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Outline

* Analyzing molecular networks

o Various biochemical/bioinformatical techniques can
tell us something about network structures.

o We try do discover the function of the network, or to
verify hypotheses about its function.

o We try to understand how the structure is dictated by
the function and other natural constraints.

 The Cell-Cycle Switches and Oscillators

o Some of the best studied molecular networks.

o Important because of their fundamental function (cell
division) and preservation across evolution.
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Oscillators

o Basic in Physics, studied by simple phenomenological
(not structural) ODE models.

o Non-trivial in Chemistry: it was only discovered in the
20’s (Lotka) that chemical systems can oscillate:
before it was thought impossible in closed systems.
Shown experimentally only in the 50’s.

o Mechanics (since antiquity) and modern Electronics
(as well as Chemistry) must engineer the network
structure of oscillators.

o Biology: all natural cycles. Here we must reverse
engineer their network structure.

o Computing: how can populations of agents (read:
molecules) interact (network) to achieve oscillations?
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The Trammel of Archimedes
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« A device to draw ellipses

o Two interconnected switches.

o When one switch is on (off) it flips the other switch on (off).
When the other switch is on (off) it flips the first switch off (on).

o The amplitude is kept constant by mechanical constraints.

The function The network
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en.wikipedia.org/wiki/Trammel_of_Archimedes



The Shishi Odoshi

« A Japanese scarecrow (lit. scare-deer)
o Used by Bela Novak to illustrate the cell cycle switch.
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| The Cell Cycle Switch

» At the core of the cell-cycled oscillator.
o This network is universal in all Eukaryotes [P. Nurse].
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active ° Double positive feedback on x
MPF « Double negative feedback on x

 No feedback ony
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o Well studied. But why this structure?



How to Build a Switch
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« What is a “good” switch?

o We need first a bistable system: one that has two
distinct and stable states. l.e., given any initial state
the system must sett/e into one of two states.

o The settling must be 7ast (not get stuck in the middle
for too long) and robust (must not spontaneously
switch back).

o Finally, we need to be able to f/ip the switch: drive the
transitions by external inputs.



A Bad Algorithm

* Direct x-y competition
o X catalyzes the transformation of y into x
o y catalyzes the transformation of x into y
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x—l>——| X+Yy—>X+X
«— V+X>Y+Yy
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« This system is bistable, but

o Convergence to a stable state is s/ow (a

°°°°°°°°°°

random walk).

o Any perturbation of a stable state can initi
a random walk to the other stable state.:
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A Very Good Algorithm

 Approximate Majority
o Decide which of two populations is in majority

« A fundamental ‘population protocol’

o Agents in a population start in state x or state y.

o A pair of agents is chosen randomly at each step,
they interact ("collide") and change state.

o The whole population must eventually agree on a
majority value (all x or all y) with probability 1.

Dana Angluin - James Aspnes - David Eiscnstat
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A Simple Population Protocol for Fast Robust

Approximate Majority y y
We analyze the behavior of the following population pro- X X

tocol with states ¢ = {b.x.y}. The state b is the blank
state. Row labels give the initiator's state and column

labels the responder’s state. Th | rd ¢ u ndECIdEd ’ State
B b iy

z (z,x) (x,z) (z,b)

b (b,x) (b,b) (by)

y (0.0 (vy) (v.y)



Properties

With high probability, for n agents e o yaleeduhomes  spres papersdisc2007-eisentat-slices.pa)
o The number of state changes before converging is O(n log n)
o The total number of interactions before converging is O(n log n)
o The final outcome is correct if the initial disparity is w(sqrt(n) log n)

The algorithm is the fastest possible
o Must wait Q(n log n) steps in expectation for all agents to interact

Logarithmic time bound
o Parallel time is the number of steps divided by the number of agents.
o In parallel time the algorithm converges with high probability in O(log n).
o That is true for any initial conditions, even x=y!

“Although we have described the population protocol model in a sequential

light, in which each step is a single pairwise interaction, interactions between

pairs involving different agents are independent and may be thought of as occurring
in parallel. In measuring the speed of population protocols, then, we

define 1 unit of parallel time to be jV j steps. The rationale is that in expectation,
each agent initiates 1 interaction per parallel time unit; this corresponds to

the chemists’ idealized assumption of a well-mixed solution.”

Distributed Computing 21(2):87-102.



Chemical Implementation
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Worse case test: start with x=y.
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Back to the Cell Cycle

+ The AM algorithm has great properties for

settling a population into one of two
states.

« But that is not what the cell cycle uses to
switch its populations of molecules.

e Oris it?



Step 1: the AM Network

Abbreviated o l l |
notation. XY X b

| ! L 1

« Autocatalysis, and especially intricate autocatalysis, is
not commonly seen in nature. Presumably, it’s hard:

b+ X—> X+ X
b+y—>vy+y
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| Step 2: remove auto-catalysis

r ml

o Replace autocatalysis by mutual (simple) catalysis,
introducing intermediate species z, r.

 Here z breaks the y auto-catalysis, and r breaks the x auto-
catalysis, while preserving the feedbacks.

« z and r need to ‘relax back’ (to w and p) when they are not
catalyzed: s and t provide the back pressure.
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o Still, x and y (two states of the same molecule) are distinct
active catalysts: that is not common in nature either.




Step 3: only one active state

o Remove the catalytic activity of y.

* Instead of y activating itself through z, we are left with z
activating y (which remains passive). Hence, to deactivate y
we now need to deactivate z. Since x ‘wants’ to deactivate vy,

we make x deactivate z.

l_zizw W;QZ—l
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o All species now have one active (x,z,r) and one
inactive (y,w,p) form. This is ‘normal’.
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Network Structure

« ... and that /s the cell-cycle switch!
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A (Some of the bistable states can be
enzymatic rather than multi-site
phosporylations as in AM.)

« The question is: did we preserve enough function
through our network transformations?
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Convergence Analysis

Switches as Computational Systems - Convergence
Techniques: Stochastic Simulation and Probabilistic Modelchecking
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Steady State Analysis

Switches as Dynamical Systems - Steady State Response
Techniques: as above, plus Dynamical Systems Theory




Oscillation Analysis

Switches in the context of larger networks
Techniques: time course, phase space
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Shishi Odoshi




Modularity Analysis

Contextual equivalence?

Techniques: time course, bifurcations
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CC does not fully switch

We have seen that the output of CC does not go ‘fully on’ like AM:
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because s continuously inhibits s so that x cannot fully express.
This could be solved if x would inhibit s in retaliation.



But nature fixed that!
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In fact nature has solved this problem: there is another known feedback
loop in the cell cycle switch by which x suppresses s:

0 —t,~ 0.0025

15000 9

w%z ;‘") Full activation!
I X_lﬁv . =
ot | ﬂi
s=mp=_r g
T, T N\

(Also, s and t happen to be the same molecule)



And made it fast too!
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More surprising: the extra feedback also speeds up the decision time of
the switch, making it about as good as the ‘optimal’ AM switch:

15000

AM
Gw
CC

X
X -

0 " <t >  0.004

Nature really is trying very hard to implement the AM algorithm!



Conclusions




Summary

Q (traditional): What kind of dynamical system is the
cell-cycle switch?

A (traditional): Bistability - ultrasensitivity - hysteresis ...
Focused on how unstructured sub-populations change
over time.

Q: What kind of algorithmic system is the cell-cylce
switch?

A: Interaction - complexity - convergence ...
Focused on individual molecules as programmable,
structured, algorithmic entities.



