How the Cell Cycle Computes

Luca Cardelli Microsoft Research

Joint work with Attila Csikász-Nagy CoSBi

Dublin, 2012-05-25
http://lucacardelli.name

Outline

- Analyzing molecular networks
- Various biochemical/bioinformatical techniques can tell us something about network structures.
- We try do discover the function of the network, or to verify hypotheses about its function.
- We try to understand how the structure is dictated by the function and other natural constraints.
- The Cell-Cycle Switches and Oscillators
- Some of the best studied molecular networks.
- Important because of their fundamental function (cell division) and preservation across evolution.

Oscillators

- Basic in Physics, studied by simple phenomenological (not structural) ODE models.
- Non-trivial in Chemistry: it was only discovered in the 20's (Lotka) that chemical systems can oscillate: before it was thought impossible in closed systems. Shown experimentally only in the 50's.
- Mechanics (since antiquity) and modern Electronics (as well as Chemistry) must engineer the network structure of oscillators.
- Biology: all natural cycles. Here we must reverse engineer their network structure.
- Computing: how can populations of agents (read: molecules) interact (network) to achieve oscillations?

The Trammel of Archimedes

- A device to draw ellipses
- Two interconnected switches.
- When one switch is on (off) it flips the other switch on (off). When the other switch is on (off) it flips the first switch off (on).
- The amplitude is kept constant by mechanical constraints.

The function

The network

The Shishi Odoshi

- A Japanese scarecrow (lit. scare-deer)
- Used by Bela Novak to illustrate the cell cycle switch.

water
empty + up \rightarrow up + full up + full \rightarrow full + dn full $+\mathrm{dn} \rightarrow \mathrm{dn}+$ empty
dn + empty \rightarrow empty + up

http://www.youtube.com/watch?v=VbvecTIftcE\&NR=1 \&feature=fvwp

Outer switched connections replaced by constant influxes: tap water and gravity.

The Cell Cycle Switch

- At the core of the cell-cycled oscillator. - This network is universal in all Eukaryotes [P. Nurse].

- Well studied. But why this structure?

How to Build a Switch

- What is a "good" switch?
- We need first a bistable system: one that has two distinct and stable states. I.e., given any initial state the system must settle into one of two states.
- The settling must be fast (not get stuck in the middle for too long) and robust (must not spontaneously switch back).
- Finally, we need to be able to flip the switch: drive the transitions by external inputs.

A Bad Algorithm

- Direct $x-y$ competition
- x catalyzes the transformation of y into x
- y catalyzes the transformation of x into y

$$
\begin{aligned}
& x+y \rightarrow x+x \\
& y+x \rightarrow y+y
\end{aligned}
$$

- This system is bistable, but
- Convergence to a stable state is slow (a random walk).
- Any perturbation of a stable state can initiatemy a random walk to the other stable state

A Very Good Algorithm

- Approximate Majority
- Decide which of two populations is in majority
- A fundamental 'population protocol'
- Agents in a population start in state x or state y.
- A pair of agents is chosen randomly at each step, they interact ("collide") and change state.
- The whole population must eventually agree on a majority value (all x or all y) with probability 1.

Dana Angluin - James Aspnes • David Eisenstat

A Simple Population Protocol for Fast Robust Approximate Majority

We analyze the behavior of the following population protocol with states $Q=\{b, x, y\}$. The state b is the blank state. Row labels give the initiator's state and column labels the responder's state.

[^0]

Third 'undecided' state.

Properties

- With high probability, for n agents
- The number of state changes before converging is $O(n \log n)$
- The total number of interactions before converging is $O(n \log n$)
- The final outcome is correct if the initial disparity is $\omega(\operatorname{sqrt}(\mathrm{n}) \log \mathrm{n})$
- The algorithm is the fastest possible
- Must wait $\Omega(\mathrm{n} \log \mathrm{n})$ steps in expectation for all agents to interact
- Logarithmic time bound
- Parallel time is the number of steps divided by the number of agents.
- In parallel time the algorithm converges with high probability in $\mathrm{O}(\log n)$.
- That is true for any initial conditions, even $x=y$!

Chemical Implementation

$$
\begin{aligned}
& x+y \rightarrow y+b \\
& y+x \rightarrow x+b \\
& b+x \rightarrow x+x \\
& b+y \rightarrow y+y
\end{aligned}
$$

Worse case test: start with $\mathrm{x}=\mathrm{y}$.

Back to the Cell Cycle

- The AM algorithm has great properties for settling a population into one of two states.
- But that is not what the cell cycle uses to switch its populations of molecules.
- Or is it?

Step 1: the AM Network

Abbreviated notation:

- Autocatalysis, and especially intricate autocatalysis, is not commonly seen in nature. Presumably, it's hard:

$$
\begin{aligned}
& b+x \rightarrow x+x \\
& b+y \rightarrow y+y
\end{aligned}
$$

Step 2: remove auto-catalysis

- Replace autocatalysis by mutual (simple) catalysis, introducing intermediate species z, r.
- Here z breaks the y auto-catalysis, and r breaks the x autocatalysis, while preserving the feedbacks.
- z and r need to 'relax back' (to w and p) when they are not catalyzed: s and t provide the back pressure.

- Still, x and y (two states of the same molecule) are distinct active catalysts: that is not common in nature either.

Step 3: only one active state

- Remove the catalytic activity of y.
- Instead of y activating itself through z, we are left with z activating y (which remains passive). Hence, to deactivate y we now need to deactivate z. Since x 'wants' to deactivate y, we make x deactivate z.

- All species now have one active (x,z,r) and one inactive ($\mathrm{y}, \mathrm{w}, \mathrm{p}$) form. This is 'normal'.

Network Structure

- ... and that is the cell-cycle switch!

(Some of the bistable states can be enzymatic rather than multi-site phosporylations as in AM.)
- The question is: did we preserve enough function through our network transformations?

Convergence Analysis

Switches as Computational Systems - Convergence
Techniques: Stochastic Simulation and Probabilistic Modelchecking

DC

AM

Steady State Analysis

Switches as Dynamical Systems - Steady State Response Techniques: as above, plus Dynamical Systems Theory

DC

SC

Oscillation Analysis

Switches in the context of larger networks
Techniques: time course, phase space

Trammel

Modularity Analysis

Contextual equivalence?
Techniques: time course, bifurcations

CC does not fully switch

We have seen that the output of CC does not go 'fully on' like AM:

because s continuously inhibits s so that x cannot fully express. This could be solved if x would inhibit s in retaliation.

But nature fixed that!

In fact nature has solved this problem: there is another known feedback loop in the cell cycle switch by which x suppresses s :

Full activation!
(Also, s and t happen to be the same molecule)

And made it fast too!

More surprising: the extra feedback also speeds up the decision time of the switch, making it about as good as the 'optimal' AM switch:

Nature really is trying very hard to implement the AM algorithm!

Conclusions

Summary

- Q (traditional): What kind of dynamical system is the cell-cycle switch?
- A (traditional): Bistability - ultrasensitivity - hysteresis ... Focused on how unstructured sub-populations change over time.
- Q: What kind of algorithmic system is the cell-cylce switch?
- A: Interaction - complexity - convergence ... Focused on individual molecules as programmable, structured, algorithmic entities.

[^0]: $\begin{array}{ccc}x & b & y \\ x(x, x) & (x, x) & (x, b)\end{array}$
 $b(b, x)(b, b)(b, y)$
 $y(y, b)(y, y)(y, y)$

