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� No survival without computation!
� Finding food

� Avoiding predators

� How do they compute?
� Clearly doing “information processing”

� Based on complex, higher-order interactions
� MAPKKK = MAP Kinase Kinase Kinase =

that which operates on that which operates on 
that which operates on protein.

� How ‘sophisticated’ are natural algorithms?

Cells Compute
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Ultrasensitivity in the mitogen-activated protein cascadecascadecascadecascade, , , , Chi-Ying F. Huang 
and James E. Ferrell, Jr., 1996, Proc. Natl. Acad. Sci. USA, 93, 10078-10083.



Outline
� Analyzing biomolecular networks

� Try do understand the function of a network

� But also try to understand its structure, and what determines it

� The Cell-Cycle Switches
� Some of the best studied molecular networks

� Important because of their fundamental function (cell division) 
and the stability of the network across evolution

� We ask:
� What does the cell cycles switch compute?

� How does it compute it?
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� This network is universal in all Eukaryotes [P. Nurse]
� I.e., the network at the core of cell division is the same from yeast to us

� Not the components of the network, nor the rates

� The function is very well-studied. But why this structure?

� I.e., why this algorithm?

xy

The Cell Cycle Switch
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Double positive feedback on x
Double negative feedback on x
No feedback on y
What on earth … ???



How to Build a Good Switch
� What is a “good” switch?

� We need first a bistable system: one that has two distinct and stable states. 
I.e., given any initial state the system must settle into one of two states

� The settling must be fast (not get stuck in the middle for too long)
and robust (must not spontaneously switch back)

� Finally, we need to be able to flip the switch by external inputs

� “Population” Switches
� Populations of identical agents (molecules) with the whole population 

switching from one state to another as a whole

� Highly concurrent (stochastic)
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A Bad Algorithm
� Direct Competition

� x catalyzes the transformation of y into x

� y catalyzes the transformation of x into y

� when all-x or all-y, it stops

� This system has two end states, but
� Convergence to an end state is slow (a random walk)

� Any perturbation of an end state can start a random 
walk to the other end state (hence not really bistable)
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y + x → x + x
x + y → y + y



A Very Good Algorithm
� Approximate Majority (AM)

� Decide which of two populations is in majority

� A fundamental ‘population protocol’
� Agents in a population start in state x or state y

� A pair of agents is chosen randomly at each step, 
they interact (‘collide’) and change state

� The whole population must eventually agree on a 
majority value (all-x or all-y) with probability 1

7

Third ‘undecided’ state

1) Disagreements cause agents to 
become undecided

2) Undecided agents believe any
non-undecided agent they meet



Properties
� With high probability, for n agents

� The total number of interactions before converging is O(n log n)

⇒ fast

� The final outcome is correct if the initial disparity is ω(sqrt(n) log n)

⇒ solution states are robust to perturbations

� Logarithmic time bound in parallel time
� Parallel time is the number of steps divided by the number of agents

� In parallel time the algorithm converges with high probability in O(log n)
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[Angluin et al., http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]



Chemical Implementation
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x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

Chemistry as a 
programming 
language for 
population 
algorithms!

Worse-case scenario example, 
starting with x=y, b=0:Bistable

Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust to perturbation
above a threshold, initial majority wins whp



Back to the Cell Cycle
� The AM algorithm has ideal properties for settling a 

population into one of two states

� But that is not what the cell cycle uses

� Or is it?
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Influence Network Notation
� Catalytic reaction

� ‘Double kinase-phosphatase’ motif
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x + z → z + y

z is the catalyst

influence node catalytic node

x0+x1+x2 = constant



Step 1: the AM Network

� ... not biochemically plausible
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(x0 promotes x0)

(x2 promotes x2)



Natural Constraint #1
� Direct autocatalysis is not commonly seen in nature
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x1 + x0 → x0 + x0

x1 + x2 → x2 + x2



Step 2: remove auto-catalysis
� Replace autocatalysis 

� By mutual (simple) catalysis, introducing intermediate species z and r

� z and r need to ‘relax back’ when they are not being promoted:
s and t provide the back pressure for such relaxation

� ... still not biochemically plausible.
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(x0 promotes r0, promotes x0)

(x2 promotes z2, promotes x2)



Natural Constraint #2
� x0 and x2 (usually two states of the same molecule) 

are both active catalysts in that network

� That is not commonly seen in nature
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vs. or



� Remove the catalytic activity of x2
� By “flipping the z feedback to the other side”

� All species now have one active (x0,z0,r0) and one inactive (x2,z2,r2) form

� This is ‘biochmically plausible’

Step 3: only one active state per species
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(x0 promotes r0, promotes x0)

(x2 promotes z0 via s bias,
z0 promotes x2 via inhibiting x0)



Network Structure
� … and that is the cell-cycle switch!

� But did we preserve the AM function through our network transformations?

� Ideally: prove either that the networks are ‘contextually equivalent’ or that the 
transformations are ‘correct’

� Practically: compare their ‘typical’ behavior
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Convergence Analysis
� Switches as computational systems
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Steady State Analysis
� Switches as dynamical systems
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Evidence that CC is ‘similar’ to AM
� But there was a difference

� The output of CC does not go ‘fully on’ like AM:

� Because s continuously inhibits x through z, so that x cannot fully express 

� Q: Why didn’t nature do better than that?
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Nature fixed it!
� There is another known feedback loop

� By which x suppresses s “in retaliation” via the so-called Greatwall loop

� Also, s and t happen to be the same molecule

� (As usual, there are many more details in real biological networks; this is one of 
the many details people knew about without fully understanding its function)
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More surprisingly
� Made it faster too!

� The extra feedback also speeds up the decision time of the switch, 
making it about as good as the ‘optimal’ AM switch:
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Conclusion (in our published paper):
Nature is trying as hard as it can to 
implement an AM-class algorithm!



The Greatwall Kinase
� Our paper appeared:

� Suggesting GW is a better switch than CC,
also in the context of oscillators 

� Another paper the same week:
� Showing experimentally that the Greatwall

loop is a necessary component of the switch, 
i.e. the not-as-good-as-AM network
has been ‘refuted’
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But what about network equivalence?
� Our evidence is empirical

� Although quantitative and covering both kinetic and steady state behavior

� Also, contextual equivalence holds in the context of oscillators (see paper)

� Analytical evidence is harder to obtain
� The proof techniques for the AM algorithm are hard and do not generalize 

easily to more complex networks

� Quantitative theories of behavioral equivalence and behavioral approximation, 
e.g. in process algebra, are still lacking (although rich qualitative theories exist)
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Mutual Inhibition
� A new paper suggests that all cellular switches in all phases of the cell 

cycle follow (abstractly) a mutual inhibition pattern:
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GW

MI

In our notation:

cf.:



New Cell Cycle Network
� A new paper presents a more complete view of the cell cycle switch

� N.B. “phosphorylation network dynamics” is the same as our x0-x1-x2 motif
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NCC

In our notation:



Network Emulation
� For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of 
NCC collapse to those of MI (thanks to David Soloveichik):
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(18 species on 3 trajectories) (6 species on 3 trajectories)

x,r,p ⇢ x
s,u,z ⇢ s

NCC MI



Network Emulation
� For chosen (uniform) initial conditions, the ODEs (and hence trajectories) of MI

collapse to those of AM:
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(6 species on 3 trajectories) (3 species on 3 trajectories)

s,x⇢ x

MI AM



Conclusions
� The cell cycle switch can exactly emulate AM

� Nature likes a good algorithm!
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emulates: emulates:

(New) cell cycle switch
Approximate majority

algorithm

NCC

AMMI
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