How the Cell Cycle Computes

Luca Cardelli
Microsoft Research

Joint work with Attila Csikász-Nagy
CoSBI

MSRC TAB, 2012-06-12
http://lucacardelli.name
Outline

• Analyzing molecular networks
 o Various biochemical/bioinformatic techniques can tell us something about network structures.
 o We try to discover the function of the network, or to verify hypotheses about its function.
 o We try to understand how the structure is dictated by the function and other natural constraints.

• The Cell–Cycle Switches and Oscillators
 o Some of the best studied molecular networks.
 o Important because of their fundamental function (cell division) and preservation across evolution.
The Cell Cycle Switch

- At the core of the cell-cycled oscillator.
 - This network is universal in all Eukaryotes [P. Nurse].

- Double positive feedback on \(x \)
- Double negative feedback on \(x \)
- No feedback on \(y \)
- What on earth \(\ldots \) ???

- Well studied. But *why this structure?*
How to Build a Switch

• What is a “good” switch?
 o We need first a bistable system: one that has two distinct and stable states. I.e., given any initial state the system must settle into one of two states.
 o The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back).
 o Finally, we need to be able to flip the switch: drive the transitions by external inputs.

• “Population” Switches
 o Populations of identical agents (molecules) that switch from one state to another as a whole.
 o Highly concurrent (stochastic).
A Bad Algorithm

• Direct x–y competition
 o x catalyzes the transformation of y into x
 o y catalyzes the transformation of x into y

\[\begin{align*}
 y + x &\rightarrow x + x \\
 x + y &\rightarrow y + y
\end{align*} \]

• This system is bistable, but
 o Convergence to a stable state is slow (a random walk).
 o Any perturbation of a stable state can initiate a random walk to the other stable state.
A Very Good Algorithm

• **Approximate Majority**
 - Decide which of two populations is in majority

• **A fundamental ‘population protocol’**
 - Agents in a population start in state x or state y.
 - A pair of agents is chosen randomly at each step, they interact ("collide") and change state.
 - The whole population must eventually agree on a majority value (all x or all y) with probability 1.
Chemical Implementation

A programming language for population algorithms!

\begin{align*}
x + y & \rightarrow y + b \\
y + x & \rightarrow x + b \\
b + x & \rightarrow x + x \\
b + y & \rightarrow y + y
\end{align*}

Worse case test: start with \(x = y \).

Bistable
\begin{itemize}
\item Even when \(x = y \)! (stochastically)
\end{itemize}

Fast
\begin{itemize}
\item \(O(\log n) \) convergence time
\end{itemize}

Robust
\begin{itemize}
\item \(\omega(\sqrt{n \log n}) \) majority wins whp
\end{itemize}

Gillespie simulation of the chemical reactions in SPiM.
\textit{All rates are equal.}
Back to the Cell Cycle

• The AM algorithm has great properties for settling a population into one of two states.

• But that is not what the cell cycle uses to switch its populations of molecules.

• Or is it?
Step 1: the AM Network

Abbreviated notation:

- CONSTRAINT: Autocatalysis, and especially intricate autocatalysis, is not commonly seen in nature.

\[
\begin{align*}
 b + x &\rightarrow x + x \\
 b + y &\rightarrow y + y
\end{align*}
\]
Step 2: remove auto–catalysis

- Replace autocatalysis by mutual (simple) catalysis, introducing intermediate species z, r.
 - Here z breaks the y auto–catalysis, and r breaks the x auto–catalysis, while preserving the feedbacks.
 - z and r need to ‘relax back’ (to w and p) when they are not catalyzed: s and t provide the back pressure.

- CONSTRAINT: x and y (two states of the same molecule) are distinct active catalysts: that is not common in nature.
Step 3: only one active state

- Remove the catalytic activity of y.
 - Instead of y activating itself through z, we are left with z activating y (which remains passive). Hence, to deactivate y we now need to deactivate z. Since x ‘wants’ to deactivate y, we make x deactivate z.

- All species now have one active (x,z,r) and one inactive (y,w,p) form. This is ‘normal’.
Network Structure

• ... and that *is* the cell–cycle switch!

• The question is: did we preserve the AM function through our *network transformations*?
 • Ideally: prove either that the networks are ‘contextually equivalent’ or that the transformations are ‘correct’.
 • Practically: compare their ‘typical’ behavior.
Convergence Analysis

Switches as Computational Systems – Convergence

NEW! CC converges in log time
Steady State Analysis

Switches as Dynamical Systems – Steady State Response

NEW!
AM shows hysteresis
The Trammel of Archimedes

- A device to draw ellipses
 - Two interconnected switches.
 - When one switch is on (off) it flips the other switch on (off).
 - When the other switch is on (off) it flips the first switch off (on).
 - The amplitude is kept constant by mechanical constraints.

en.wikipedia.org/wiki/Trammel_of_Archimedes
The Shishi Odoshi

- A Japanese scarecrow (*lit.* scare–deer)
 - Used by Bela Novak to illustrate the cell cycle switch.

Outer switched connections replaced by constant influxes: tap water and gravity.

http://www.youtube.com/watch?v=VbvecTlftcE&NR=1&feature=fvwp

empty + up → up + full
up + full → full + dn
full + dn → dn + empty
dn + empty → empty + up
Contextual Analysis

Switches in the context of larger networks (oscillators).

Trammel

Shishi Odoshi
Modularity Analysis

CC can be swapped in for AM.
CC does not “fully switch”

We have seen that the output of CC does not go ‘fully on’ like AM:

because s continuously inhibits s so that x cannot fully express. This could be solved if x would inhibit s in retaliation.

Q: How would you fix this problem?
Nature fixed it!

There is another known feedback loop in real cell cycle switches by which x suppresses s:

(Also, s and t happen to be the same molecule)
And made it fast too!

More surprising: the extra feedback also speeds up the decision time of the switch, making it about as good as the ‘optimal’ AM switch:

Conclusion: Nature is trying as hard as it can to implement an AM-class algorithm!
Conclusions
Summary

- The structure of AM implements an input-driven switching function (in addition to the known majority function).
- The structure of CC implements a input-less majority function (in addition to the known switching function).
- The structures of AM and CC are related, and an intermediate network shares the properties of both.
- The behaviors of AM and CC in isolation are related.
- The behaviors of AM and CC in oscillator contexts are related.
- A refinement of the core CC network, known to occur in nature, improves switching performance and brings it in line with AM performance.
Reverse Engineering

• Q (traditional): What kind of dynamical system is the cell–cycle switch?
 • A (traditional): Bistability – ultrasensitivity – hysteresis ... Focused on how unstructured sub–populations change over time.

• Q: What kind of algorithmic system is the cell–cycle switch?
 • A: Interaction – complexity – convergence ... Focused on individual molecules as programmable, structured, algorithmic entities.

• Leading to a better understanding of not just the function but also the network (algorithm).
Direct Engineering

• AM was not learned from nature
 o CC was invented ~2.7 billions years ago.
 o AM was invented ~6 years ago (but independently).

• But nature may have more tricks
 o If there is some clever population algorithm out there, how will we recognize it?
 o We need to understand how nature operates.