
Molecular Programming
Luca Cardelli

2013-05-15 Hasselt



• The promises of Molecular Programming:
 In Science & Medicine
 In Engineering
 In Computing

• The current practice of Molecular Programming
 DNA technology
 Molecular languages and tools
 Example of a molecular algorithm

Objectives



The Hardware Argument
Smaller and smaller things can be built



Smaller and Smaller
First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947

First integrated circuit
Jack Kilby, Sep. 1958.

Single molecule transistor
Observation of molecular orbital gating
Nature, 2009; 462 (7276): 1039

Placement and orientation of individual DNA shapes on lithographically
patterned surfaces. Nature Nanotechnology 4, 557 - 561 (2009).

Molecules on a chip

~10 Moore’s Law cycles left!

50 years later
25nm NAND flash
Intel&Micron, Jan. 2010. ~50atoms



The Software Argument
Smaller and smaller things can be programmed



We can program...
• Computers.
 Completely!

Computing

Information

Information



We can program...
• Physical systems.
 Completely!

(Modulo sensors/actuators)

Sensing

Actuating

Computing



We can program...
• Matter
 Completely and directly!

 Currently: only DNA/RNA.
Constructing Actuating

Sensing

Computing

It's like a 3D printer without the printer!
[Andrew Hellington]



What can we do with “just” DNA?
• Organize ANY matter [caveats apply]

• Execute ANY kinetics [caveats: up to time scaling]

• Build Nano-Control Devices

• Interface to Biology

H.Lodish & al. Molecular Cell Biology 4th ed.



• Use one kind of programmable
matter (e.g. DNA).

• To organize (almost) ANY
matter through it.

"What we are really making are tiny DNA circuit boards
that will be used to assemble other components."

Greg Wallraff, IBM

European Nanoelectronics Initiative Advisory Council

PWK Rothemund, Nature 440, 297 (2006)

+
6 nm grid of
individually
addressable
DNA pixels

Organizing Any Matter



2013-05-16 Luca Cardelli 11

Executing Any Kinetics
• The kinetics of any finite network of chemical reactions, can be

implemented (physically) with especially programmed DNA molecules.

• Chemical reactions
as an executable
programming
language for
dynamical systems!



2013-05-16 Luca Cardelli 12

Building Nano-Control Devices
• All the components of nanocontrollers can already be built entirerly and solely with

DNA, and interfaced to the environment

Sensing

Constructing Actuating

Computing

DNA Aptamers

DNA Walkers & TweezersSelf-assembling DNA Tiles

DNA Logical Gates



A doctor in each cell
Interfacing to Biology



The Biological Argument
Biological systems are already
‘molecularly programmed’



Nucleotides

Aminoacids Phospholipids

Gene
Machine

Protein
Machine Machine

Membrane

P QC

A B
x

y

Molecular Interaction
Maps

Gene Networks

Transport Networks

Biological Languages



• Biology is programmable, but not by us!

• Still work in progress:
 Gene networks are being programmed in synthetic biology, but using existing ‘parts’
 Protein networks are a good candidate, unfortunately we cannot yet effectively design

proteins
 Transport networks are being looked at for programming microfluidic devices

manipulating vesicles

But ...



Molecular Languages
... that we can execute



Action Plan
• Building a full software/hardware pipeline for a new fundamental technology
 Mathematical Foundations [~ concurrency theory in the 80’s]
 Programming Languages [~ software engineering in the 70’s]
 Analytical Methods and Tools [~ formal methods in the 90’s]
 Device Architecture and Manufacturing [~ electronics in the 60’s]

• To realize the potential of Molecular Programming

• This is largely a ‘software problem’ even when working on device design



The role of DNA Computing
• Non-goals
 Not to solve NP-complete problems with large vats of DNA
 Not to replace silicon

• Bootstrapping a carbon-based technology
 To precisely control the organization and dynamics of matter and information

at the molecular level
 DNA is our engineering material
 Its biological origin is “accidental” (but convenient)
 It is an information-bearing programmable material
 It is possible that other such materials will be developed



Domains
• Subsequences on a DNA strand are called domains
 provided they are “independent” of each other

• That is, differently named domains must not hybridize
 With each other, with each other’s complement, with subsequences of each

other, with concatenations of other domains (or their complements), etc.

x zy
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG oriented DNA

single strand



t

t
t

Reversible Hybridization

Short Domains

DNA double
strand



Long Domains

x

x x

Irreversible Hybridization



Strand Displacement

t x

xt

“Toehold Mediated”



Strand Displacement

xt

Toehold Binding



Strand Displacement

xt

Branch Migration



Strand Displacement

xt

Displacement



Strand Displacement

xt

x

Irreversible release



t

Bad Match

x

x

y

zt



t

Bad Match

x y

z
x



t

Bad Match

x y

z
x



xt

Bad Match

y
z

Cannot proceed
Hence will undo



Two-Domain Architecture
• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands” with open toeholds

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates



Transducer



t a

xt t a t a x t y t a t

y t

Transducer xy

t x
Input



Transducer xy

ta is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x
Input

Built by self-assembly!



Transducer xy

x

t a

t t a t a x t y t a t

y t



Transducer xy

t a

xt t a t a x t y t a t

y t

x t

Active
waste



Transducer xy

xt t a t a x t y t a t

y t

x t



Transducer xy

a t

t axt a x t y t a t

y t

x t

t

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer xy

t axt a x t y t a t

y t

x t

t



Transducer xy

t a

a tt axt a x t y

y t

x t

t



Transducer xy

t a

a tt axt a x t y t

x t

t



Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output ty signal.
But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer xy

t y

t a

a tt axt a x y t

x t
Output

t t



Transducer xy

t y

t a

a tt axt a x y tt

Output

t



Transducer xy

x

t y

t a

a tt axt a y tx t

Output

t



Transducer xy

x

t y

t a tt axt a y tx t

Output



Transducer xy

a x

t y

t a a tt axt y tx t

Output



a x

t a a tt axt y tx t

Transducer xy

Done.

N.B. the gate is consumed: it is the energy source

t y
Output



Transducer xy



Join x+yz



Development Tools
MSRC Bio Computation Group



Analytical Methods
• Probabilistic modelchecking (complete state space exploration)

to test system correctness.

• Quantitative theories of system equivalence and approximation.



Approximate Majority Algorithm
• Given two populations of agents (or molecules)
 Randomly communicating by radio (or by collisions)
 Reach an agreement about which population is in majority
 By converting all the minority to the majority

[Angluin et al., Distributed Computing, 2007]

• Could also be used to restore a digital signal to full strength

• 3 rules of agent (or molecule) interaction
 X + Y → B + B
 B + X → X + X
 B + Y → Y + Y

“our program”



DNA Implementation, at U.W.
• A DNA Realization of Chemical Reaction Networks

[Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew Phillips, Luca Cardelli, David
Soloveichik and Georg Seelig]



Related Work Supporter by our Tools

Square root of a 4-bit number Associative memory



Final Remarks



Outlook: A Brief History of DNA

Digital Computers

DNA, -3,800,000,000

DNA Computers
Software
systematic

manipulation
of information

Computer
programming

20th century

systematic
manipulation

of matter
Molecular

programming
21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994

Structural DNA, 1982

<??>



©2013 Microsoft Corporation. All rights reserved.


