
On Speaking Languages

Luca Cardelli
Microsoft Research

MacQueen Fest, Chicago, 2012-05-12

http://lucacardelli.name

On Speaking Languages

Luca Cardelli
Microsoft Research

MacQueen Fest, Chicago, 2012-05-12

http://lucacardelli.name

On Speaking Languages

Luca Cardelli
Microsoft Research

MacQueen Fest, Chicago, 2012-05-12

http://lucacardelli.name

2012-05-14Luca Cardelli 2

Outline

• The Language of Science

• The Language of Functions

• The Language of Objects

• The Language of Molecules

The Language
of Science

2012-05-14Luca Cardelli 4

The Language of Science

• Never much good at natural languages.
o Latin: bad. English: worse.

• Middle-school remedial lessons
o English is the Language of Shakespeare Science!

o Learned by Science Fiction, from Asimov to Zelazny.

• In Edinburgh, only two English speakers
o Robin (textbook, slow English)

• Lectures on Operational Semantics

o Dave (American English has 5 vowels instead of 1)
• Lectures on Hope

o Corollary
• Famous episode involving a Scottish milkman and 3 months worth of

empty milk bottles stacked all over Gordon Plotkin’s flat.

The Language
of Functions

2012-05-14Luca Cardelli 6

The Language of Functions

• Ironically attracted to artificial languages
o Pisa: λ-calculus (+ Fortran, Lisp, Algol68, Simula)

o Edinburgh: ML & Hope (+ Pascal, VAX assembly)

o Murray Hill: C and Unix
(during a snow storm at Dave’s)

• And their semantics
o Pisa: Scott-Strachey semantics.

o Edinburgh: CPOs.

o Murray Hill: the MacQueen-Sethi-Plotkin ideal model

• More on this in a moment…

The Language
of Objects

2012-05-14Luca Cardelli 8

The Language of Objects

• The Practice of Objects
o Pisa: Simula was my favorite language.

o Edinburgh: Added records and variants to ML. Tried to add record
subtyping by type inference, but gave up.

o Pisa again: Galileo, an ML-insipired database programming
language with records and variants and Simula-inspired
subtyping.

• Where was the Theory of Objects?
o Logic languages: --> Predicate logic

o Database languages: --> Relational calculus

o Functional languages: --> λ-calculus

o Imperative languages: --> Hoare Logic / Weakest Preconditions

o Modular languages: --> Algebraic semantics

o Object-oriented languages: --> ???

2012-05-14Luca Cardelli 9

Inspiration!

• The Ideal Model
o In early Scott denotational models, types were

“retracts” of the universal value set, which did not
support subtyping.

o The Ideal Model was designed as a semantics for
polymorphism, which was modeled as a “big
intersection” of domains.

o So, it accidentally provided a subset-based
denotational semantics of subtyping (via non-empty
intersections between domains)

o Therefore enabling:
• records as functions (well-known lisp hack)

• record types as domains (label-dependent function types)

• record subtyping as set inclusion of function spaces

2012-05-14Luca Cardelli 10

Result

• Paper: • 1984 Semantics of
Data Types Talk:
o … delivered by Dave

2012-05-14Luca Cardelli 11

Followup

• Quantifiers and Modules
o Still inspired by the Ideal model and the emerging ML

module system, leading to Bounded Quantification

2012-05-14Luca Cardelli 12

One Joint Paper

2012-05-14Luca Cardelli 13

Archive
1982-03 “Basic Definitions and Facts” (?) 48 pages 1982-04 “Semantics of Data Types”

2012-05-14Luca Cardelli 14

Archive

1983-?? “Pattern Matching”
1983-03 “Modified Damas Algorithm for Typechecking with References”

2012-05-14Luca Cardelli 15

Archive

1984-05 “Algorithm for Compiling Pattern Matching”

(The one I failed to implement in my ML compiler.)

2012-05-14Luca Cardelli 16

End of Story

• � California
o The Language of Distributed Objects

• Leading to …

• � England
o The Language of Mobile Processes

• Leading to …

o The Language of Biological Processes

• Leading to …

The Language
of Molecules

Molecular Programming Languages

• Reaction-Based (A + B → C + D) (Chemistry)
o Limited to finite set of species (no polymerization)

o Practically limited to small number of species (no run-away complexation)

• Interaction-Based (A = !r; C) (Process Algebra)
o Reduces combinatorial complexity of models by combining independent

submodels connected by interactions.

• Rule-Based (A{-}:B{p} → A{p}:B{-}) (Logic, Graph Rewriting)
o Further reduces model complexity by describing molecular state, and by allowing

one to ‘ignore the context’: a rule is a reaction in an unspecified
(complexation/phosphorylation) context.

o Similar to informal descriptions of biochemical events (“narratives”).

• Different levels of representation efficiency
o The latter two can be translated (to each other and) to the first, but doing so may

introduce an infinite, or anyway extremely large, number of species.

But what about Execution?

• Chemistry is not easily executable
o Please Mr Chemist, execute me these reactions

that I just made up.

• Description
o Molecular languages used in systems biology are

descriptive (modeling) languages

• Compilation
o How can we compile arbitrary molecular programs?

• Execution
o How can we actually execute molecular languages?

With real molecules?

DNA as an Engineering Material

• This is why DNA/RNA is important: it is
programmable matter.

• Not the only one, in principle, but the only
one for which we have a well-developed
manufacturing technology.

2012-05-14 20Sequence of Base Pairs (GACT alphabet)

Molecular Control Systems

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Control SystemsControl SystemsControl SystemsControl Systems

• Using bacterial machinery (e.g.) as the hardware.
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” DNA Computing
(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)

“Autonomous” DNA Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms (in the future)

(Nano(Nano(Nano(Nano----engineering with biological materials)engineering with biological materials)engineering with biological materials)engineering with biological materials)

Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing

Modern DNA Computing

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronic computers.

o Not necessarily using genes or to producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of

matter and information at the molecular level.

o To interact algorithmically with biological entities.

• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates

t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input

Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

Transducer x→y

x

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

Transducer x→y

t a

a tt axt a x t y

y t

x t

t

Transducer x→y

t a

a tt axt a x t y t

x t

t

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Transducer x→y

t y

t a

a tt axt a x y tt

Output

t

Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t

Transducer x→y

x

t y

t a tt axt a y tx t

Output

Transducer x→y

a x

t y

t a a tt axt y tx t

Output

a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source.

Transducer x→y

Join x+y→z

General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.

DNA Programming

Debugging

• Big Networks
o Two-domain DNA gates for 1

Approximate Majority switch.

o Initial species: 17

o Total number of species: 85
(including run-time produced ones)

o Total number of reactions: 104

• Analysis
o Gate correctness

o Circuit correctness

o Compiler correctness

o Currently, by simulation

o Increasingly, by modelchecking:

2012-05-14 59

Experiments

Yuan-Jyue Chen and Georg Seelig
U.Washingon.

Two-domain gate

for X+Y → Y+B

X+Y�Y+B
35C

1x = 50nM 0.05x0.05x0.05x0.05x
0x0x0x0x

0.1x0.1x0.1x0.1x

1x1x1x1x

0.2x0.2x0.2x0.2x
0.3x0.3x0.3x0.3x

Y

Summary

• Executable chemistry
o Given an arbitrary finite chemical network, compile it

systematically and execute it.
[D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal Substrate for Chemical
Kinetics. PNAS 107 no. 12, 5393-5398, 2010.]

o Finite chemical networks have the computing power
of (stochastic) Petri Nets. Population protocols (such
as AM) are also well-characterized. [D.Angluin, J.Aspnes, D.Eisenstat,

E.Ruppert: The Computational Power of Population Protocols].

• Executable bio-chemistry
o In addition, DNA supports polymerization, which

gives the computing power of Turing Machines.

o Then the programming language cannot be just
chemical reactions, but has to be something more like
process algebra or term-rewriting systems.

2012-05-14 61

Conclusions

2012-05-14Luca Cardelli 63

Conclusions

• The Language of Functions

• …

• …

• The Language of Life

