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of Science
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The Language of Science

« Never much good at natural languages.
o Latin: bad. English: worse.

e Middle-school remedial lessons

o English is the Language of Shakespeare Science!
o Learned by Science Fiction, from Asimov to Zelazny.

* |In Edinburgh, only two English speakers

o Robin (textbook, slow English)
« Lectures on Operational Semantics

o Dave (American English has 5 vowels instead of 1)
 Lectures on Hope

o Corollary

« Famous episode involving a Scottish milkman and 3 months worth of
empty milk bottles stacked all over Gordon Plotkin’s flat.
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The Language of Functions

L

* lronically attracted to artificial languages
o Pisa: A-calculus (+ Fortran, Lisp, Algol68, Simula)
o Edinburgh: ML & Hope (+ Pascal, VAX assembly)

o Murray Hill: C and Unix
(during a snow storm at Dave’s)

« And their semantics

o Pisa: Scott-Strachey semantics.
o Edinburgh: CPOs.

o Murray Hill: the MacQueen-Sethi-Plotkin ideal model
 More on this in a moment...
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The Language of Objects

L

* The Practice of Objects ,__,
o Pisa: Simula was my favorite language.: ¢,. .4,y o « .,

o Edinburgh: Added records and variants.to.ML. Tried to add record
subtyping by type inference, but gave Clexy - Vit A

o Pisa again: Galileo, an ML-insipired c[gjf}qlq_aisagdpr:qgr%mmlng
language with records and variants and Simula-inspired
subtyping. Vaziant

ﬂt=°!-]] : ﬂ.h: : A;B << a:h A dw. A=A,

» Where was the Theory of Objects? - bl ias

Vit A1

Logic languages: -—> Predicate logic e
Database languages: —--> Relational calculus ; .
Functional languages: --> A-calculus

Imperative languages: --> Hoare Logic / Weakest Preconditions
Modular languages: —--> Algebraic semantics

Object-oriented languages: --> 7?7

sl 6:0; .. T

O O O O O O



L

Inspiration!

« The Ideal Model

TYPQ OF !a(‘ Z8S)

o In early Scott denotational models types were
“retracts” of the universal value se which did rist
support subtyping. g

o The Ideal Model was designed'a$ a sémaritic¢s"for
polymorphism, which was modeled as a “big. . .. .,
intersection” of domains. B

o So, it accidentally provided a subset based

».29

denotatlonal semantics of suBté(ping (via non- empty
intersections between domains) - s awcte cowoes

o Therefore enabling: $ L st vin b o

(:x:mf) 3 {as—,‘sl b e a.lt.}
* records as functions (well-known lisp-haek). s, cmw-x3
* record types as domains (label- depen’i:lent‘ function types)

* record subtyping as set inclusion 6f fanction spaces
4 o, Bl
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Result
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« Paper: « 1984 Semantics of

P o ... delivered by Dave

Luca Cardelli
AT&T Bell Laboratories

A semanties
Murray Hill, New Jersey 07974

1. Introduction ¢ Hyt ‘Fl PI‘E Ih L!' Fr f'- g
There are two major ways of structuring data in programming languages. The first and com-

men one, used for example in Pascal, can be said 1o derive from standard branches of mathemat-
ics. Data is organized as cartesian products (i.e. record types), disjoint sums (i.e. unions or variam
types) and function spaces (i.e. functions and procediires).

The second method can be said to derive from biology and taxcnomy. Data is organized in a
hierarchy of classes and subclasses, and data at any level of the hierarchy inherits all the attributes
of data higher up in the hierarchy. The top level of this hierarchy is usually called the class of all
“objects”; every datum is an cbject and every datum imherits the basic properties of objects, like the
ability to tell whether two objects are the same or not. Functions and procedures are also con-
sidered as local actions of objects, as opposed to global operations. '

A O {nrdﬁ ”!



Followup

e Quantifiers and Modules :
|“l 11&.#, b !

o Still inspired by the Ideal model “and the angm.giML

module system, leading to Bounded Quantification
umt‘v“‘
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One Joint Paper

Persistence and Type Abstraction

Leca Cardelli
David MacQhueen

AT&T BHell Laboratorics
Murray Hill, NJ 07974

Introduction

Abstract types are a well known and effective way of structaring programs. The basic ides
of information hiding can however conflict with the need to store data for long periods of time, ar
make it accessible to different activities, In particalar a typechecker must be able to recognize
occurrence of the same ghetract type during different activations, and must enforce the privacy
data representations.

T achieve this, the persistent storage of data must preserve fype information, and mu
respect type abstraction. The ase of type abstractions in the presence of persistent storige recquin
that ahstract types be made persistent as well. Under these conditions, we can preserve typ
security across distnct activations of the fypechecker.

The following is a brief account of bow various models of abstraction and persistens
interact. We stant by skecching a simple polymorphic language and its types and showing varioy
wiys of modeling type absitraction in such 2 language. We then discuss some basic notior
underlying persistent storage of typed objects, such &5 the indermn and extern primitives and d
special type dynamie, and degeribe three persistence strategies. Finally we discuss the particul:
problem of persisent shatract ypes. '

Yalues and Types

We will base our discussion on a simple polymorphic language in the tradition of ML [Miln
#4] and Amber [Cardelli B4). The simplified language we have in mind is closely related to th
language SOL [Mitchell and Plotkin 85], variants of which are described in [Reynolds 5] an
[Cardelli and Wegner 85].

The basis of this language is a slightly sugared applied lambda ealoulus that is adequate fo
expressing certain kinds of Filues; Typeanfiotations are added to the basic expressions in such
way that one clp statically determing a type for each expression.  This type is 3 strucrur

ror] Persistence and type abstraction

L Cardelli... - Proceedings of the Persistence and ..., 1985 - lucacardelli.name

Page 1. 231 Persistence and Type Abstraction Luca Cardelli David MacQueen AT&T Bell
Laboratories Murray Hill, NJ ... The basic ideas of information hiding can however conflict with the
‘-wu w .2 data for long periods of time, and make it accessible to different activities. ...

Cited by 34 -RRelated articles - All 8 versions
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| End of Story

« S California

o The Language of Distributed Objects
« Leading to ...

« 2 England

o The Language of Mobile Processes
« Leading to ...

o The Language of Biological Processes
« Leading to ...
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of Molecules




Molecular Programming Languages

r 1

« Reaction-Based (A + B — C + D) (Chemistry)
o Limited to finite set of species (no polymerization)
o Practically limited to small number of species (no run-away complexation)

« Interaction-Based (A = Ir; C) (Process Algebra)

o Reduces combinatorial complexity of models by combining independent
submodels connected by interactions.

« Rule-Based (A{-}:B{p} — A{p}:B{-}) (Logic, Graph Rewriting)

o Further reduces model complexity by describing molecular state, and by allowing
one to ‘ignore the context’: a ru/eis a reaction in an unspecified
(complexation/phosphorylation) context.

o Similar to informal descriptions of biochemical events (“narratives”).

« Different levels of representation efficiency

o The latter two can be translated (to each other and) to the first, but doing so may
introduce an infinite, or anyway extremely large, number of species.



But what about Execution?

Chemistry is not easily executable

o Please Mr Chemist, execute me these reactions
that | just made up.

Description

o Molecular languages used in systems biology are
descriptive (modeling) languages

Compilation
o How can we compile arbitrary molecular programs?

Execution

o How can we actually execute molecular languages?
With real molecules?



:DNA as an Engineering Materialj

A

« This is why DNA/RNA is important: it is
programmable matter.
« Not the only one, in principle, but the only

one for which we have a well-developed
manufacturing technology.

. Sequence of Base Pairs (GACT alphabet) |



Molecular Control Systems

Sensing Control Systems
o Reacting to forces
o Binding to molecules
Actuating

o Releasing molecules
o Producing forces

Constructing

o Chassis
o Growth

Computing
o Signal Processing
o Decision Making

Nucleic Acids can do all this.
And interface to biology.

€



‘Embedded” DNA Computing

(Synthetic Biology):
Using bacterial machinery (e.g.) as the hardware.
Using embedded gene networks as the software.

MIT Registry of Standard Biological Parts

GenoCAD | f“ﬂz@ﬂ@_ (0010 )~ b0013 =

o Meaningful sequences [Cai et al.]
r0040:prom; c0034:rbs; c0040:pcr; b0O015:ter

GEC |
o [Pedersen & Phillips] J 9__[ . @
‘2\-"' I

fj-ﬂ{i‘)-é—r - _% -éw-

prom<neg (C)>; rbs; pcr<codes(A)>; ter;
prom<neqg (A)>; rbs; pcr<codes(B)>; ter;
prom<neqg (B)>; rbs; pcr<codes(C)>; ter

€



Autonomous” DNA Computmg

(Nano-engineering with biological materlals)
 Mix & go
o All (or most) parts are synthesized
o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

« Self-assembled and self-powered

o Can run on its own (e.g. environmental sensing)
o Or be embedded into organisms (in the future)



Curing

A doctor in each cell

Molecular
Output

Programmable
Computer

plasma
membrane

Fig. 1 Medicine in 2050: “Doctor in a Cell’ Ehud Shaplro "Molecules and

Rivka Adar -

Kobi Benenson computation
Gregory Linshitz

Aviv Regev

William Silverman



Modern DNA Computing

L

« Non-goals
o Not to solve NP-complete problems.

o Not to replace electronic computers.
o Not necessarily using genes or to producing proteins.

« For general ‘molecular programming’

o To precisely control the organization and dynamics of
matter and information at the molecular level.

o To interact algorithmically with biological entities.



Domains

Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

X y Z

l.e., differently named domains must not hybridize:
With each other

With each other’s complement

With subsequences of each other

With concatenations of other domains (or their complements)
Etc.

O O O O O

Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.



Short Domains

—_—
t

—
t
t ' ' S

e

Reversible Hybridization



Long Domains

A
X
D

Irreversible Hybridization

X
N —



Strand Displacement

“Toehold Mediated”



Strand Displacement

__

t X
<

Toehold Binding



Strand Displacement

Branch Migration



Strand Displacement

Displacement



Strand Displacement

Irreversible release



Bad Match

t X Z
—_— S
t X y



Bad Match



Bad Match



Bad Match

Cannot proceed
Hence will undo



Two-Domain Architecture

L

. Signals: 1 toehold + 1 recognition region

Garbage collection

ﬁ 1] H = ”
built into” the gates

t X

« Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

Two-Domain DNA Strand Displacement

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
| Cardelli Developments in Computational Models (DCM 2010).
uca Laraeil EPTCS 25, 2010, pp. 33-47. May 2010.

L €1



Transducer x—y

Input



Transducer x—y

Input
ﬁ
T X

# ﬁ

t a y ot
#*
t x t a t a X t y t a t
——

Built by self-assembly!

ta is a private signal (a different ‘a’ for each xy pair)



Transducer x—y

# ﬁ
t a y ot
t x t a t a X t y t a t

——



Transducer x—y

Active
waste
t
# #
t a Y
* *



Transducer x—y

#
X ot

ﬁ

y ot
t x t a t a X t y t a t

——



Transducer x—y

#

X ot

ﬁ ﬁ

a t y ot
t x t a t a X t y t a t
——

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer x—y

—

#

—



Transducer x—y

# #
X 1 t a
ﬁ
y ot
t x t a t a X t vy a t

——



Transducer x—y



Transducer x—y

# ﬁ

X i t a
Output
ﬁ
t vy

t x t a t a X t y t a t

.5 g —
Here is our output ty signal.

But we are not done yet:
1)We need to make the output irreversible.

2) We need to remove the garbage.
We can use (2) to achieve (1).

€



Transducer x—y



Transducer x—y



Transducer x—y

d

——



Transducer x—y



Transducer x—y

A A
a X
Output
#
t vy
* *

——



Transducer x—y

Output
t vy

Done.

N.B. the gate is consumed: it is the energy source.









General nxm Join-Fork

« Easily generalized to 2+ inputs (with 1+ collectors).
« Easily generalized to 2+ outputs.

£t w t oy b t
—— — — .
t x t a c t z t
— —— —— — — e — — o —
t w t x t v t a t a w t ¢ t b t =z &t a ¢t
t ¢ x t t by ot
e Zm— — gpe— —

Figure 9: 3-Join J,,.. | tw | x | ty — tz: initial state plus inputs tw, 7x, ty.



DNA Programming

Examples: [ v | [ Compile | [_Simulate | | Analyse | Pause Compilation: [_Default v | Options: [ v | Simulation: [_Deterministic v | View: [ v_ License Install_
Code DNA Input Compilation | Simulation | Analysis
Jlljlg éﬁl% % I'aﬁlljﬂlx ) | - Species Reactions Graph Text Domains SBML
def bind = kt*1.8e-9 (* fnM/s *) . e
def unbind = kt*exp DeltaG_over_RT (* /s *) =
new t@bind,unbind
new ubind,unbind +
new f180.8,8.@
X t A u a t X E ; t X L Y u a
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]
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({3.8*N) tAe: [x]<F1N>) t X Y u a t Y E ; t X t iy i b, @
* * * * = * e * * =
( onex * <Calibration: v 3 ! v ou 2 L X t Y u -
| Cat(onex,X,Y,B)
| Rep(onex,B,f11)
| onex * <t™ X>
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X - Yy ut a* tf X 't Yr ut at
E J License Install
4| | 3 E
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Debugging

« Big Networks

o Two-domain DNA gates for 1
Approximate Majority switch.
Initial species: 17
Total number of species: 85
(including run-time produced ones)
o Total number of reactions: 104

« Analysis

Gate correctness

Circuit correctness

Compiler correctness

Currently, by simulation
Increasingly, by modelchecking:

0O O O O O

Design and Analysis of DNA
Strand Displacement Devices

using Probabilistic Model
Checking

Matthew R. Lakin *f David Parker ¥
Luca Cardelli* Marta Kwiatkowska ¥

Andrew Phillips*




Experiments

Two-domain gate 10 —
for X+Y — Y+B al v
= 1x
£ 6}
X+Y->Y+B 5 0.2x
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=
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© 2 0x
o
OD 5 10
hours
Yuan-Jyue Chen and Georg Seelig _LGE e
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Summary

Executable chemistry

o Given an arbitrary finite chemical network, compile it

systematically and execute it.
[D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal Substrate for Chemical
Kinetics. PNAS 107 no. 12, 5393-5398, 2010.]

o Finite chemical networks have the computing power
of (stochastic) Petri Nets. Population protocols (such
as AM) are aISO We”—CharaCterized. [D.Angluin, J.Aspnes, D.Eisenstat,

E.Ruppert: The Computational Power of Population Protocols].

Executable bio-chemistry

o In addition, DNA supports polymerization, which
gives the computing power of Turing Machines.

o Then the programming language cannot be just
chemical reactions, but has to be something more like
process algebra or term-rewriting systems.

€



Conclusions




Conclusions

« The Language of Functions

The Language of Life






