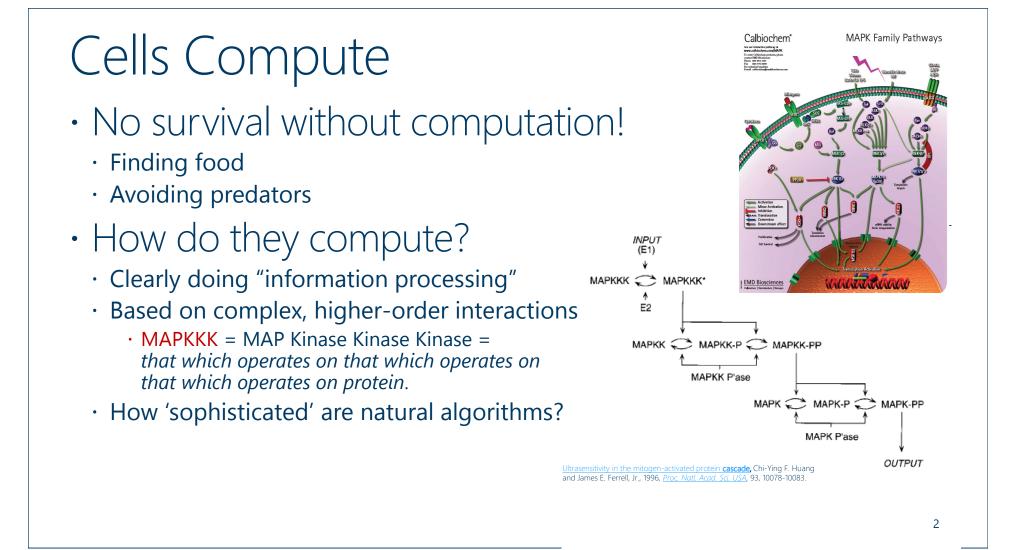
The Cell Cycle Switch Computes Approximate Majority

- Luca Cardelli, Microsoft Research
- Joint work with Attila Csikász-Nagy, CoSBi & King's College London
- Aalborg, 2013-08-07

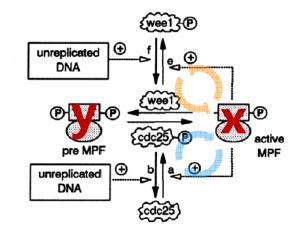


Outline

- Analyzing biomolecular networks
 - $\cdot\,$ Try do understand the function of a network
 - $\cdot\,$ But also try to understand its structure, and what determines it
- The Cell-Cycle Switches
 - · Some of the best studied molecular networks
 - Important because of their fundamental function (cell division) and the stability of the network across evolution
- We ask:
 - · What does the cell cycles switch compute?
 - · How does it compute it?

The Cell Cycle Switch

- This network is universal in all Eukaryotes [P. Nurse]
 - I.e., the *network* at the core of cell division is *the same* from yeast to us
 - Not the components of the network, nor the rates



Journal of Cell Science 106, 1153-1168 (1993) Printed in Great Britain © The Company of Biologists Limited 1993

Numerical analysis of a comprehensive model of M-phase control in *Xenopus* oocyte extracts and intact embryos

Bela Novak* and John J. Tyson[†]

Department of Biology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060-0406, USA "Permanent address: Department of Agricultural Chemical Technology, Technical University of Budapest, 1521 Budapest Gellert Ter 4, Hungary "Author for consecondence"

Double positive feedback on x Double negative feedback on x No feedback on y What on earth ... ???

- $\cdot\,$ The function is very well-studied. But why this structure?
- I.e., why this algorithm?

How to Build a Good Switch

• What is a "good" switch?

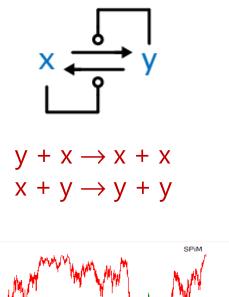
- We need first a bistable system: one that has two distinct and stable states.
 I.e., given any initial state the system must settle into one of two states
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back)
- \cdot Finally, we need to be able to flip the switch by external inputs

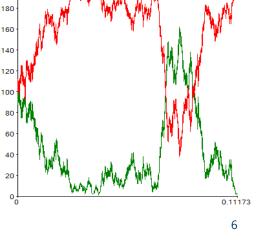
"Population" Switches

- Populations of identical agents (molecules) with the whole population switching from one state to another as a whole
- Highly concurrent (stochastic)

A Bad Algorithm

- Direct Competition
 - $\cdot\,$ x catalyzes the transformation of y into x
 - $\cdot\,$ y catalyzes the transformation of x into y
 - \cdot when all-x or all-y, it stops
- This system has two end states, but
 - · Convergence to an end state is slow (a random walk)
 - Any perturbation of an end state can start a random walk to the other end state (hence not really *bistable*)





A Very Good Algorithm

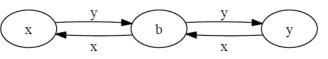
- Approximate Majority (AM)
 - $\cdot\,$ Decide which of two populations is in majority
- A fundamental 'population protocol'
 - · Agents in a population start in state x or state y
 - A pair of agents is chosen randomly at each step, they interact ('collide') and change state
 - The whole population must eventually agree on a majority value (all-x or all-y) with probability 1

Dana Angluin · James Aspnes · David Eisenstat

A Simple Population Protocol for Fast Robust Approximate Majority

We analyze the behavior of the following population protocol with states $Q = \{b, x, y\}$. The state b is the **blank** state. Row labels give the initiator's state and column labels the responder's state.

 $\begin{array}{cccc} x & b & y \\ x & (x,x) & (x,x) & (x,b) \\ b & (b,x) & (b,b) & (b,y) \\ y & (y,b) & (y,y) & (y,y) \end{array}$



Third 'undecided' state

- 1) Disagreements cause agents to become undecided
- 2) Undecided agents believe any non-undecided agent they meet

Properties

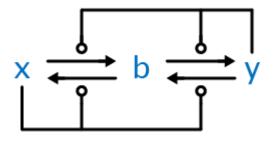
[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]

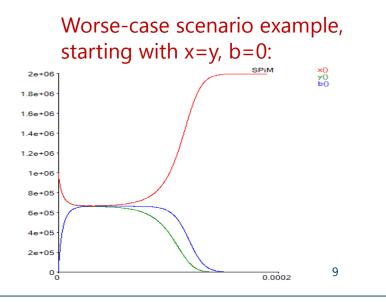
- With high probability, for *n* agents
 - The total number of interactions before converging is O(n log n)
 ⇒ fast
 - The final outcome is correct if the initial disparity is $\omega(sqrt(n) \log n)$ \Rightarrow solution states are robust to perturbations
- Logarithmic time bound in parallel time
 - *Parallel time* is the number of steps divided by the number of agents
 - · In parallel time the algorithm converges with high probability in $O(\log n)$

Chemical Implementation

Chemistry as a programming language for population algorithms!

 $x + y \rightarrow y + b$ $y + x \rightarrow x + b$ $b + x \rightarrow x + x$ $b + y \rightarrow y + y$





Bistable Even when x=y! (stochastically)

Fast

O(log n) convergence time

Robust to perturbation above a threshold, initial majority wins *whp*

Correspondence PP \leftrightarrow (normalized)CRN

[Soloveichik., <u>http://arxiv.org/abs/0803.1030 Appendix A.4</u> + personal communication]

- Suppose we have a Chemical Reaction Network with:
 - All the reactions are unit-rate, bimolecular, with two products: A + B \rightarrow ¹ C + D
 - · At most one reaction with the same reactants.
 - "Saturated" with null reactions $E + F \rightarrow E + F$ and $G + G \rightarrow G + G$ for all the other possible reactants among existing species (these null reactions have no effect on the kinetics).
 - So there is a one-to-one reaction/interaction correspondence with a Population Protocol (which also has null interactions).
- Consider the sum λ of the Gillespie propensities of all reactions in any state
 - · It is always the <u>same</u> (everything interacts with everything else at rate 1): for n molecules in volume v, $\lambda = n(n-1)/2v^*$
 - By Gillespie, the time to the next (possibly null) reaction is an exponential random variable with rate λ .
 - There are on average $1/\lambda$ (possibly null) reactions per unit time. And since n/v ("concentration") is assumed constant, λ is O(n).

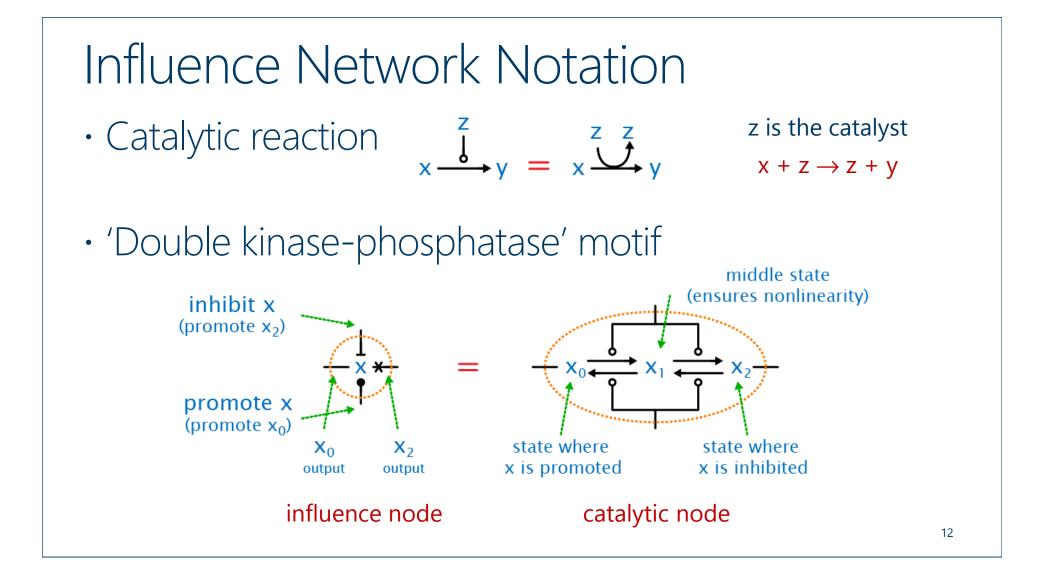
Transferring Population Protocols Results

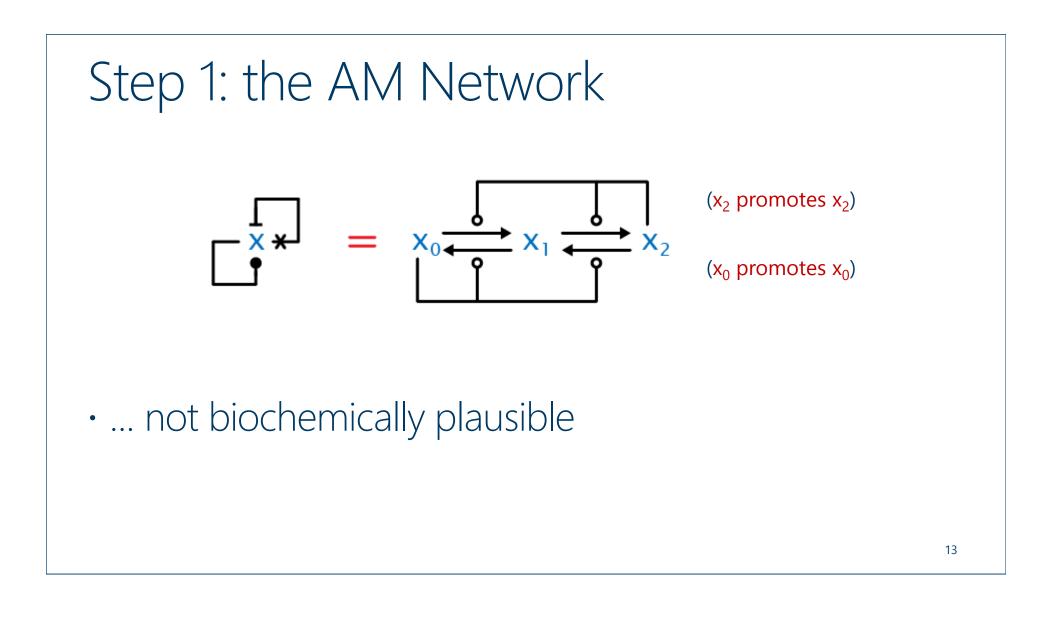
- PPs measure time complexity in expected number of interactions. E.g.: AM converges in O(m log m) interactions WHP.
- But there is now a correspondence with CNR time: let E(m) be the expected number of interactions of the PP, then $E(m/\lambda) = E(m)/\lambda$ is the expected running time of the CRN. This can be bounded tightly with Chernoff bounds.
- For AM, E(m) is O(m log m), and λ is O(n), hence the expected running time of its CRN, E(m/ λ), is logarithmic in the system size.

*Just to confirm, splitting the reactions between the same species and between different species, the sum of the propensities is $\sum_{i} \frac{x_i(x_i-1)}{2V} + \sum_{i < i'} \frac{x_i x_{i'}}{V} = \frac{1}{2V} (\sum_{i} x_i x_i - \sum_{i} x_i + 2\sum_{i < i'} x_i x_{i'}) = \frac{1}{2V} (\sum_{i,i'} x_i x_{i'} - \sum_{i < i'} x_i x_{i'}) = \frac{n(n-1)}{2V}$ using the fact that $2\sum_{i < i'} x_i x_{i'} = \sum_{i \neq i'} x_i x_{i'}$ and $\sum_{i} x_i x_i + \sum_{i \neq i'} x_i x_{i'} = \sum_{i,i'} x_i x_{i'}$.

Back to the Cell Cycle

- The AM algorithm has ideal properties for settling a population into one of two states
- But that is not what the cell cycle uses
- Or is it?

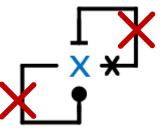


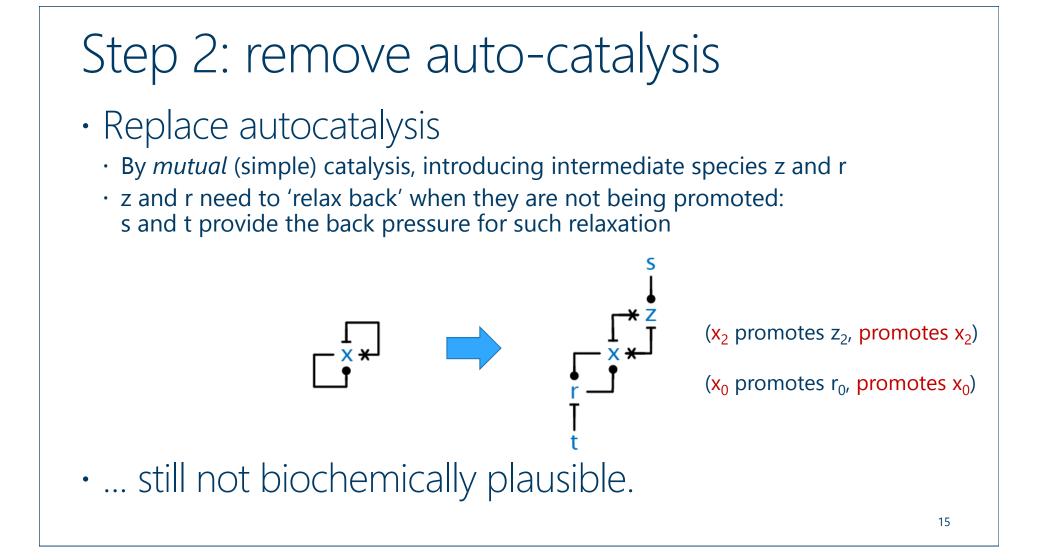


Natural Constraint #1

Direct autocatalysis is not commonly seen in nature

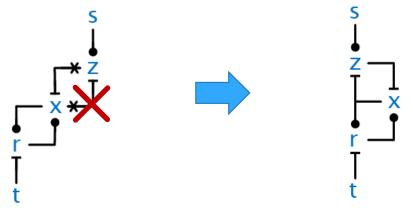
$$\begin{aligned} \mathbf{x}_1 + \mathbf{x}_0 &\to \mathbf{x}_0 + \mathbf{x}_0 \\ \mathbf{x}_1 + \mathbf{x}_2 &\to \mathbf{x}_2 + \mathbf{x}_2 \end{aligned}$$





Natural Constraint #2

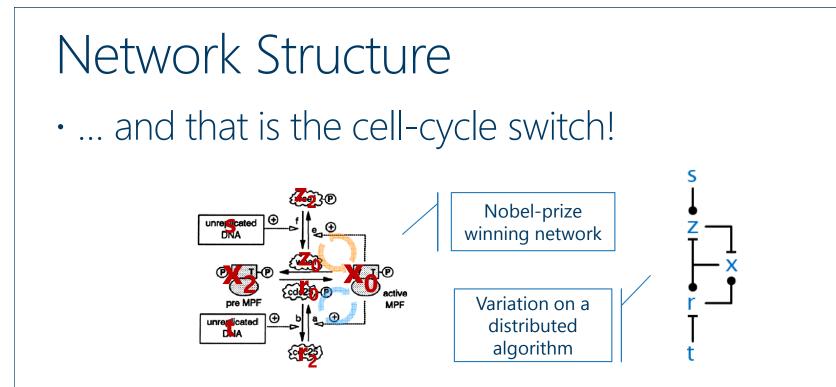
- x_0 and x_2 (usually two states of the same molecule) are both active catalysts in that network
- That is not commonly seen in nature



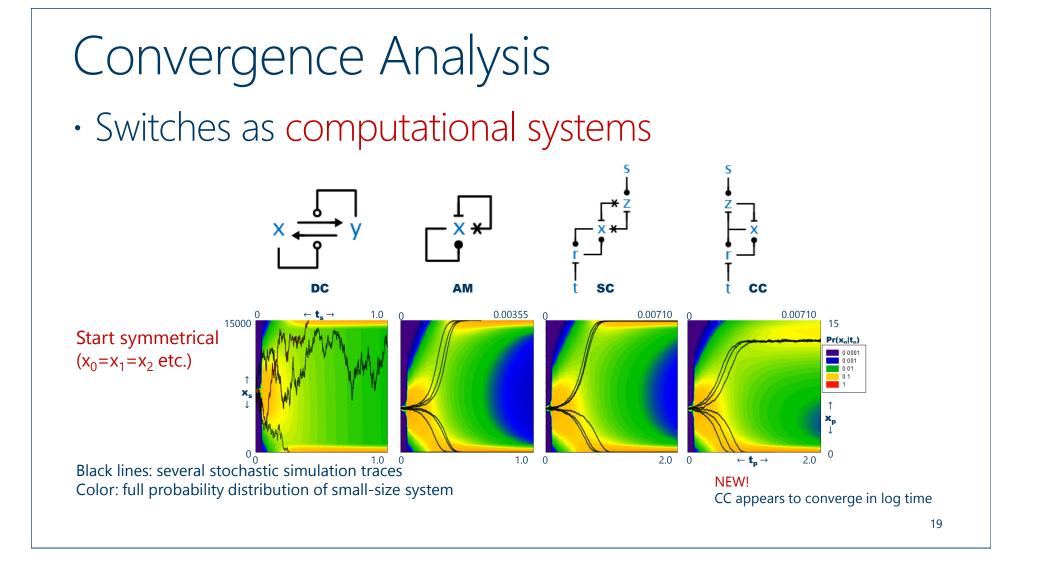
(x₂ promotes z_0 via s bias, z₀ promotes x₂ via inhibiting x₀)

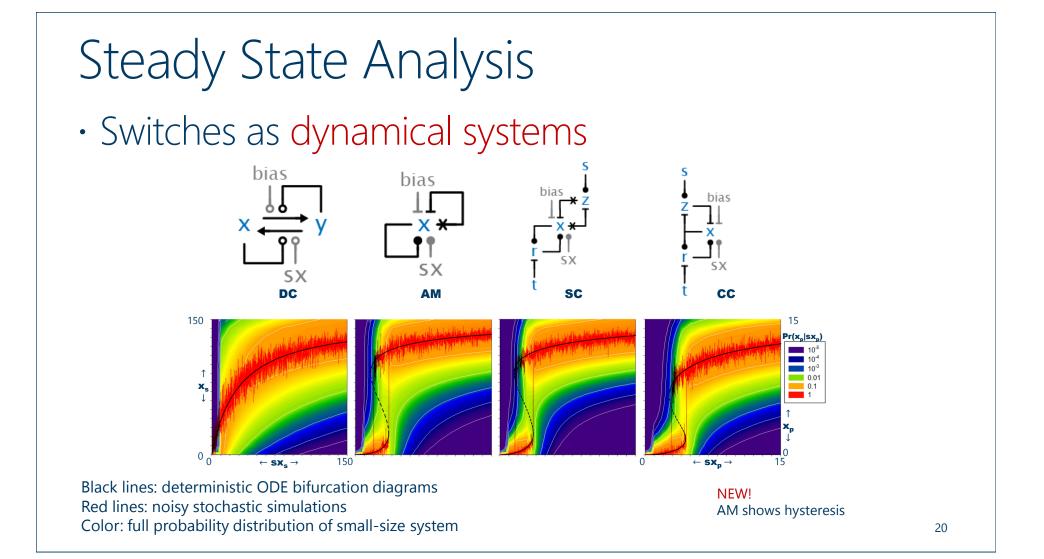
(x₀ promotes r₀, promotes x₀)

- · All species now have one active (x_0, z_0, r_0) and one inactive (x_2, z_2, r_2) form
- · This is 'biochmically plausible'



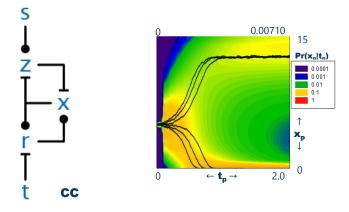
- But did we preserve the AM function through our network transformations?
- Ideally: prove either that the networks are 'contextually equivalent' or that the transformations are 'correct'
- Practically: compare their 'typical' behavior





Evidence that CC is 'similar' to AM

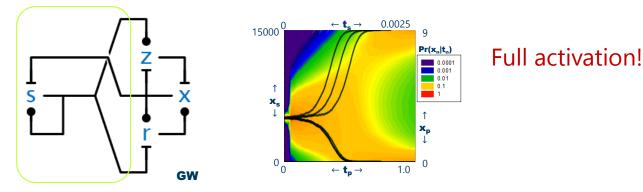
- But there was a difference
 - $\cdot\,$ The output of CC does not go 'fully on' like AM:



- Because s continuously inhibits x through z, so that x cannot fully express
- · Q: Why didn't nature do better than that?

Nature fixed it!

- There is another known feedback loop
 - $\cdot\,$ By which x suppresses s "in retaliation" via the so-called Greatwall loop
 - $\cdot\,$ Also, s and t happen to be the same molecule

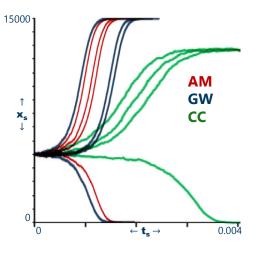


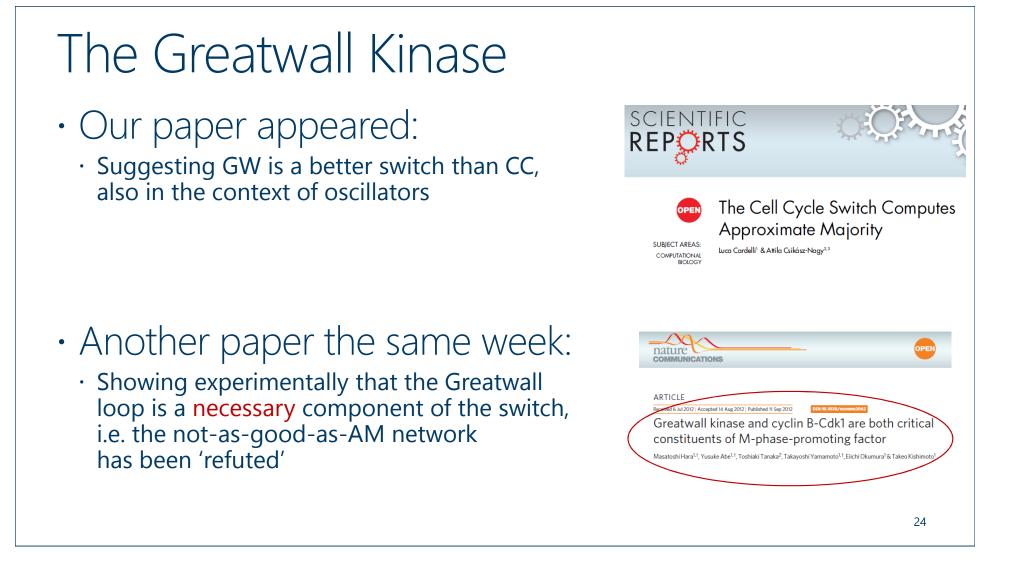
 (As usual, there are many more details in real biological networks; this is one of the many details people knew about without fully understanding its function)

More surprisingly

- Made it faster too!
 - The extra feedback also speeds up the decision time of the switch, making it about as good as the 'optimal' AM switch:

Conclusion (in our published paper): Nature is trying as hard as it can to implement an AM-class algorithm!





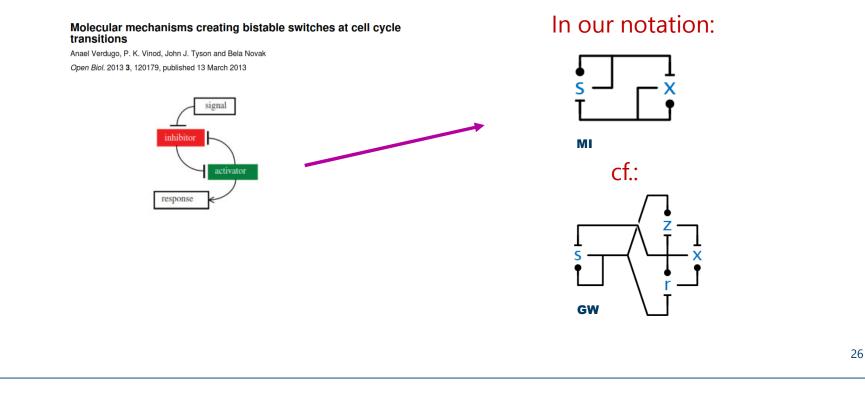
But what about network equivalence?

• Our evidence is empirical

- $\cdot\,$ Although quantitative and covering both kinetic and steady state behavior
- \cdot Also, contextual equivalence holds in the context of oscillators (see paper)
- Analytical evidence is harder to obtain
 - The proof techniques for the AM algorithm are hard and do not generalize easily to more complex networks
 - Quantitative theories of behavioral equivalence and behavioral approximation, e.g. in process algebra, are still lacking (although rich qualitative theories exist)

Mutual Inhibition

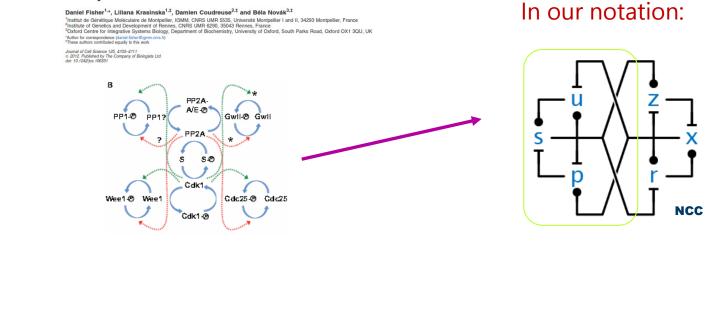
• A new paper suggests that all cellular switches in all phases of the cell cycle follow (abstractly) a mutual inhibition pattern:



New Cell Cycle Network

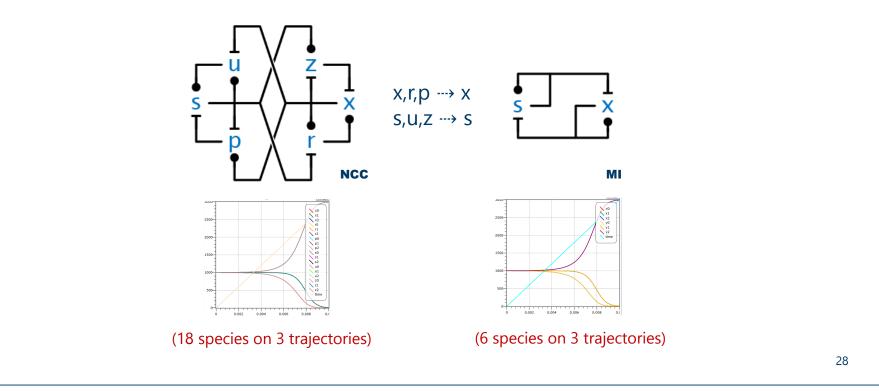
- \cdot A new paper presents a more complete view of the cell cycle switch
- · N.B. "phosphorylation network dynamics" is the same as our $x_0-x_1-x_2$ motif

Phosphorylation network dynamics in the control of cell cycle transitions



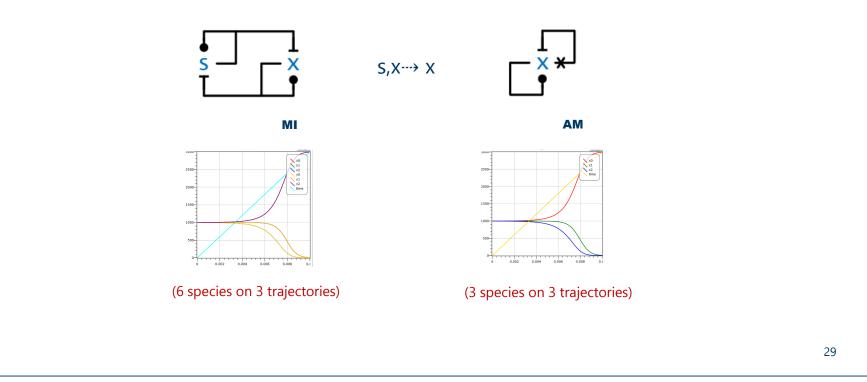
Network Emulation

 For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of NCC collapse to those of MI (thanks to David Soloveichik):



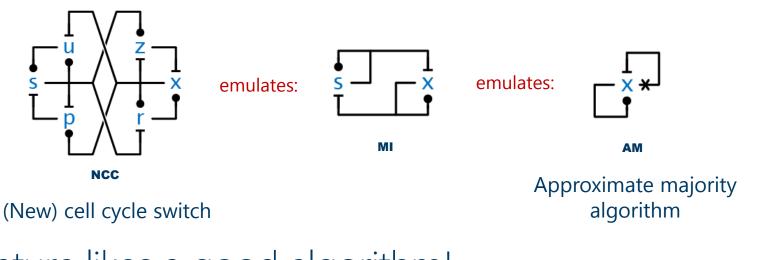
Network Emulation

For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of MI collapse to those of AM:



Conclusions

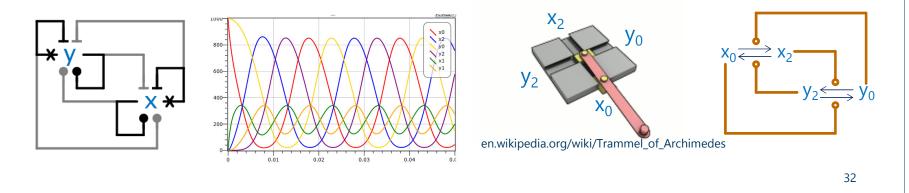
• The cell cycle switch *can* exactly emulate AM



Nature likes a good algorithm!

Cell Cycle Oscillator

- The cell cycle switch is part of an oscillator network
 The cell cycle oscillation: grow-divide-grow-divide...
- The principle of the oscillator
 - Two interconnected switches yield a limit-cycle oscillator; e.g. two AM switches
 - In a Trammel of Archimedes configuration (gray rates < black rates)
 - \cdot (The biological network lacks some of these links and still oscillates)



In separate work...

- · We have a chemical implementation of AM using DNA gates
- · I.e., a 'synthetic reimplementation' of the central cell-cycle switch.

Programmable chemical controllers made from DNA

Yuan-Jyue Chen¹, Neil Dalchau², Niranjan Srinivas³, Andrew Phillips², Luca Cardelli², David Soloveichik⁴, and Georg Seelig^{1,5}

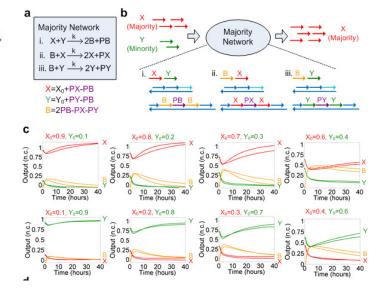
¹ Department of Electrical Engineering, University of Washington, Seattle

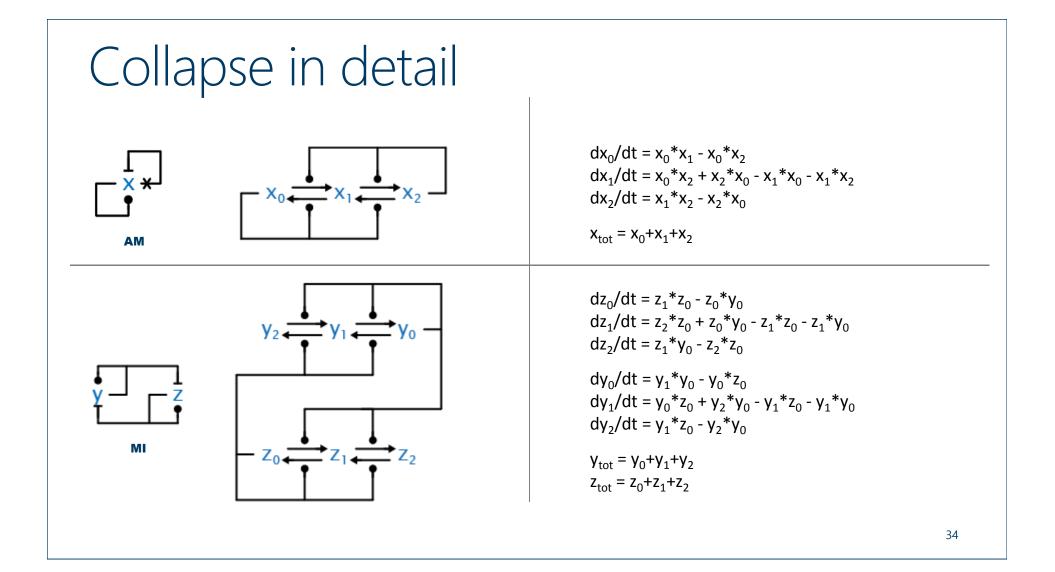
² Microsoft Research, Cambridge (UK)

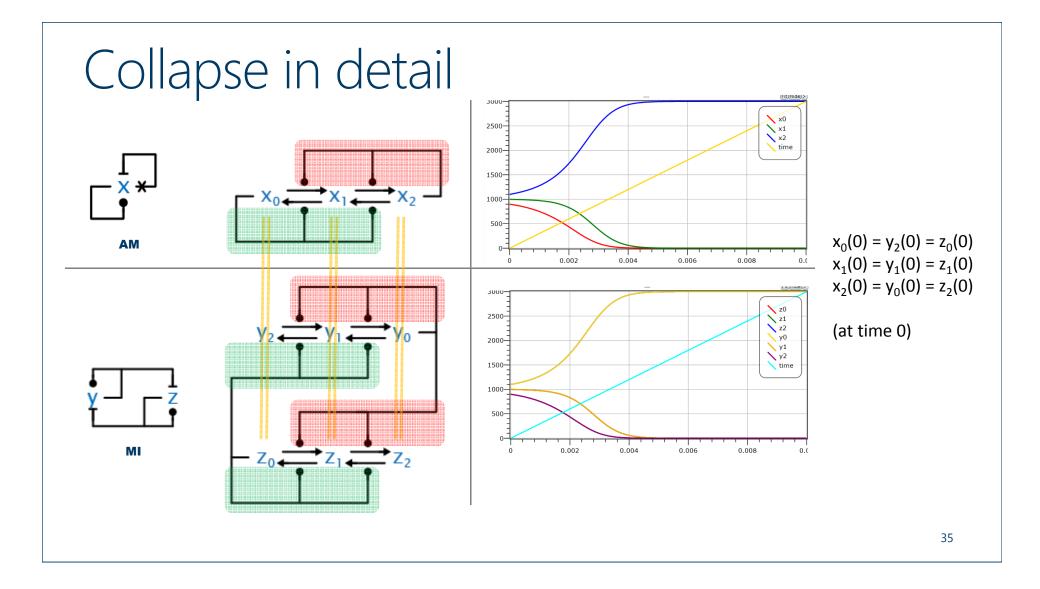
³ Computation and Neural Systems, California Institute of Technology, Pasadena

⁴ Center for Systems and Synthetic Biology, University of California, San Francisco

⁵ Department of Computer Science & Engineering, University of Washington, Seattle







Collapse in detail

[David Soloveichik] Assume that at some time t, in **MI**:

 $y_2(t) = z_0(t)$ $y_1(t) = z_1(t)$ (at time t) $y_0(t) = z_2(t)$

then, e.g.: $(dy_2/dt)(t) = y_1(t)*z_0(t) - y_2(t)*y_0(t) = z_1(t)*z_0(t) - z_0(t)*y_0(t) = (dz_0/dt)(t)$

this implies that $y_2(t+dt) = z_0(t+dt)$ and so on at any future time; i.e. $y_2 = z_0$.

Similarly $y_1 = z_1$ and $y_0 = z_2$. So the trajectories of **MI** overlap in pairs.

Now assume at some time t in **AM** and **MI**:

 $\begin{aligned} x_0(t) &= y_2(t) = z_0(t) \\ x_1(t) &= y_1(t) = z_1(t) \\ x_2(t) &= y_0(t) = z_2(t) \end{aligned} \ (\text{at time } t)$

we again have that, e.g.:

 $(dx_0/dt)(t) = x_0(t)^*x_1(t) - x_0(t)^*x_2(t) = z_0(t)^*z_1(t) - z_0(t)^*y_0(t) = (dz_0/dt)(t)$

so $x_0 = z_0 (= y_2)$ at any future time, and similarly $x_1 = z_1 (= y_1)$ and $x_2 = z_2 (= y_0)$

And if we start with initial conditions satisfying:

 $\begin{aligned} x_0(0) &= y_2(0) = z_0(0) \\ x_1(0) &= y_1(0) = z_1(0) \\ x_2(0) &= y_0(0) = z_2(0) \end{aligned} \ (at time 0)$

then we have the same time evolution for AM and MI.

Question (Cris Moore)

- Is it true that any trajectory of the 'bigger' system converges to a trajectory of the 'smaller' system?
 - This is more than ability to simulate or approximate the smaller system. (We already know from the ODEs that the bigger system can in fact simulate the small one *exactly*.)
 - If the above is true, it further means that the bigger system, even though it has a richer state space and many more trajectories, cannot in fact "stay away" from the behavior of the smaller systems, even if it starts in a state that is not representable in the smaller system.
 - "Hi Luca. I have been trying to wrestle with the 18-dimensional (actually 12-dimensional) system all at once. Establishing linear stability of the manifold equivalent to AM seems fairly easy, but I want to show it's globally stable, at least over a large range of initial conditions. Just wanted to let you know. Cris" [Last I heard.]

