical semantics": stochastic and deterministic kinetics

The Fouth Era: Quantitative Semantics

In Computer Science we now have only a few mainstream programming languages

• (Fortunately still a wealth of specification languages...)

But in Computationa Biology, complex networks are represented by a variety of

- modelling languages for systems biology
- programming languages for synthetic biology
- both areas are vast in scope and requirements, and in their infancy
- leading to an explosion in new laguages and creativity

So an old problem resurfaces: how to give precise *and* flexible meaning to all these (now stochastic) languages? Our approach:

- start with a warm-up exercise: no-value-passing no-recursion CCS [QEST'10]
- proceed directly to the "worst case scenario": π -calculus [ICTAC'13]
- Based on *much* prior work in theory of Markov processes, measure theory, automata theory, performance evaluation, and process algebra

Stochastic Process Algebras

- The Labeled Transition Systems of standard SOS are replaced by (labelled) Markov processes (e.g., CTMCs)
 - nondeterministic a-transition:

 $P \xrightarrow{a} Q$

stochastic (Markovian) a-transition:

 $P \xrightarrow{a,r} Q$

 $r \in [0, +\infty)$ is the rate of an exponentially distributed random variable that characterises the a-transitions from P to Q.

- In recent decades a plethora of SPAs appeared, such as
 - TIPP (Gotz, Herzog, Rettelbach)
 - PEPA (Hillston)
 - EMPA (Bernardo, Gorrieri)
 - Stochastic pi-calculus (Priami, Degano)
 - StoKlaim (De Nicola, Katoen, Latella, Loreti, Massink)

etc.

The challenge of stochastic processes

• "Pointwise" semantics, similar to nondeterministic PAs, faces *counting problems,* and the known SPAs solve them using rather complex solutions such as the multi-transition system (PEPA) or the proved SOS (stochastic pi-calculus).

Problems Arise:

- (B. Klin, V. Sassone, *Structural Operational Semantics for Stochastic Process Calculi*, FOSSACS'08)
- These SOS formalisms are difficult to extend to a general format for well-behaved stochastic specifications;
- In stochastic π -calculus (with proved SOS) parallel composition is not associative up to bisimulation;
- In PEPA, if arbitrary relations between transition rates and the rates of subprocesses are allowed, stochastic bisimulation is not a congruence;

<u>A possible explanation</u> (ibid.): in a well-behaved SOS framework the labels of transitions should only carry as much data as required for the derivation of the intended semantics; Both the proofs and the transition multiplicities contain superfluous data.

The challenge of stochastic processes

<u>A solution</u>: return to the simplicity and elegance of nondeterministic PAs: instead the pointiwise semantics, use a semantics based on measures. $P \xrightarrow{a,r} Q = P \longrightarrow \mu, \quad \mu(a)(\{Q\})=r$

where μ is a measure (indexed by actions) on the measurable space of processes.

Similar approaches

- R. Segala, N. Lynch, Probabilistic Simulations for Probabilistic processes, 1995.
- M. Kwiatkowska, G. Norman, R. Segala, J. Sproston, *Automatic Verification of Real-Time Systems with Discrete Probability Distributions*, 1999.
- E. P. de Vink, J. Rutten, *Bisimulation for probabilistic transition systems: A coalgebraic approach*, 1999.
- J. Rutten, Universal Coalgebra: a theory of systems, 2000.
- F. Bartels, On Generalised Coinduction and Probabilistic Specification Formats, 2004.
- M. Bravetti, H. Hermanns, J.-P. Katoen, YMCA: Why Markov Chain Algebra?, 2006.
- B. Klin, V. Sassone, Structural Operational Semantics for Stochastic Process Calculi, 2008.
- R. De Nicola, D. Latella, M. Loreti, M. Massink, *Rate-based Transition Systems for Stochastic Process Calculi*, 2009.

Solving The Counting Problem

- We expect no difference in the behavior of, e.g., Q|R, R|Q, R|Q|O, etc. These trivial equivalences, reflected in the rules of structural congruence, embody the assumption of "well mixed chemical solutions": namely that the probability of interaction is *independent* of the initial location (physically, or here syntactically) of the components.
- Our approach: Use structural congruence to organizes a measurable space of processes; instead of 2^P (every syntactic form is measurable) we use the sigma algebra ∏ generated by P⁼: only congruence-closed classes are measurable.
- Transitions relates an (initial) process to a (final) *measurable set*: a congruenceclosed set of processes. This way if P performs an action P _____, (Q|R)[≡] we can also derive P _____, (R|Q)[≡] without overcounting the rates of the transitions.
- The alternative is to consider *any* set of processes as measurable. Then the rate of an a-transition from P to the set {Q|R, R|Q, R|(Q|0)} obtains the undesired result P <u>a,3r</u> {Q|R, R|Q, R|(Q|0)}.
- To avoid such problems, in the literature we find complicated variants of SOS that make the theory heavy and often problematic.

Stochastic CCS: The syntax

Let **A** be a denumerable set of action names endowed with

- an involution $*: \mathbf{A} \longrightarrow \mathbf{A}$, $a^* \neq a$, $a^{**} = a$

- a weight function
$$\iota: A \longrightarrow \mathbb{Q}^+$$
, $\iota(a) = \iota(a^*)$ for all $a \in A$ (*rate* of a)

Let
$$c \notin A$$
 and $A^+ = A \cup \{c\}$

The set **P** of processes are defined by the following grammar, for arbitrary $r \in \mathbb{Q}^+$. P:= 0 | ϵ .P | P|P | P+P ϵ := $a \in \mathbf{A} | \delta(r)$ We extend the weight function ι by $\iota(\delta(r))=r$.

Structural Congruence "≡" is the smallest equivalence relation on **P** that satisfies

 I.
 1. $P|Q \equiv Q|P;$ 2. $(P|Q)|R \equiv P|(Q|R);$ 3. $P|0 \equiv P.$

 II.
 1. $P+Q \equiv Q+P;$ 2. $(P+Q)+R \equiv P+(Q+R);$ 3. $P+0 \equiv P.$

 III.
 if $P \equiv Q$, then for any ε and any $R \in \mathbf{P}$,
 3. $\varepsilon P \equiv \varepsilon Q.$

 1. $P|R \equiv Q|R;$ 2. $P+R \equiv Q+R;$ 3. $\varepsilon P \equiv \varepsilon Q.$

The measurable space

For arbitrary $P \in \mathbf{P}$, let \mathbf{P}^{\equiv} be the \equiv -equivalence class of P and \mathbf{P}^{\equiv} the set of \equiv -equivalence classes of processes.

Let ∏ be the sigma-algebra generated by P⁼ over P. (∏ is a set of subsets of P: the closure of P⁼ under complement and countable union, and contains P)

 $(\mathbf{P}, \mathbf{\Pi})$ is a measurable space. (A set with a sigma-algebra over it.) The measurable sets are the members of $\mathbf{\Pi}$.

Let $\Delta(\mathbf{P}, \Pi)$ denote the set of measurable functions on (\mathbf{P}, Π) . (functions f: $\Pi \longrightarrow \mathbb{Q}^+$ such that $f(\emptyset) = 0$, and f over a union of sets with pairwise disjoint elements is the sum of the f's of the sets) The null measure is $\omega(S)=0$, for any $S \in \Pi$.

For $S, T \in \Pi$, let $S \mid T = \bigcup_{P \in S, Q \in T} (P|Q)^{\equiv}$ and $S_T = \bigcup_{P|R \in S, P \in T} R^{\equiv}$

Lemma: If $S, T \in \prod$ and $P \in \mathbf{P}$, then $S \mid T$ and S_T are measurable sets.

Structural Operational Semantics

Has the form:

 $P \longrightarrow \mu_{\prime}$

Where, μ gives for any action x and for any measurable set $S \in \prod$ (closed under structural congruence) the overall transition rate from P through x to (some element of) *S*.

where $\mu: \mathbb{A}^+ \longrightarrow \Delta(\mathbb{P}, \Pi)$ is such that for each $x \in \mathbb{A}^+$, $\mu(x) \in \Delta(\mathbb{P}, \Pi)$ is a measure and for each $S \in \Pi$, $\mu(x)(S) = r \in \mathbb{Q}^+$, r is the rate of the x-transition from P to (elements of) S. Notice that S is not just any set, but a measurable set, e.g. $\mu(x)(\{Q\})$ is undefined.

In simple cases, we can still write, pointwise:

 $P \xrightarrow{x,r} Q$ for $P \longrightarrow \mu$ with $\mu(x)(Q^{\equiv}) = r$

Structural Operational Semantics

(Null)
$$0 \longrightarrow \varpi$$

(Guard) $\overline{e.P} \longrightarrow [\frac{e}{P^{\pm}}]$
(Sum) $\frac{P \longrightarrow \mu}{P+Q \longrightarrow \mu \oplus \mu'}$
(Par) $\frac{P \longrightarrow \mu}{P|Q \longrightarrow \mu} Q \longrightarrow \mu'$
 $(Null) 0 \longrightarrow \varpi$
 $\varpi(x)=\omega$ for any $x \in \mathbb{A}^+$,
 $[\frac{e}{P^{\pm}}](a) = \begin{bmatrix} D(\iota(e), P^{\pm}), a=e \\ \omega, a\neq e \end{bmatrix}$
 $(\mu \oplus \mu')(x)(S) = \mu(x)(S) + \mu'(x)(S)$
... the tricky one ...

<u>Lemma:</u> For any $P \in \mathbf{P}$, there exists a unique $\mu \in \Delta(\mathbf{P}, \Pi) \overset{\mathbf{A}^+}{\to}$ such that $P \longrightarrow \mu$.

Notice that we have no rule that guarantees that structural congruent processes have identical behaviour. But we can prove this.

<u>Theorem</u>: If $P \equiv Q$ and $P \longrightarrow \mu$, then $Q \longrightarrow \mu$.

Structural Operational Semantics

The parallel composition "|"

For any $P, Q \in \Pi$, let $P \otimes_Q : \Delta(\mathbf{P}, \Pi) \wedge^+ \times \Delta(\mathbf{P}, \Pi) \wedge^+ \longrightarrow \Delta(\mathbf{P}, \Pi) \wedge^+$ such that for any $\mu, \mu' \in \Delta(\mathbf{P}, \Pi) \wedge^+$, any $S \in \Pi$,

for atomic actions $a \in \mathbf{A}$:

the sum of the two measures "acting independently" through a on parts of S.

 $(\mu_{P}\otimes_{Q}\mu')(a)(S) = \mu(a)(S_{Q}) + \mu'(a)(S_{P})$

for C:

$$(\mu_{\rho}\otimes_{Q}\mu')(\mathfrak{c})(S) = \mu(\mathfrak{c})(S_{Q}) + \mu'(\mathfrak{c})(S_{\rho}) + \sum_{\mathcal{T}'\mid\mathcal{T}''=S}^{a\in\mathbf{A},\ \iota(a)>0} \frac{\mu(a)(\mathcal{T}')\times\mu'(a^{*})(\mathcal{T}'')}{2\iota(a)}$$

again the sum of the two measures "acting independently" through c on parts of s plus the c resulting from interactions of complementary actions a for all possible parallel decompositions of s.

Here is where the law of mass action is embodied: in the case of interaction we take the *product* of the rates of the interacting *populations*. (This leads to multiply $\iota(a) \times \iota(a^*)$ and to further count them twice because of symmetry of |, so we divide again by $2\iota(a)$ to get the proper overall rate for c.)

The algebra of measures

We have defined an algebraic structure $(\Delta(\mathbf{P},\Pi) \stackrel{\mathbf{A}^+}{\to}, \varpi, \begin{bmatrix} \varepsilon \\ P \end{bmatrix}, \oplus, \rho \otimes_Q)$ with operators defined for arbitrary ε , *P* and *Q*.

Lemma:

I. (1) $\mu \oplus \mu' = \mu' \oplus \mu$, (2) $(\mu \oplus \mu') \oplus \mu'' = \mu \oplus (\mu' \oplus \mu'')$, (3) $\mu \oplus \varpi = \mu$.

II. (1)
$$\mu_{P} \otimes_{Q} \mu' = \mu'_{Q} \otimes_{P} \mu$$
,
(2) $(\mu_{P} \otimes_{Q} \mu')_{P|Q} \otimes_{R} \mu'' = \mu_{P} \otimes_{Q|R} (\mu'_{Q} \otimes_{R} \mu'')$,
(3) $\mu_{P} \otimes_{Q} \varpi = \mu$.

Theorem:

Stochastic bisimulation is a congruence, i.e., 1. if $P \sim P'$, then for arbitrary ε , $\varepsilon . P \sim \varepsilon . P'$; 2. if $P \sim P'$ and $Q \sim Q'$, then $P+P' \sim Q+Q'$; 3. if $P \sim P'$ and $Q \sim Q'$, then $P|P' \sim Q|Q'$

Stochastic π **-Calculus Revisited**

- In the same style of measure-based operational semantics:
 - Add name restriction (v a@r) P and name-passing input/output. This further complicates the operator for |, but also simplifies the treatment of bound output w.r.t. ordinary π-calculus: no need for higher-order abstraction-concretions here.

 - Add recursion !P. This can no longer be included in structural congruence because otherwise rates become infinite. It is instead handled through a (simple) rule. This is the main way stochastic π -calculus deviates from the original π -calculus, which otherwise could be seen as stochastic- π with all the rates = 1.
- Paper in the proceedings.

Conclusions

- We took the challenge of reconsidering Stochastic Process Algebras from a foundational perspective, to facilitate the application of its basic princibles to new domains.
- The goals:
 - understanding if the "counting " approaches can be avoided
 - providing well-behaved SOS formats similar to the formats of nondeterministic PAs
- The way to do it:
 - center the work on the equational theory of structural congruence
 - lift the algebraic structure from the space of processes to the space of measures
- Advantages:
 - an elegant and compact SOS
 - well-behaved SOS: bisimulation is a congruence that extends structural congruence
 - a simple extension to metric semantics
 - simple solutions to the problems related to recursion and bound output