How the Cell Cycle Computes

Luca Cardelli Microsoft Research

Joint work with Attila Csikász-Nagy CoSBi

MSRC TAB, 2012-06-12
http://lucacardelli.name

Outline

- Analyzing molecular networks
- Various biochemical/bioinformatic techniques can tell us something about network structures.
- We try do discover the function of the network, or to verify hypotheses about its function.
- We try to understand how the structure is dictated by the function and other natural constraints.
- The Cell-Cycle Switches and Oscillators
- Some of the best studied molecular networks.
- Important because of their fundamental function (cell division) and preservation across evolution.

The Cell Cycle Switch

- At the core of the cell-cycled oscillator. - This network is universal in all Eukaryotes [P. Nurse].

- Well studied. But why this structure?

How to Build a Switch

- What is a "good" switch?
- We need first a bistable system: one that has two distinct and stable states. I.e., given any initial state the system must settle into one of two states.
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back).
- Finally, we need to be able to flip the switch: drive the transitions by external inputs.
- "Population" Switches
- Populations of identical agents (molecules) that switch from one state to another as a whole.
- Highly concurrent (stochastic).

A Bad Algorithm

- Direct $x-y$ competition
- x catalyzes the transformation of y into x
- y catalyzes the transformation of x into y

$$
\begin{aligned}
& y+x \rightarrow x+x \\
& x+y \rightarrow y+y
\end{aligned}
$$

- This system is bistable, but
- Convergence to a stable state is slow (a random walk).

- Any perturbation of a stable state can initiate a random walk to the other stable state.

A Very Good Algorithm

- Approximate Majority
- Decide which of two populations is in majority
- A fundamental 'population protocol'
- Agents in a population start in state x or state y.
- A pair of agents is chosen randomly at each step, they interact ("collide") and change state.
- The whole population must eventually agree on a majority value (all x or all y) with probability 1.
Dana Angluin - James Aspnes - David Eisenstat
A Simple Population Protocol for Fast Robust Approximate Majority

We analyze the behavior of the following population protocol with states $Q=\{b, x, y\}$. The state b is the blank state. Row labels give the initiator's state and column labels the responder's state.

[^0]

Third 'undecided' state.

Chemical Implementation

$$
\begin{array}{ll}
\begin{array}{l}
\text { A programming } \\
\text { language } \\
\text { for population } \\
\text { algorithms! }
\end{array} & \mathrm{x}+\mathrm{y} \rightarrow \mathrm{y}+\mathrm{b} \\
& \mathrm{y}+\mathrm{x} \rightarrow \mathrm{x}+\mathrm{b} \\
& \mathrm{~b}+\mathrm{x} \rightarrow \mathrm{x}+\mathrm{x} \\
& \mathrm{~b}+\mathrm{y} \rightarrow \mathrm{y}+\mathrm{y}
\end{array}
$$

Worse case test: start with $x=y$.

Bistable

Even when $x=y$! (stochastically)

Fast

O(log n) convergence time
Robust
$\omega(\sqrt{ } \log n)$ majority wins whp

Back to the Cell Cycle

- The AM algorithm has great properties for settling a population into one of two states.
- But that is not what the cell cycle uses to switch its populations of molecules.
- Or is it?

Step 1: the AM Network

- CONSTRAINT: Autocatalysis, and especially intricate autocatalysis, is not commonly seen in nature.

$$
\begin{aligned}
& b+x \rightarrow x+x \\
& b+y \rightarrow y+y
\end{aligned}
$$

Step 2: remove auto-catalysis

- Replace autocatalysis by mutual (simple) catalysis, introducing intermediate species z, r.
- Here z breaks the y auto-catalysis, and r breaks the x autocatalysis, while preserving the feedbacks.
- z and r need to 'relax back' (to w and p) when they are not catalyzed: s and t provide the back pressure.

- CONSTRAINT: x and y (two states of the same molecule) are distinct active catalysts: that is not common in nature.

Step 3: only one active state

- Remove the catalytic activity of y.
- Instead of y activating itself through z, we are left with z activating y (which remains passive). Hence, to deactivate y we now need to deactivate z. Since x 'wants' to deactivate y, we make x deactivate z.

- All species now have one active (x,z,r) and one inactive (y, w, p) form. This is 'normal'.

Network Structure

- ... and that is the cell-cycle switch!

- The question is: did we preserve the AM function through our network transformations?
- Ideally: prove either that the networks are 'contextually equivalent' or that the transformations are 'correct'.
- Practically: compare their 'typical' behavior.

Convergence Analysis

Switches as Computational Systems - Convergence

Steady State Analysis

Switches as Dynamical Systems - Steady State Response

DC

sc

NEW!
AM shows
hysteresis

The Trammel of Archimedes

- A device to draw ellipses
- Two interconnected switches.
- When one switch is on (off) it flips the other switch on (off). When the other switch is on (off) it flips the first switch off (on).
- The amplitude is kept constant by mechanical constraints.

The function

The network

The Shishi Odoshi

- A Japanese scarecrow (/it. scare-deer)
- Used by Bela Novak to illustrate the cell cycle switch.

empty + up \rightarrow up + full up + full \rightarrow full + dn
full $+\mathrm{dn} \rightarrow \mathrm{dn}+$ empty
dn + empty \rightarrow empty + up

http://www.youtube.com/watch?v=VbvecTIftcE\&NR=1 \&feature=fvwp

Outer switched connections replaced by constant influxes: tap water and gravity.

Contextual Analysis

Switches in the context of larger networks (oscillators).

Trammel

Modularity Analysis

CC can be swapped in for AM.

y
b
x 2
y 2
b 2
z
z

CC does not "fully switch"

We have seen that the output of CC does not go 'fully on' like AM:

because s continuously inhibits s so that x cannot fully express. This could be solved if x would inhibit s in retaliation.

Q: How would you fix this problem?

Nature fixed it!

There is another known feedback loop in real cell cycle switches by which x suppresses s :

Full activation!
(Also, s and t happen to be the same molecule)

And made it fast too!

More surprising: the extra feedback also speeds up the decision time of the switch, making it about as good as the 'optimal' AM switch:

Conclusion:

Nature is trying as hard as it can to implement an AM-class algorithm!

Conclusions

Summary

- The structure of AM implements an input-driven switching function (in addition to the known majority function).
- The structure of CC implements a input-less majority function (in addition to the known switching function).
- The structures of AM and CC are related, and an intermediate network shares the properties of both.
- The behaviors of AM and CC in isolation are related.
- The behaviors of AM and CC in oscillator contexts are related.
- A refinement of the core CC network, known to occur in nature, improves switching performance and brings it in line with AM performance.

Reverse Engineering

- Q (traditional): What kind of dynamical system is the cell-cycle switch?
- A (traditional): Bistability - ultrasensitivity - hysteresis ... Focused on how unstructured sub-populations change over time.
- Q: What kind of algorithmic system is the cell-cylce switch?
- A: Interaction - complexity - convergence ... Focused on individual molecules as programmable, structured, algorithmic entities.
- Leading to a better understanding of not just the function but also the network (algorithm).

Direct Engineering

- AM was not learned from nature
- CC was invented ~ 2.7 billions years ago.
- AM was invented ~ 6 years ago (but independently).
- But nature may have more tricks
- If there is some clever population algorithm out there, how will we recognize it?
- We need to understand how nature operates.

[^0]: $\begin{array}{ccc}x & b & y \\ x(x, x) & (x, x) & (x, b)\end{array}$
 $b(b, x)(b, b)(b, y)$
 $y(y, b)(y, y)(y, y)$

