

Molecular Programming

Luca Cardelli

2013-05-15 Hasselt

Objectives

- The promises of Molecular Programming:
 - · In Science & Medicine
 - \cdot In Engineering
 - \cdot In Computing

- The current practice of Molecular Programming
 - · DNA technology
 - Molecular languages and tools
 - Example of a molecular algorithm

The Hardware Argument Smaller and smaller things can be built

Smaller and Smaller

First working transistor John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit Jack Kilby, Sep. 1958.

50 years later

25nm NAND flash Intel&Micron, Jan. 2010. ~50atoms

Single molecule transistor Observation of molecular orbital gating *Nature*, 2009; 462 (7276): 1039

Molecules on a chip

~10 Moore's Law cycles left!

Molecular Transistor

Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

The Software Argument

Smaller and smaller things can be programmed

We can program...Computers.Completely!

We can program...

- Physical systems.
 - Completely! (Modulo sensors/actuators)

What can we do with "just" DNA?

- Organize ANY matter [caveats apply]
- Execute ANY kinetics [caveats: up to time scaling]
- Build Nano-Control Devices
- Interface to Biology

H.Lodish & al. Molecular Cell Biology 4th ed

Organizing Any Matter

- Use one kind of programmable matter (e.g. DNA).
- To organize (almost) ANY matter through it.

6 nm grid of individually addressable DNA pixels

European Nanoelectronics Initiative Advisory Council

"What we are really making are tiny DNA circuit boards that will be used to assemble other components." *Greg Wallraff, IBM*

PWK Rothemund, Nature 440, 297 (2006)

Executing Any Kinetics

- The kinetics of any finite network of chemical reactions, can be implemented (physically) with especially programmed DNA molecules.
- Chemical reactions as an executable programming language for dynamical systems!

DNA as a universal substrate for chemical kinetics

David Soloveichik^{2,1}, Georg Seelig^{2,b,1}, and Erik Winfree^{c,1}

Building Nano-Control Devices

• All the components of nanocontrollers can already be built entirerly and solely with DNA, and interfaced to the environment

Interfacing to Biology A doctor in each cell

The Biological Argument

Biological systems are already 'molecularly programmed'

But ...

• Biology is programmable, but not by us!

• Still work in progress:

- Gene networks are being programmed in synthetic biology, but using existing 'parts'
- Protein networks are a good candidate, unfortunately we cannot yet effectively design proteins
- Transport networks are being looked at for programming microfluidic devices manipulating vesicles

Molecular Languages

... that we can execute

Action Plan

- Building a full software/hardware pipeline for a new fundamental technology
 - Mathematical Foundations
 - Programming Languages
 - Analytical Methods and Tools
 - Device Architecture and Manufacturing
- [~ concurrency theory in the 80's]
- [~ software engineering in the 70's]
- [~ formal methods in the 90's]
- [~ electronics in the 60's]
- To realize the potential of Molecular Programming
- This is largely a 'software problem' even when working on device design

The role of DNA Computing

• Non-goals

- \cdot Not to solve NP-complete problems with large vats of DNA
- \cdot Not to replace silicon
- Bootstrapping a carbon-based technology
 - To precisely control the organization and dynamics of matter and information at the molecular level
 - \cdot DNA is our engineering material
 - · Its biological origin is "accidental" (but convenient)
 - · It is an information-bearing programmable material
 - \cdot It is possible that other such materials will be developed

Domains

- Subsequences on a DNA strand are called domains
 - \cdot provided they are "independent" of each other

Х

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

V

oriented DNA single strand

- That is, differently named domains must not hybridize
 - With each other, with each other's complement, with subsequences of each other, with concatenations of other domains (or their complements), etc.

Ζ

Short Domains

DNA double strand

Reversible Hybridization

Long Domains

Irreversible Hybridization

"Toehold Mediated"

Toehold Binding

Branch Migration

Displacement

Irreversible release

Cannot proceed Hence will undo

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

Garbage collection "built into" the gates

Two-Domain DNA Strand Displacement

X

Luca Cardelli

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): Developments in Computational Models (DCM 2010). EPTCS 25, 2010, pp. 33-47. May 2010.

Transducer

Built by self-assembly!

ta is a *private* signal (a different 'a' for each xy pair)

So far, a **tx** signal has produced an **at** cosignal. But we want signals as output, not cosignals.

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Done.

N.B. the gate is consumed: it is the energy source

Development Tools MSRC Bio Computation Group

TS THEFT

1000

Analytical Methods

• Probabilistic modelchecking (complete state space exploration) to test system correctness.

THE ROYAL SOCIETY

Design and analysis of DNA strand displacement devices using probabilistic model checking

Matthew B. Lakin $1/32^{+}$, David Parker $^{2}2^{+}$, Luca Cardelli 1 , Marta Kwiatkowska 2 and Andrew Phillips $1/2^{+}$

• Quantitative theories of system equivalence and approximation.

CONTINUOUS MARKOVIAN LOGICS AXIOMATIZATION AND QUANTIFIED METATHEORY

RADU MARDARE, LUCA CARDELLI, AND KIM G. LARSEN

Approximate Majority Algorithm

- Given two populations of agents (or molecules)
 - <u>Randomly</u> communicating by radio (or by collisions)
 - \cdot Reach an agreement about which population is in majority
 - By converting all the minority to the majority [Angluin et al., Distributed Computing, 2007]
- Could also be used to restore a digital signal to full strength
- 3 rules of agent (or molecule) interaction
 - X + Y B + B
 - B + X X + X
 - $\cdot B + Y = Y + Y$

"our program"

DNA Implementation, at U.W.

• A DNA Realization of Chemical Reaction Networks [Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David Soloveichik and Georg Seelig]

Related Work Supporter by our Tools

3 JUNE 2011 VOL 332 SCIENCE Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades

Square root of a 4-bit number

368 | NATURE | VOL 475 | 21 JULY 2011 Neural network computation with DNA strand displacement cascades

Lulu Qian¹, Erik Winfree^{1,2,3} & Jehoshua Bruck^{3,4}

Associative memory

Final Remarks

Outlook: A Brief History of DNA

©2013 Microsoft Corporation. All rights reserved.