
Programming Molecules

Luca Cardelli
Microsoft Research

ISAT Workshop, SRI, 2012-03-07
http://lucacardelli.name

2012-11-07Luca Cardelli 2

Outline

• Part I: Analyzing molecular networks
o We try do discover the function of the network.

o We try to understand how the structure is dictated by
the function (and other natural constraints).

• Part II: Engineering molecular networks
o We know the function we want to implement.

o We use the structures we have available to implement
the function. But we want to do this in general
(programmatically).

Part I

Systems Biology
- or -

How Does Nature Build

Molecular Oscillators?

2012-11-07Luca Cardelli 4

The Trammel of Archimedes

• A device to draw ellipses
o Two interconnected switchesswitchesswitchesswitches.

o When one switch is on (off) it flips the other switch on (off).
When the other switch is on (off) it flips the first switch off (on).

o The amplitude is kept constant by mechanical constraints.

x1 y1

x2 y2

en.wikipedia.org/wiki/Trammel_of_Archimedes

x2

y2

x1

y1

The function The network

2012-11-07Luca Cardelli 5

The Shishi Odoshi

• A Japanese scarecrow (lit. scare-deer)
o Used by Bela Novak to illustrate the cell cycle switch.

http://www.youtube.com/watch?v=VbvecTIftcE&NR=1&feature=fvwp

empty + up � up + full
up + full � full + dn
full + dn � dn + empty
dn + empty � empty + up Outer switched connections replaced by constant

influxes: tap water and gravity.

up dn

em
pty

full

water

counterweight

xxxxyyyy

• At the core of the cell-cycled oscillator.
o This network is universal in all Eukaryotes [P. Nurse].

o Well studied. But why this structure?

The Cell Cycle Switch

• Double positive feedback on x
• Double negative feedback on x
• No feedback on y
???

2012-11-07Luca Cardelli 7

How to Build a Switch

• What is a “good” switch?
o We need first a bistable system: one that has two
distinct and stable states. I.e., given any initial state
the system must settle into one of two states.

o The settling must be fast (not get stuck in the middle
for too long) and robust (must not spontaneously
switch back).

o Finally, we need to be able to flip the switch: drive the
transitions by external inputs.

2012-11-07Luca Cardelli 8

A Bad Algorithm

• Direct x-y competition
o x catalyzes the transformation of y into x

o y catalyzes the transformation of x into y

• This system is bistable, but
o Convergence to a stable state is slow (a random walk).

o Any perturbation of a stable state can initiate a
random walk to the other stable state.

x + y → x + x
y + x → y + y

directive sample 0.0002
1000
directive plot x(); y(); b()

val rt = 10.0
new xcat@rt:chan
new ycat@rt:chan

let x() =
do !xcat; x()
or ?ycat; y()

and y() =
do !ycat; y()
or ?xcat; x()

run 100 of x()
run 100 of y()

x y

2012-11-07Luca Cardelli 9

A Very Good Algorithm

• Approximate Majority
o Decide which of two populations is in majority

• A fundamental ‘population protocol’
o Agents in a population start in state x or state y.

o A pair of agents is chosen randomly at each step,
they interact ("collide") and change state.

o The whole population must eventually agree on a
majority value (all x or all y) with probability 1.

Third ‘undecided’ state.

2012-11-07Luca Cardelli 10

Properties

• With high probability, for n agents
o The number of state changes before converging is O(n log n)

o The total number of interactions before converging is O(n log n)

o The final outcome is correct if the initial disparity is ω(sqrt(n log n))

• The algorithm is the fastest possible

o Must wait Ω(n log n) steps in expectation for all agents to interact

• Logarithmic time bound
o Parallel time is the number of steps divided by the number of agents.

o In parallel time the algorithm converges with high probability in O(log n).

o That is true for any initial conditions, even x=y!

“Although we have described the population protocol model in a sequential
light, in which each step is a single pairwise interaction, interactions between
pairs involving different agents are independent and may be thought of as occurring
in parallel. In measuring the speed of population protocols, then, we
define 1 unit of parallel time to be jV j steps. The rationale is that in expectation,
each agent initiates 1 interaction per parallel time unit; this corresponds to
the chemists’ idealized assumption of a well-mixed solution.”
Distributed Computing 21(2):87–102.

[Angluin et al.
http://www.cs.yale.edu/homes/aspnes/papers/disc2007-eisenstat-slides.pdf]

2012-11-07Luca Cardelli 11

Chemical Implementation

x + y → y + b
y + x → x + b
b + x → x + x
b + y → y + y

x yb

Worse case test: start with x=y.

Bistable
Even when x=y! (stochastically)

Fast
O(log n) convergence time

Robust
ω(√n log n) majority wins whp Gillespie simulation

of the chemical
reactions in SPiM.
All rates are equal.

Back to the Cell Cycle

• The AM algorithm has great properties for
settling a population into one of two
states.

• But that is not what the cell cycle uses to
switch its populations of molecules.

• Or is it?

2012-11-07 12

2012-11-07Luca Cardelli 13

Step 1: the AM Network

x yb=x y

• Autocatalysis, and especially intricate autocatalysis, is
not commonly seen in nature. Presumably, it’s hard:

b + x → x + x
b + y → y + y

Abbreviated
notation:

2012-11-07Luca Cardelli 14

Step 2: remove auto-catalysis

o Replace autocatalysis by mutual (simple) catalysis,
introducing intermediate species z, r.
• Here z breaks the y auto-catalysis, and r breaks the x auto-
catalysis, while preserving the feedbacks.

• z and r need to ‘relax back’ (to w and p) when they are not
catalyzed: s and t provide the back pressure.

o Still, x and y (two states of the same molecule) are distinct
active catalysts: that is not common in nature either.

x y

s

t

x y

p r

z w

o Remove the catalytic activity of y.
• Instead of y activating itself through z, we are left with z
activating y (which remains passive). Hence, to deactivate y
we now need to deactivate z. Since x ‘wants’ to deactivate y,
we make x deactivate z.

o All species now have one active (x,z,r) and one
inactive (y,w,p) form. This is ‘normal’.

2012-11-07Luca Cardelli 15

Step 3: only one active state

s

t

x y

p r

z w

s

t

p r

y

w z

x

2012-11-07Luca Cardelli 16

Network Structure

• … and that is the cell-cycle switch!

• The question is: did we preserve enough function
through our network transformations?

2012-11-07Luca Cardelli 16

xxxxyyyy

tttt

ssss

zzzz
rrrr

pppp

wwww s

t

p r

x y

w z

(Some of the bistable states can be
enzymatic rather than multi-site
phosporylations as in AM.)

2012-11-07Luca Cardelli 17

Quantitative Analysis

(DC) (AM) (SC) (CC)

1.0

0.00355

0

0

2.0

0.00710

0

0

2.0

15

0

0.00710

← tp	→0

0

↑

xp
↓

Pr(xp|tp)

1.00

15000

0

1.00

↑

xs
↓

← ts	→

Switches as Computational Systems – Convergence
Techniques: Stochastic Simulation and Probabilistic Modelchecking

Joint work with Attila Csikász-Nagy

2012-11-07Luca Cardelli 18

Quantitative Analysis

Switches as Dynamical Systems – Steady State Response
Techniques: as above, plus Dynamical Systems Theory

(DC) (AM) (SC) (CC)

↑

xp
↓

← sxp	→ 150
0

15

Pr(xp|sxp)

150

150
0
0

↑

xs
↓

← sxs	→

Joint work with Attila Csikász-Nagy

2012-11-07Luca Cardelli 19

Quantitative Analysis

Joint work with Attila Csikász-Nagy

Trammel

Shishi Odoshi

ri/re = 0.8

0.010
0

30000

← t	→

↑

n

↓

0.0050
0

30000

← t	→

↑

n

↓

ri/re = 0.5
ri/re = 0.2

0.0050
0

30000

← t	→

↑

n

↓

ri/re = 0.5

0.010
0

30000

← t	→

↑

n

↓

Switches in the context of larger networks
Techniques: testing
(We have better techniques for non-quantitative systems.)

2012-11-07Luca Cardelli 20

Summary

• Q (traditional): Q (traditional): Q (traditional): Q (traditional): What kind of dynamical system dynamical system dynamical system dynamical system is the
cell-cycle switch?

• A (traditional): A (traditional): A (traditional): A (traditional): Bistability – ultrasensitivity – hysteresis …
Focused on how unstructured sub-populations change
over time.

• Q: Q: Q: Q: What kind of algorithmic system algorithmic system algorithmic system algorithmic system is the cell-cylce
switch?

• A: A: A: A: Interaction – complexity - convergence ...
Focused on individual molecules as programmable,
structured, algorithmic entities.

Part II

Synthetic Biology
- or -

How Can We Build

Molecular Oscillators?

(or any other network?)

Molecular Programming Languages

• Reaction-Based (A + B → C + D) (Chemistry)
o Limited to finite set of species (no polymerization)

o Practically limited to small number of species (no run-away complexation)

• Interaction-Based (A = !r; C) (Process Algebra)
o Reduces combinatorial complexity of models by combining independent
submodels connected by interactions.

• Rule-Based (A{-}:B{p} → A{p}:B{-}) (Logic, Graph Rewriting)
o Further reduces model complexity by describing molecular state, and by allowing
one to ‘ignore the context’: a rule is a reaction in an unspecified
(complexation/phosphorylation) context.

o Similar to informal descriptions of biochemical events (“narratives”).

• Different levels of representation efficiency
o The latter two can be translated (to each other and) to the first, but doing so may
introduce an infinite, or anyway extremely large, number of species.

But what about Execution?

• Chemistry is not easily executable
o Please Mr Chemist, execute me these reactions
that I just made up.

• Description
o Molecular languages used in systems biology are
descriptive (modeling) languages

• Compilation
o How can we compile arbitrary molecular programs?

• Execution
o How can we actually execute molecular languages?
With real molecules?

DNA as an Engineering Material

• This is why DNA/RNA is important: it is
programmable matter.

• Not the only one, in principle, but the only
one for which we have a well-developed
manufacturing technology.

2012-11-07 24Sequence of Base Pairs (GACT alphabet)

Molecular Control Systems

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Control SystemsControl SystemsControl SystemsControl Systems

• Using bacterial machinery (e.g.) as the hardware.
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” DNA Computing
(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)

“Autonomous” DNA Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms (in the future)

(Nano(Nano(Nano(Nano----engineering with biological materials)engineering with biological materials)engineering with biological materials)engineering with biological materials)

Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing

Modern DNA Computing

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronic computers.

o Not necessarily using genes or to producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of
matter and information at the molecular level.

o To interact algorithmically with biological entities.

• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates

t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input

Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

Transducer x→y

x

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

Transducer x→y

t a

a tt axt a x t y

y t

x t

t

Transducer x→y

t a

a tt axt a x t y t

x t

t

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1)We need to make the output irreversible.
2)We need to remove the garbage.
We can use (2) to achieve (1).

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Transducer x→y

t y

t a

a tt axt a x y tt

Output

t

Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t

Transducer x→y

x

t y

t a tt axt a y tx t

Output

Transducer x→y

a x

t y

t a a tt axt y tx t

Output

a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source.

Transducer x→y

Join x+y→z

General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.

DNA Programming

Debugging

• Big Networks
o Two-domain DNA gates for 1
Approximate Majority switch.

o Initial species: 17

o Total number of species: 85
(including run-time produced ones)

o Total number of reactions: 104

• Analysis
o Gate correctness

o Circuit correctness

o Compiler correctness

o Currently, by simulation

o Increasingly, by modelchecking:

2012-11-07 63

Experiments

Yuan-Jyue Chen and Georg Seelig
U.Washingon.

Two-domain gate
for X+Y → Y+B

X+Y�Y+B
35C

1x = 50nM 0.05x0.05x0.05x0.05x
0x0x0x0x

0.1x0.1x0.1x0.1x

1x1x1x1x

0.2x0.2x0.2x0.2x
0.3x0.3x0.3x0.3x

Y

Summary

• Executable chemistry
o Given an arbitrary finite chemical network, compile it
systematically and execute it.
[D. Soloveichik, G. Seelig, E. Winfree. DNA as a Universal Substrate for
Chemical Kinetics. PNAS 107 no. 12, 5393-5398, 2010.]

o Finite chemical networks have the computing power of
(stochastic) Petri Nets. Population protocols (such as AM)
are also well-characterized. [D.Angluin, J.Aspnes, D.Eisenstat,
E.Ruppert: The Computational Power of Population Protocols].

• Executable bio-chemistry
o In addition, DNA supports polymerization, which gives the
computing power of Turing Machines.

o Then the programming language cannot be just chemical
reactions, but has to be something more like process
algebra or term-rewriting systems.

2012-11-07 65

Conclusions

Much to be done

• Systems Biology
o Develop the algorithmic understanding of molecular
networks that will allow us to understand their
structure and function (and how to do it better).

• Synthetic Biology
o Develop the materials and technology that will allow
us to ‘code-up’ arbitrary molecular networks.

o Develop the quantitative techniques that will allow us
to ‘debug’ them.

Acknowledgments

• Microsoft Research
o Andrew Phillips

• Caltech
o Winfree Lab

• U.Washington
o Seelig Lab

• CoSBi
o Attila Csikász-Nagy

Challenges

Verification

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)
o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)
o Interferences (deadlocks etc.) between copies of the same gate
o Interferences (deadlocks etc.) between copies of different gates
o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations
o Each population shares private domains
(technologically unavoidable)

o Correctness of populations means proofs with large state spaces

2012-11-07Luca Cardelli 72

A Brief History of DNA

Digital Computers

DNA, -3,800,000,000

DNA Computerssystematic
manipulation
of information

Computer

programming
20th century

systematic
manipulation
of matter

Molecular

programming
21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994

Structural DNA, 1982

Conclusions

2012-11-07Luca Cardelli 74

Conclusions

• A vast literature on cell cycle switching
o Ferrell et.al., Novak-Tyson et.al., etc.
Mostly ODE based analysis, plus noise

o Many bistable transitions have different implementations
in different cell cycle phases and organisms
(phosphorylation, enzymes, synthesis/degradation, etc.)

o We focused on a mechanism that can only be seen
stochastically (quick majority switching with x=y)

• A range of ‘network transformation’
o Can explain the structure of some natural networks
o From some non-trivial underlying algorithms
o Discovering the transformation can elucidate the structure
and function of the networks

o But how can we say that these transformations ‘preserve
(essential) behavior’?

