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Cells Compute

No survival without computation!
o Finding food
o Avoiding predators

How do they compute?
o Unusual computational paradigms.
o Proteins: do they work like electronic circuits?
o Genes: what kind of software is that?

Signaling networks
o Clearly “information processing”
o They are “just chemistry”: molecule interactions
o But what are their principles and algorithms?

Complex, higher-order interactions

o MAPKKK = MAP Kinase Kinase Kinase:
that which operates on that which operates on
that which operates on protein.
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Outline

-+ Analyzing biomolecular networks

o Various biochemical/bioinformatic techniques can tell
us something about network structures.

o We try do discover the function of the network, or to
verify hypotheses about its function.

o We try to understand how the structure is dictated by
the function and other natural constraints.

 The Cell-Cycle Switches and Oscillators

o Some of the best studied molecular networks.

o Important because of their fundamental function (cell
division) and preservation across evolution.



| The Cell Cycle Switch

» At the core of the cell-cycled oscillator.
o This network is universal in all Eukaryotes [P. Nurse].
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- active * Double positive feedback on x
MPF « Double negative feedback on x
 No feedback ony
« What on earth ... 77?7

unreplicated
DNA

o Well studied. But why this structure?



| How to Build a Switch

« What is a “good” switch?

o We need first a bistable system: one that has two distinct
and stable states. l.e., given any initial state the system
must sett/e into one of two states.

o The settling must be 7ast (not get stuck in the middle for

too long) and robust (must not spontaneously switch
back).

o Finally, we need to be able to 7/ip the switch: drive the
transitions by external inputs.

« “Population” Switches

o Populations of identical agents (molecules) that switch
from one state to another as a whole.

o Highly concurrent (stochastic).

L €1



| A Bad Algorithm

-« Direct x-y competition
o X catalyzes the transformation of y into x
o y catalyzes the transformation of x into y

xI | Y+ X=X+ X
«— X+y—>y+y
!

« This system is bistable, but

o Convergence to a stable state is slow :
(a random walk). ! u

o Any perturbation of a stable state can initiate
a random walk to the other stable state.

vvvvvvvvv



A Very Good Algorithm

« Approximate Majority

o Decide which of two populations is in majority

L

« A fundamental ‘population protocol’

o Agents in a population start in state x or state y.

o A pair of agents is chosen randomly at each step,
they interact ("collide") and change state.

o The whole population must eventually agree on a
maJorlty value (all x or all y) with probability 1.

A Sin }l P opu ] l: P otocol for Fast Robust v Yy
g P P
We analyze the beha of the following population pro- X X

lli('lll ‘.‘.'ilh states Q = {h. x.y}. The state b is the blank
state. Hu\\' ]:!I)(‘Ih .u;'l\'(‘ 111(‘ initiator’s state and eolumn
labels the responder y

. B Third ‘undecided’ state.
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Properties

With high probability, for n agents e o yaleeduhomes  spres papersdisc2007-eisentat-slices.pa)
o The number of state changes before converging is O(n log n)
o The total number of interactions before converging is O(n log n)
o The final outcome is correct if the initial disparity is w(sqrt(n) log n)

The algorithm is the fastest possible
o Must wait Q(n log n) steps in expectation for all agents to interact

Logarithmic time bound
o Parallel time is the number of steps divided by the number of agents.
o In parallel time the algorithm converges with high probability in O(log n).
o That is true for any initial conditions, even x=y!

“Although we have described the population protocol model in a sequential

light, in which each step is a single pairwise interaction, interactions between

pairs involving different agents are independent and may be thought of as occurring
in parallel. In measuring the speed of population protocols, then, we

define 1 unit of parallel time to be jV j steps. The rationale is that in expectation,
each agent initiates 1 interaction per parallel time unit; this corresponds to

the chemists’ idealized assumption of a well-mixed solution.”

Distributed Computing 21(2):87-102.




Chemical Implementation

X+y—>y+b |
V+X—>X+Db xlsbli
b+ X—> X+ X |<_T ‘_T

b+y—->vy+y

Worse case test: start with x=y.
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Back to the Cell Cycle

« The AM algorithm has great properties

for settling a population into one of two
states.

« But that is not what the cell cycle uses to
switch its populations of molecules.

e Oris it?



Some Notation
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« Catalytic reaction e

:

X—>Yy

X+z—>z2+Yy

 Double ‘kinase-phosphatase’ reactions
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Stimulation/Inhibition

« A possible (mass—-action) non-linear mechanism
for stimulation/inhibition influence.

s —<e—N



Step 1: the AM Network

¢ . o |

Abbreviated o X b

notation: |_T | T T

Not biochmically plausible.

CONSTRAINT: Autocatalysis, and especially intricate
autocatalysis, is not commonly seen in nature.

b+ X—>o> X+ X
b+y—>y+y
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| Step 2: remove auto-catalysis

o Replace autocatalysis by mutual (simple) catalysis,
introducing intermediate species z, r.

 Here z breaks the y auto-catalysis, and r breaks the x auto-
catalysis, while preserving the feedbacks.

« z and r need to ‘relax back’ (to w and p) when they are not
catalyzed: s and t provide the back pressure.
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o Still not biochmically plausible.

o CONSTRAINT: x and y (two states of the same molecule)
are distinct active catalysts: that is not common in nature.

L €1 _l



Step 3: only one active state

o Remove the catalytic activity of y.

 Instead of y activating itself through z, we are left with z
activating y, which remains passive.

« We still need z to (sometimes) activate y.
« Hence, to fully deactivate y we now need to deactivate z.
« Since x ‘wants’ to deactivate y, we make x deactivate z.

o All species now have one active (x,z,r) and one inactive
(y,w,p) form. This is ‘biochmically plausible’.



Network Structure

« ... and that /s the cell-cycle switch!

Nobel-prize
winning network

Variation on a
distributed
algorithm

N

« The question is: did we preserve the AM function
through our network transformations?

« lIdeally: prove either that the networks are ‘contextually
equivalent’ or that the transformations are ‘correct’.

« Practically: compare their ‘typical’ behavior.



Convergence Analysis

Switches as Computational Systems - Convergence
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Steady State Analysis

Switches as Dynamical Systems - Steady State Response
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The Argument So Far
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» Relating dynamical and computational

systems in isolation (as c/osed systems)

o The AM algorithm (network) implements an input-driven
switching function (in addition to the known majority function).

o The CC algorithm implements a input-less majority function (in
addition to the known switching function).

o The structures of AM and CC are related, and an intermediate
network shares some properties of both.

 But what about the context?

o Will AM and CC behave similarly in any context
(as open systems)?

o That’s a hard question, so we look at their intended context:
implementing oscillators.

o Also, oscillators are almost the ‘worst case’ contexts: very
sensitive to component behavior.

L €1



Oscillators

Basic in Physics, studied by simple pAenomenol/ogical (not
structural) ODE models.

Non-trivial in Chemistry: it was only discovered in the 20’s
(Lotka) that chemical systems can (theoretically) oscillate:
before, oscillation was thought impossible. Shown
experimentally only in the 50’s.

Mechanics (since antiquity) and modern Electronics
(as well as Chemistry) must engineer the network
structure of oscillators.

Biology: all natural cycles are oscillators. Here we must
reverse engineer their network structure.

Computin?: how can populations of agents (read:
molecules) interact (network) to achieve oscillations?

J
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The Trammel of Archimedes
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« A device to draw ellipses

o Two interconnected switches.

o When one switch is on (off) it flips the other switch on (off).
When the other switch is on (off) it flips the first switch off (on).

o The amplitude is kept constant by mechanical constraints.

The function The network
Y;
Y> l
X; = Y,
X3
X 3 V2

en.wikipedia.org/wiki/Trammel_of_Archimedes



The Shishi Odoshi

« A Japanese scarecrow (/it. scare-deer)
o Used by Bela Novak to illustrate the cell cycle switch.
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counterweight
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full + dn 2 dn + empty
dn + empty 2 empty + up Outer switched connections replaced by constant

influxes: tap water and gravity.



Contextual Analysis

AM switches in the context of larger networks (oscillators).
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Modularity Analysis

CC can be swapped in for AM.
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But there was a difference
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We have seen that the output of CC does not go ‘fully on’ like AM:

0 0.00710
S 15
l Pr(x,lt,)
W&~~~ 7 = 333[1”
1 B 0o
—_— 0.1
P X e~V .
T
—_ _T
p T r )(lp
t 0

(And similarly the CC oscillator does not go ‘full on’.)

Because s continuously inhibits x through z, so that x cannot fully express.
This could be solved if x would inhibit s in retaliation.

Q: How would you fix this Nobel-prize winning network?



Nature fixed it!
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There is another known feedback loop in real cell cycle switches
by which x suppresses s:

l Prix,lt,) Full activation!
W= 2 = '
T
‘ ¢, ? :
S <~ m p <~ r lp

GW d

(Also, s and t happen to be the same molecule)



And made it fast too!

More surprising: the extra feedback also speeds up the decision time of
the switch, making it about as good as the ‘optimal’ AM switch:

L
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15000

AM
Gw
CC

X
X -

0 " <t,—>  0.004

Conclusion (in published paper):
Nature is trying as hard as it can to implement

an AM-class algorithm!



The Greatwall Kinase

'+ Another paper appeared the SEIENTIFIC LW,
same week as ours: REPL{IRTS Rapd SRS (
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Figure 7 | MPF as a core component in the autoregulatory loop for cyclin
B-Cdk1 activation. Cyclin B-Cdk1is by itself very inefficient in triggering
the autoregulatory loop in recipient oocytes, but MPF, consisting of both
cyclin B-Cdk1 and Gwl, can efficiently initiate the activation loop, leading to
full activation of cyclin B-Cdk1 in recipients.

ARTICLE

W.IID]E Acceptad 14 Aug 2012 | Published 11 Sep 2012 | DOIz0. 2
Greatwall kinase and cyclin B-Cdk1 are both critical
constituents of M-phase-promoting factor

« Showing experimentally that
the (known) Greatwall /PP2A
loop is a necessary
component of the switch.

MasatoshiHara"! Yusuke Abel", Toshiaki Tanaka?, TakayoshiYamamoto'T, Eiichi Okumura! & Takeo Kishimoto!




Same as ours

Their Network

Our Network

Inactive
cyclin B-Cdk1

Myt1 1 Cdc25
AEOQA V 1 1

i

Figure 7 | MPF as a core component in the autoregulatory loop for cyclin
B-Cdk1 activation. Cyclin B-Cdk1 is by itself very inefficient in triggering
the autoregulatory loop in recipient oocytes, but MPF, consisting of both
cyclin B-Cdk1and Gwl, can efficiently initiate the activation loop, leading to
full activation of cyclin B-Cdk1 in recipients.

Basically an experimental validation

that the real CC is really a good AM.
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A new switch candidate: GW

L

« Will it work in the oscillator?
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« Absolutely not! ®

o The x stable state is just too strong: a high x will shut down s completely; which
means that r will be fully on, and it in turn will reinforce x fully. And y, can never
be strong enough to push down x when x-r are in such a strong mutual
feedback. No amount of fiddling seems to give enough control on that situation.

L €1



However this will

L ]

« Neatly closing up all the loose ends:

o Put s under control of y,, so y, can succesfully undermine x.

Xof=VY
22— 772 | X y

SPiM

W —_— yi 3nun

ke ST

SV)m p% I 0.21901

! !

« Beautifully spiky and full-on oscillations.

o On the first try, with all default parameters:
all black rates 1.0, all gray (&red) rates 0.5, all initial amounts equal.




- Anew scientific hypothesis

» Hence, a condition for robust oscillations:

o Either Gwl or PP2A or something along that path
must be under control of cdc20.

11
cdc20 ;
I_J i \Ngg]
s 1
---@ PP2A rfg-v-vl) cdk/cyc
cd:25
T

o There are some hints in the literature that this may be the
case, but no direct experlrrlental validation.



Summary

The structure of AM implements an input-driven switching
function (in addition to the known majority function).

The structure of CC/GW implements a input-less majority
function (in addition to the known switching function).

The structures of AM and CC/GW are related, and an
intermediate network shares the properties of both.

The behaviors of AM and CC/GW in isolation are related.

The behaviors of AM and CC/GW in oscillator contexts are
related.

A refinement (GW) of the core CC network, known to occur in
nature, improves switching performance and brings it in line
with AM performance.



Computational Outlook




Computational viewpoint

L

e Cells are computational engines

o Their primary function is information processing
« Which controls feeding, escape, and reproduction.

« Without properly processing information cells soon die
(by starvation or predation).

* Hence a strong pressure to process information better.
o That Aappens to be implemented by chemistry

 Fundamental is not the ‘hardware’ (proteins etc.) which easily
varies between organisms but the ‘software’ the runs on the
hardware.

« So, what algorithms do they run?



Reverse Engineering

Q (traditional): What kind of dynamical system is the
cell-cycle switch?

A (traditional): Bistability - ultrasensitivity - hysteresis ...
Focused on how unstructured sub-populations change
over time.

Q: What kind of algorithmic system is the cell-cylce
switch?

A: Interaction - complexity - convergence ...
Focused on individual molecules as programmable,
structured, algorithmic entities.

Leading to a better understanding of not just the
function but also the network (algorithm).

£



Direct Engineering

L

+ The AM algorithm was not learned from
nature

o CC was invented ~2.7 billions years ago.
o AM was invented ~6 years ago (but independently).

« But nature may have more tricks

o If there is some clever population algorithm
out there, how will we recognize it?

o We need to understand better how nature operates.



In separate work...

We have a chemical implementation of AM using DNA gates,
i.e., a ‘reimplementation’ of the central cell-cycle switch.
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