
Molecular Programming

Luca Cardelli
Microsoft Research

INRIA Scientific Board, Paris, 2011-11-18

http://lucacardelli.name

Smaller and Smaller

First working transistor
John Bardeen and Walter Brattain , Dec. 23, 1947.

First integrated circuit
Jack Kilby, Sep. 1958.

Single molecule transistor
Observation of molecular orbital gating.
Nature, 2009; 462 (7276): 1039

Placement and orientation of individual DNA
shapes on lithographically patterned surfaces.
Nature Nanotechnology 4, 557 - 561 (2009).

Molecules on a chip

~10 Moore’s Law cycles left!

50 years later50 years later50 years later50 years later

25nm NAND flash
Intel&Micron, Jan. 2010. ~50atoms.

Building The Smallest Things

• How do we build structures that are
by definition smaller than your tools?

• Basic answer: you can’t. Structures
(and tools) should build themselves!

• By programmed self-assembly.

www.youtube.com/watch?v=Ey7Emmddf7Y

Molecular IKEA

• Nature can self-assemble.
Can we?

• “Dear IKEA, please send me a
chest of drawers that assembles
itself.”

• We need a magical material where
the pieces are pre-programmed
to fit into to each other.

• At the molecular scale many such
materials exist…

http://www.ikea.com/ms/en_US/custome
r_service/assembly_instructions.html

Add water

Wikimedia

Programmed Self-Assembly

Proteins DNA/RNA

Membranes

Molecular Languages

- modeling languages -

Chemistry

• Chemical reactions
o A + B �r C + D (a program)

• Ordinary Differential Equations
o d[A]/dt = -r[A][B] … (a semantics)

• Rich analytical techniques based on Calculus

• But prone to combinatorial explosion
o E.g., due to the peculiarities of protein interactions

High(er)-Level Languages

• Gene Networks
o Synchronous Boolean networks

• Stewart Kauffman, etc.

o Asynchronous Boolean networks
• René Thomas, etc.

• Protein Networks
o Process Algebra (stochastic π-calculus etc.)

• Priami, Regev-Shapiro, etc.

o Graph Rewriting (kappa, BioNetGen etc.)
• Danos-Laneve, Fontana & al., etc.

• Membrane Networks
o Membrane Computing

• Gheorghe Păun, etc.

o Brane Calculi
• Luca Cardelli, etc.

Molecular Languages

• Reaction-Based (A + B → C + D) (Chemistry)
o Limited to finite set of species (no polymerization)

o Practically limited to small number of species (no run-away complexation)

• Interaction-Based (A = !r; C) (Process Algebra)
o Reduces combinatorial complexity of models by combining independent

submodels connected by interactions.

• Rule-Based (A{-}:B{p} → A{p}:B{-}) (Logic, Graph Rewriting)
o Further reduces model complexity by describing molecular state, and by allowing

one to ‘ignore the context’: a rule is a reaction in an unspecified
(complexation/phosphorylatio) context.

o Similar to informal descriptions of biochemical events (“narratives”).

• Syntactic connections
o The latter two can be translated (to each other and) to the first, but doing so may

introduce an infinite, or anyway extremely large, number of species.

Semantic Connections

=

=

Continuous
Chemistry

Discrete
Chemistry

Process
Algebra

CTMC

ODE ODE

CTMC

Continuous-state Semantics
(Mass Action Kinetics)

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic

Semantics

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)

L. Cardelli: “A Process Algebra Master Equation” (QEST’07)

Combinatorial
Explosion

But what about Execution?

• Chemistry is not easily executable
o Please Mr Chemist, execute me these reactions

that I just made up.

• Similarly, the molecular languages seen so
fare are descriptive (modeling) languages

• How can we actually execute molecular
languages? With real molecules?

Molecular Languages

- executable languages -

Sequence of Base Pairs (GACT alphabet)

DNA

Interactive DNA Tutorial
(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

GC Base Pair
Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Robust, and Long
• DNA in each human cell:

o 3 billion base pairs
o 2 meters long, 2nm thick
o folded into a 6µm ball
o 750 MegaBytes

• A huge amount for a cell
o Every time a cell replicates it has to

copy 2 meters of DNA reliably.
o To get a feeling for the

scale disparity, compute:

• DNA in human body
o 10 trillion cells
o 133 Astronomical Units long
o 7.5 OctaBytes

• DNA in human population
o 20 million light years long

Andromeda Galaxy
2.5 million light years away

DNA wrapping into chromosomes
wehi.edu.au

Natural DNA Operation

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel

processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase II:
15-30 bases/second

Drew Berry
http://www.wehi.edu.au/wehi-tv

• DNA can support structural and computational complexity.

Unnatural DNA Operation

• Sensing
o Reacting to forces

o Binding to molecules

• Actuating
o Releasing molecules

o Producing forces

• Constructing
o Chassis

o Growth

• Computing
o Signal Processing

o Decision Making

Sensing

Constructing Actuating

Computing

Nucleic Acids can do all this.

And interface to biology.

Nanoscale Control SystemsNanoscale Control SystemsNanoscale Control SystemsNanoscale Control Systems

Sensing
Sensing

Constructing Actuating

Computing

Adenine riboswitch aptamer
Structural basis for discriminative regulation of gene
expression by adenine- and guanine-sensing mRNAs.
Chem Biol. 2004 Dec;11(12):1729-41.

Aptamers: natural or artificially
evolved DNA molecules that stick
to other molecules (highly
selectively).

Target molecule

Constructing
Sensing

Constructing Actuating

Computing

Chengde Mao, Purdue Andrew Turberfield, Oxford

Crosslinking

Actuating
Sensing

Constructing Actuating

Computing

Bernard Yurke, Boise State

DNA tweezers
DNA walkers

Computing

• Sensors and Actuators
at the 'edge' of the system
o They can use disparate technologies and phenomena

• Computation in the 'kernel' of the system

• Compositionality in the kernel
o The components should use uniform inputs and outputs

o The components should be ‘computationally complete’

Sensing

Constructing Actuating

Computing

• Using bacterial machinery (e.g.) as the hardware.
Using embedded gene networks as the software.

• MIT Registry of Standard Biological Parts

• GenoCAD
o Meaningful sequences [Cai et al.]

• GEC
o [Pedersen & Phillips]

“Embedded” Computing
(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)(Synthetic Biology)

“Autonomous” Computing

• Mix & go
o All (or most) parts are synthesized

o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

• Self-assembled and self-powered
o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running
‘separately’

(Nano(Nano(Nano(Nano----engineering)engineering)engineering)engineering)

Curing

A doctor in each cell

Sensing

Constructing Actuating

Computing

RNA operation in (dead) cells

• Using RNA Hybridization Chain Reaction
for imaging of mRNA expression.
o The programmability of orthogonal RNA reactions

enables spatial imaging with 5 simultaneous targets.

Molecular

Computation

DNA Computing

• Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.

o Not necessarily using genes or producing proteins.

• For general ‘molecular programming’
o To precisely control the organization and dynamics of

matter and information at the molecular level.

o To interact algorithmically with biological entities.

o The use of DNA is “accidental”: no genes involved.

o In fact, no material of biological origin.

• Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

Short Domains

t

t

t

Reversible Hybridization

Long Domains

x

x
x

Irreversible Hybridization

Strand Displacement

t x

xt

“Toehold Mediated”

Strand Displacement

xt

Toehold Binding

Strand Displacement

xt

Branch Migration

Strand Displacement

xt

Displacement

Strand Displacement

xt

x

Irreversible release

t

Bad Match

x

x

y

zt

t

Bad Match

x y

z

x

t

Bad Match

x y

z

x

xt

Bad Match

y

z

Cannot proceed
Hence will undo

Two-Domain Architecture

• Signals: 1 toehold + 1 recognition region

• Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
Developments in Computational Models (DCM 2010).
EPTCS 25, 2010, pp. 33-47. May 2010.

txt y t

xt

Garbage collection
“built into” the gates

t a

xt t a t a x t y t a t

y t

Transducer x→y

t x

Input

Transducer x→y

tatatata is a private signal (a different ‘a’ for each xy pair)

t a

xt t a t a x t y t a t

y t

t x

Input

Built by self-assembly!

Transducer x→y

x

t a

t t a t a x t y t a t

y t

Transducer x→y

t a

xt t a t a x t y t a t

y t

x t

Active
waste

Transducer x→y

xt t a t a x t y t a t

y t

x t

Transducer x→y

a t

t axt a x t y t a t

y t

x t

t

So far, a txtxtxtx signal has produced an atatatat cosignal.
But we want signals as output, not cosignals.

Transducer x→y

t axt a x t y t a t

y t

x t

t

Transducer x→y

t a

a tt axt a x t y

y t

x t

t

Transducer x→y

t a

a tt axt a x t y t

x t

t

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Here is our output tytytyty signal.

But we are not done yet:
1) We need to make the output irreversible.
2) We need to remove the garbage.
We can use (2) to achieve (1).

Transducer x→y

t y

t a

a tt axt a x y t

x t
Output

t t

Transducer x→y

t y

t a

a tt axt a x y tt

Output

t

Transducer x→y

x

t y

t a

a tt axt a y tx t

Output

t

Transducer x→y

x

t y

t a tt axt a y tx t

Output

Transducer x→y

a x

t y

t a a tt axt y tx t

Output

a x

t a a tt axt y tx t

Transducer x→y

t y

Output

Done.

N.B. the gate is consumed: it is the energy source.

Transducer x→y

Join x+y→z

General n×m Join-Fork

• Easily generalized to 2+ inputs (with 1+ collectors).

• Easily generalized to 2+ outputs.

DNA Programming

Experiments

Yuan-Jyue Chen and Georg Seelig
U.Washingon.

Two-domain gate

for X+Y → Y+B

X+Y�Y+B
35C

1x = 50nM 0.05x0.05x0.05x0.05x
0x0x0x0x

0.1x0.1x0.1x0.1x

1x1x1x1x

0.2x0.2x0.2x0.2x
0.3x0.3x0.3x0.3x

Y

Verification

Verification Issues

• Environment
o The nano-environment is messy (stochastic noise, failures, etc.)
o But we should al least ensure our designs are logically correct

• Verifying Components
o Reversible reactions (infinite traces)
o Interferences (deadlocks etc.) between copies of the same gate
o Interferences (deadlocks etc.) between copies of different gates
o Removal of active byproducts (garbage collection) is tricky

• Verifying Populations
o Gates come in (large) populations
o Each population shares private domains

(technologically unavoidable)
o Correctness of populations means proofs with large state spaces

Correctness

• The spec of a transducer:

x.y | x → y

o Is it true at all?

o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a
population of identical transducers?

o Is it true in all possible contexts?

o If false, does it become true for infinite populations?

Interfering Transducers

• Let a be the private transducer domain,
but let’s share it between x.y and y.x

• Interference: x.ay | y.ax | x ↛∀ x

• But still: x.ay | y.ax | x | y →∀ x | y

• A large population of such gates
in practice does not deadlock easily.

• The wisdom of crowds: individuals can
be wrong, but the population is all right.

Stuck gates in

of 200

Stuck gates in
a population

of 200

Modelchecking DNA Systems

• Using the PRISM stochastic modelchecker
o Termination probability of interfering transducers

x | x.ay | y.az

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips.
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://qav.comlab.ox.ac.uk/papers/dna-pmc.pdf. September 2010

Incorrect Incorrect
Termination

Correct Correct
Termination

Conclusions

A Brief History of DNA

Digital Computers

DNA, -3,800,000,000

DNA Computers
SoftwareSoftwareSoftwareSoftware

systematic
manipulation
of information

Computer
programming

20th century

systematic
manipulation

of matter
Molecular

programming
21th century

Transistor, 1947

Turing Machine, 1936

DNA Algorithm, 1994

Structural DNA, 1982

MatterwareMatterwareMatterwareMatterware????????

Acknowledgments

• Microsoft Research
o Andrew Phillips

• Caltech
o Winfree Lab

• U.Washington
o Seelig Lab

