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Smaller and Smaller

First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947.

First integrated circuit
Jack Kilby, Sep. 1958. 

Single molecule transistor
Observation of molecular orbital gating. 
Nature, 2009; 462 (7276): 1039

Placement and orientation of individual DNA 
shapes on lithographically patterned surfaces. 
Nature Nanotechnology 4, 557 - 561 (2009).

Molecules on a chip

~10 Moore’s Law cycles left!

50 years later50 years later50 years later50 years later

25nm NAND flash
Intel&Micron, Jan. 2010. ~50atoms.



Building The Smallest Things

• How do we build structures that are 
by definition smaller than your tools? 

• Basic answer: you can’t. Structures 
(and tools) should build themselves! 

• By programmed self-assembly.

www.youtube.com/watch?v=Ey7Emmddf7Y



Molecular IKEA

• Nature can self-assemble. 
Can we?

• “Dear IKEA, please send me a 
chest of drawers that assembles 
itself.”

• We need a magical material where 
the pieces are pre-programmed 
to fit into to each other.

• At the molecular scale many such 
materials exist…

http://www.ikea.com/ms/en_US/custome
r_service/assembly_instructions.html

Add water



Wikimedia

Programmed Self-Assembly

Proteins DNA/RNA

Membranes



Molecular Languages

- modeling languages -



Chemistry

• Chemical reactions
o A + B �r C + D (a program)

• Ordinary Differential Equations
o d[A]/dt = -r[A][B]  … (a semantics)

• Rich analytical techniques based on Calculus

• But prone to combinatorial explosion
o E.g., due to the peculiarities of protein interactions



High(er)-Level Languages

• Gene Networks
o Synchronous Boolean networks

• Stewart Kauffman, etc.

o Asynchronous Boolean networks
• René Thomas, etc.

• Protein Networks
o Process Algebra (stochastic π-calculus etc.)

• Priami, Regev-Shapiro, etc.

o Graph Rewriting (kappa, BioNetGen etc.)
• Danos-Laneve, Fontana & al., etc.

• Membrane Networks
o Membrane Computing

• Gheorghe Păun, etc.

o Brane Calculi
• Luca Cardelli, etc.



Molecular Languages

• Reaction-Based  (A + B  → C + D)  (Chemistry)
o Limited to finite set of species (no polymerization)

o Practically limited to small number of species (no run-away complexation)

• Interaction-Based (A  =  !r; C)  (Process Algebra)
o Reduces combinatorial complexity of models by combining independent 

submodels connected by interactions.

• Rule-Based (A{-}:B{p}  → A{p}:B{-})  (Logic, Graph Rewriting)
o Further reduces model complexity by describing molecular state, and by allowing 

one to ‘ignore the context’: a rule is a reaction in an unspecified 
(complexation/phosphorylatio) context.

o Similar to informal descriptions of biochemical events (“narratives”).

• Syntactic connections
o The latter two can be translated (to each other and) to the first, but doing so may 

introduce an infinite, or anyway extremely large, number of species.



Semantic Connections

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics 
(Mass Action Kinetics)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic 

Semantics

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Combinatorial 
Explosion



But what about Execution?

• Chemistry is not easily executable
o Please Mr Chemist, execute me these reactions 

that I just made up.

• Similarly, the molecular languages seen so 
fare are descriptive (modeling) languages

• How can we actually execute molecular 
languages? With real molecules?



Molecular Languages

- executable languages -



Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine



Robust, and Long
• DNA in each human cell:

o 3 billion base pairs
o 2 meters long, 2nm thick
o folded into a 6µm ball
o 750 MegaBytes

• A huge amount for a cell
o Every time a cell replicates it has to

copy 2 meters of DNA reliably.
o To get a feeling for the 

scale disparity, compute:

• DNA in human body
o 10 trillion cells
o 133 Astronomical Units long
o 7.5 OctaBytes

• DNA in human population
o 20 million light years long

Andromeda Galaxy
2.5 million light years away

DNA wrapping into chromosomes
wehi.edu.au



Natural DNA Operation

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel 

processing)

In Bacteria: 1000 nucleotides/second 
(higher error rate)

DNA transcription in real time

RNA polymerase II: 
15-30 bases/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.



Unnatural DNA Operation

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Nanoscale Control SystemsNanoscale Control SystemsNanoscale Control SystemsNanoscale Control Systems



Sensing
Sensing

Constructing Actuating

Computing

Adenine riboswitch aptamer
Structural basis for discriminative regulation of gene 
expression by adenine- and guanine-sensing mRNAs. 
Chem Biol. 2004 Dec;11(12):1729-41.

Aptamers: natural or artificially 
evolved DNA molecules that stick 
to other molecules (highly 
selectively).

Target molecule



Constructing
Sensing

Constructing Actuating

Computing

Chengde Mao, Purdue Andrew Turberfield, Oxford

Crosslinking 



Actuating
Sensing

Constructing Actuating

Computing

Bernard Yurke, Boise State

DNA tweezers 
DNA walkers



Computing

• Sensors and Actuators 
at the 'edge' of the system
o They can use disparate technologies and phenomena

• Computation in the 'kernel' of the system

• Compositionality in the kernel
o The components should use uniform inputs and outputs

o The components should be ‘computationally complete’

Sensing

Constructing Actuating

Computing



• Using bacterial machinery (e.g.) as the hardware. 
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” Computing
(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)



“Autonomous” Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no 
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running 
‘separately’

(Nano(Nano(Nano(Nano----engineering)engineering)engineering)engineering)



Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing



RNA operation in (dead) cells 

• Using RNA Hybridization Chain Reaction 
for imaging of mRNA expression.
o The programmability of orthogonal RNA reactions 

enables spatial imaging with 5 simultaneous targets.   



Molecular

Computation



DNA Computing

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.

o Not necessarily using genes or producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of 

matter and information at the molecular level. 

o To interact algorithmically with biological entities.

o The use of DNA is “accidental”: no genes involved.

o In fact, no material of biological origin.



• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably 
independent is a tricky issue that is still somewhat of an open 
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG



Short Domains

t

t

t

Reversible Hybridization



Long Domains

x

x
x

Irreversible Hybridization



Strand Displacement

t x

xt

“Toehold Mediated”



Strand Displacement

xt

Toehold Binding



Strand Displacement

xt

Branch Migration



Strand Displacement

xt

Displacement



Strand Displacement

xt

x

Irreversible release



t

Bad Match

x

x

y

zt



t

Bad Match

x y

z

x



t

Bad Match

x y

z

x



xt

Bad Match

y

z

Cannot proceed
Hence will undo



Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.): 
Developments in Computational Models (DCM 2010). 
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection 
“built into” the gates



t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input



Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!



Transducer x→y

x

t a

t t a t a x t y t a t

y t



Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste



Transducer x→y

xt t a t a x t y t a t

y t

x t



Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.



Transducer x→y

t axt a x t y t a t

y t

x t

t



Transducer x→y

t a

a tt axt a x t y

y t

x t

t



Transducer x→y

t a

a tt axt a x t y t

x t

t



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).



Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t



Transducer x→y

t y

t a

a tt axt a x y tt

Output

t



Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t



Transducer x→y

x

t y

t a tt axt a y tx t

Output



Transducer x→y

a x

t y

t a a tt axt y tx t

Output



a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source. 



Transducer x→y



Join x+y→z



General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.



DNA Programming



Experiments

Yuan-Jyue Chen and Georg Seelig 
U.Washingon.

Two-domain gate 

for  X+Y → Y+B

X+Y�Y+B
35C

1x = 50nM 0.05x0.05x0.05x0.05x
0x0x0x0x

0.1x0.1x0.1x0.1x

1x1x1x1x

0.2x0.2x0.2x0.2x
0.3x0.3x0.3x0.3x

Y



Verification



Verification Issues

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)
o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)
o Interferences (deadlocks etc.) between copies of the same gate
o Interferences (deadlocks etc.) between copies of different gates
o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations
o Each population shares private domains 

(technologically unavoidable)
o Correctness of populations means proofs with large state spaces



Correctness

• The spec of a transducer: 

x.y | x → y

o Is it true at all?

o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a 
population of identical transducers?

o Is it true in all possible contexts?

o If false, does it become true for infinite populations?



Interfering Transducers

• Let a be the private transducer domain,
but let’s share it between x.y and y.x

• Interference: x.ay | y.ax | x  ↛∀ x

• But still: x.ay | y.ax | x | y  →∀ x | y

• A large population of such gates 
in practice does not deadlock easily.

• The wisdom of crowds: individuals can 
be wrong, but the population is all right. 

Stuck gates in 

of 200

Stuck gates in 
a population 

of 200



Modelchecking DNA Systems

• Using the PRISM stochastic modelchecker
o Termination probability of interfering transducers

x | x.ay | y.az

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips. 
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://qav.comlab.ox.ac.uk/papers/dna-pmc.pdf.  September 2010

Incorrect Incorrect 
Termination

Correct Correct 
Termination



Conclusions



A Brief History of DNA

Digital Computers

DNA, -3,800,000,000

DNA Computers
SoftwareSoftwareSoftwareSoftware

systematic
manipulation 
of information

Computer 
programming          

20th century

systematic 
manipulation

of matter
Molecular 

programming 
21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994 

Structural DNA, 1982 

MatterwareMatterwareMatterwareMatterware????????
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