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Smaller and Smaller

First working transistor

John Bardeen and Walter Brattain , Dec. 23, 1947.

First integrated circuit
Jack Kilby, Sep. 1958.

50 years later

2 5 n m NAN D fl aS h Scanning tunneling microscope image o?

Intel&Micron, Jan. 2010. ~50atoms. a silicon surface showing 10nm is
~20 atoms across

Single molecule transistor__

Observation of molecular orbital gating.
Nature, 2009; 462 (7276): 1039

Molecules on a chip

~10 Moore’s Law cycles left! T —

Placement and orientation of individual DNA
shapes on lithographically patterned surfaces.
€ Nature Nanotechnology 4, 557 - 561 (2009). U



Building The Smallest Things

e How do we build structures that are F"" o
by definition smaller than your tools?

« Basic answer: you can’t. Structures
(and tools) should build themselves!

By programmed self-assembly.

www.youtube.com/watch?v=Ey7Emmddf7Y



Molecular IKEA

Nature can self-assemble.
Can we?

‘Dear IKEA, please send me a
chest of drawers that assembles
itself.”

We need a magical material where &Add water
the pieces are pre-programmed
to fit into to each other.

At the molecular scale many such
materials exist...

http://www.ikea.com/ms/en_US/custome

r_service/assembly_instructions.html
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- Programmed Self-Assembly
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Molecular Languages
- modeling languages -




Chemistry

L

e Chemical reactions
oA+B->,C+D (@ program)

* Ordinary Differential Equations
o d[A]/dt = -r[A][B] ... (a semantics)

« Rich analytical techniques based on Calculus

« But prone to combinatorial explosion
o E.g., due to the peculiarities of protein interactions



High(er)-Level Languages

Gene Networks

o Synchronous Boolean networks
« Stewart Kauffman, etc.

o Asynchronous Boolean networks
« René Thomas, etc.

Protein Networks

o Process Algebra (stochastic n—calculus et
« Priami, Regev-Shapiro, etc.

o Graph Rewriting (kappa, BioNetGen etGu)-
« Danos-Laneve, Fontana & al., etc.

)

G.
NS

Membrane Networks

o Membrane Computing
« Gheorghe Paun, etc.

o Brane Calculi
e Luca Cardelli, etc.




Molecular Languages

Reaction-Based (A + B — C + D) (Chemistry)
o Limited to finite set of species (no polymerization)
o Practically limited to small number of species (no run-away complexation)

Interaction-Based (A = !Ir; C) (Process Algebra)

o Reduces combinatorial complexity of models by combining independent
submodels connected by interactions.

Rule-Based (A{-}:B{p} — A{p}:B{-}) (Logic, Graph Rewriting)

o Further reduces model complexity by describing molecular state, and by allowing
one to ‘ignore the context’: a ru/eis a reaction in an unspecified
(complexation/phosphorylatio) context.

o Similar to informal descriptions of biochemical events (“narratives”).

Syntactic connections

o The latter two can be translated (to each other and) to the first, but doing so may
introduce an infinite, or anyway extremely large, number of species.



Semantic Connections

Combinatorial
Explosion

Continuous-state Semantics

(Mass Action Kinetics)

t

Continuous
Chemistry

H

Discrete
Chemistry

Process
Algebra

CTMC

CTMC

Discrete-state Semantics

(Chemical Master Equation)

Nondeterministic

Semantics

Stochastic

Semantics

These diagrams commute via appropriate maps.

L. Cardelli: “On Process Rate Semantics” (TCS)
L. Cardelli: “A Process Algebra Master Equation” (QEST’07)



But what about Execution?

L

« Chemistry is not easily executable

o Please Mr Chemist, execute me these reactions
that | just made up.

« Similarly, the molecular languages seen so
fare are descriptive (modeling) languages

« How can we actually execute molecular
languages? With real molecules?



Molecular Languages
- executable languages -




DNA

wehi.edu.au

-~
-
'

GC Base Pair

Guanine-Cytosine

TA Base Pair
Thymine-Adenine

Interactive DNA Tutorial

(http://www.biosciences.bham.ac.uk/labs/minchin/tutorials/dna.html)

. Sequence of Base Pairs (GACT alphabet)



Robust,

DNA in each human cell:
3 billion base pairs

2 meters long, 2nm thick
folded into a 6um ball

750 MegaBytes

@)
@)
@)
@)

A huge amount for a cell

and Long

o Every time a cell replicates it has tc

copy 2 meters of DNA reliably.

o To Iget a feeling for the
scale disparity, compute:

DNA in human body

o 10 trillion cells
o 133 Astronomical Units long
o 7.5 OctaBytes

DNA in human population
o 20 million light years long

€

DNA wrappmg into chromosomes

wehi.edu.au

Andromeda Galaxy
2.5 million light years away



Natural DNA Operation

"« DNA can support structural and computational complexity.

DNA replication in real time

In Humans: 50 nucleotides/second
Whole genome in a few hours (with parallel
processing)

In Bacteria: 1000 nucleotides/second
(higher error rate)

DNA transcription in real time

RNA polymerase Il:
15-30 bases/second

Drew Berry
http://www.wehi.edu.au/wehi-tv



Unnatural DNA Operation

Sensing Nanoscale Control Systems
o Reacting to forces
o Binding to molecules
Actuating

o Releasing molecules
o Producing forces

Constructing

o Chassis
o Growth

Computing
o Signal Processing
o Decision Making

Nucleic Acids can do all this.
And interface to biology.

€



Sensing

Aptamers: natural or artificially
evolved DNA molecules that stick

to other molecules (highly
selectively).

Adenine riboswitch aptamer

Structural basis for discriminative regulation of gene
expression by adenine- and guanine-sensing mRNAs.
Chem Biol. 2004 Dec;11(12):1729-41.



Constructing

L

Crosslinking

Bave pair

Chengde Mao, Purdue Andrew Turberfield, Oxford

Folding DNA into Twisted and Curved Nanoscale Shapes

Hendrik Dietz, Shawn M. Douglas, & William M. Shih
Science, 325725730, 7 August 2009.




DNA tweezers

Bernard Yurke, Boise State

Actuating

DNA walkers
oA

Track



Computing

 Sensors and Actuators
at the 'edge’ of the system

o They can use disparate technologies and phenomena

« Computation in the 'kernel' of the system

« Compositionality in the kernel

o The components should use uniform inputs and outputs
o The components should be ‘computationally complete’



‘Embedded” Computing

(Synthetic Biology) -

Using bacterial machinery (e.g.) as the hardware. \
Using embedded gene networks as the software.

MIT Registry of Standard Biological Parts

GenoCAD | f“ﬂz@ﬂ@_ (0010 )~ b0013 =

o Meaningful sequences [Cai et al.]
r0040:prom; c0034:rbs; c0040:pcr; b0O015:ter

GEC |
o [Pedersen & Phillips] J 9__[ . @
‘2\-"' I

fj-ﬂ{i‘)-é—r - _% -éw-

prom<neg (C)>; rbs; pcr<codes(A)>; ter;
prom<neqg (A)>; rbs; pcr<codes(B)>; ter;
prom<neqg (B)>; rbs; pcr<codes(C)>; ter

€1 _I



"Autonomous” Computing
y (Nano-engineering)-
* Mix & go \
o All (or most) parts are synthesized
o No manual cycling (cf. early DNA computing)

o In some cases, all parts are made of DNA (no
enzyme/proteins)

« Self-assembled and self-powered

o Can run on its own (e.g. environmental sensing)

o Or be embedded into organisms, but running
‘separately’



Curing

A doctor in each cell

Molecular
Output

Programmable
Computer

plasma
membrane

Fig. 1 Medicine in 2050: “Doctor in a Cell’ Ehud Shaplro "Molecules and

Rivka Adar -

Kobi Benenson computation
Gregory Linshitz

Aviv Regev

William Silverman



RNA operation in (dead) cells

L

« Using RNA Hybridization Chain Reaction
for imaging of mRNA expression.

o The programmability of orthogonal RNA reactions
enables spatial imaging with 5 simultaneous targets.

THE PIERCE LAB

nature

California Institute of Technology

biotechnology

Engineering Molecular Devices

Small conditional RNAs for

detection, transduction, nature.com » journal home » archive » issue » research » letter » abstract
amplification, logic,
locometion, readout and
regulation \“ ARTICLE PREVIEW
@ 2 # view full access options »
5y

Algorithms Technologies

Programmable in situ amplification for multiplexed imaging
of mMRNA expression

Harry M T Choi, Joann ¥ Chang, Le A Trinh, Jennifer E Padilla, Scott E Fraser & Niles A Pierce

Affiliations | Contributions | Corresponding author

Nature Biotechnology 28, 1208-1212 (2010) | doi:10.1038/nbt. 1652
Received 28 June 2010 | Accepted 24 September 2010 | Published online 31 October 2010



Molecular
Computation




DNA Computing

L

« Non-goals
o Not to solve NP-complete problems.

o Not to replace electronics.
o Not necessarily using genes or producing proteins.

« For general ‘molecular programming’

o To precisely control the organization and dynamics of
matter and information at the molecular level.

o To interact algorithmically with biological entities.
o The use of DNA is “accidental”. no genes involved.
o In fact, no material of biological origin.

L €1



Domains

Subsequences on a DNA strand are called domains.
PROVIDED they are “independent” of each other.

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

X y Z

l.e., differently named domains must not hybridize:
With each other

With each other’s complement

With subsequences of each other

With concatenations of other domains (or their complements)
Etc.

O O O O O

Choosing domains (subsequences) that are suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.



Short Domains

—_—
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Reversible Hybridization



Long Domains

A
X
D

Irreversible Hybridization

X
N —



Strand Displacement

“Toehold Mediated”



Strand Displacement

__

t X
<

Toehold Binding



Strand Displacement

Branch Migration



Strand Displacement

Displacement



Strand Displacement

Irreversible release



Bad Match

t X Z
—_— S
t X y



Bad Match



Bad Match



Bad Match

Cannot proceed
Hence will undo



Two-Domain Architecture

L

. Signals: 1 toehold + 1 recognition region

Garbage collection

ﬁ 1] H = ”
built into” the gates

t X

« Gates: “top-nicked double strands”
(or equivalently double strands with open toeholds)

Two-Domain DNA Strand Displacement

In S. B. Cooper, E. Kashefi, P. Panangaden (Eds.):
| Cardelli Developments in Computational Models (DCM 2010).
uca Laraeil EPTCS 25, 2010, pp. 33-47. May 2010.

L €1



Transducer x—y

Input



Transducer x—y

Input
ﬁ
T X

# ﬁ

t a y ot
#*
t x t a t a X t y t a t
——

Built by self-assembly!

ta is a private signal (a different ‘a’ for each xy pair)



Transducer x—y

# ﬁ
t a y ot
t x t a t a X t y t a t

——



Transducer x—y

Active
waste
t
# #
t a Y
* *



Transducer x—y

#
X ot

ﬁ

y ot
t x t a t a X t y t a t

——



Transducer x—y

#

X ot

ﬁ ﬁ

a t y ot
t x t a t a X t y t a t
——

So far, a tx signal has produced an at cosignal.
But we want signals as output, not cosignals.



Transducer x—y

—

#

—



Transducer x—y

# #
X 1 t a
ﬁ
y ot
t x t a t a X t vy a t

——



Transducer x—y



Transducer x—y

# ﬁ

X i t a
Output
ﬁ
t vy

t x t a t a X t y t a t

.5 g —
Here is our output ty signal.

But we are not done yet:
1)We need to make the output irreversible.

2) We need to remove the garbage.
We can use (2) to achieve (1).

€



Transducer x—y



Transducer x—y



Transducer x—y

d

——



Transducer x—y



Transducer x—y

A A
a X
Output
#
t vy
* *

——



Transducer x—y

Output
t vy

Done.

N.B. the gate is consumed: it is the energy source.









General nxm Join-Fork

« Easily generalized to 2+ inputs (with 1+ collectors).
« Easily generalized to 2+ outputs.

£t w t oy b t
—— — — .
t x t a c t z t
— —— —— — — e — — o —
t w t x t v t a t a w t ¢ t b t =z &t a ¢t
t ¢ x t t by ot
e Zm— — gpe— —

Figure 9: 3-Join J,,.. | tw | x | ty — tz: initial state plus inputs tw, 7x, ty.



DNA Programming

Examples: [ v | [ Compile | [_Simulate | | Analyse | Pause Compilation: [_Default v | Options: [ v | Simulation: [_Deterministic v | View: [ v_ License Install_
Code DNA Input Compilation | Simulation | Analysis
Jlljlg éﬁl% % I'aﬁlljﬂlx ) | - Species Reactions Graph Text Domains SBML
def bind = kt*1.8e-9 (* fnM/s *) . e
def unbind = kt*exp DeltaG_over_RT (* /s *) =
new t@bind,unbind
new ubind,unbind +
new f180.8,8.@
X t A u a t X E ; t X L Y u a
def onex = 50.8 B xs ¥ ¥= u® gt B aXT B Y aur oat
{(Fx+y-ry+z*)
def Cat(MN, x, vy, z) =
=R * * At A A +
Hi;ﬁ%;lﬁzt%g”gfai t XN\t Y u_ a b X Y u_ a Xt L
. b, [H I i 41 Y B o' H T —— — — H —
| (2.8%N) * <u® a> | XY T Yt ut oat £ N ARTYE uE at
| (2.8%N) * <z t*> |
]
def Rep(M,x,fl) = *
EN) = pos. A
({3.8*N) tAe: [x]<F1N>) t X Y u a t Y E ; t X t iy i b, @
* * * * = * e * * =
( onex * <Calibration: v 3 ! v ou 2 L X t Y u -
| Cat(onex,X,Y,B)
| Rep(onex,B,f11)
| onex * <t™ X>
| onex * <t~ ¥> *
y t X t Y u a t X t Y a Y u
X - Yy ut a* tf X 't Yr ut at
E J License Install
4| | 3 E
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Ready Ln 34 Col16 Ch1s INS |_| 100%
Show all[Hide all| [= <Calibration=[= <B fi1~>
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Experiments

Two-domain gate 10 —
for X+Y — Y+B al v
= 1x
£ 6}
X+Y->Y+B 5 0.2x
35C 2 4 0.1x
=
Ix =50nM
© 2 0x
o
OD 5 10
hours
Yuan-Jyue Chen and Georg Seelig _LGE e
U.Washingon. e X,
Catalyst Y
Iraeadout +’ng

1.5x

1.5x%

1x
Ox, 0.05x,0.1x,0.2x,0.3x, 1x
2%
4

3x



Verification




Verification Issues

Environment

o The nano-environment is messy (stochastic noise, failures, etc.)
o But we should al least ensure our designs are /ogically correct

Verifying Components
o Reversible reactions (infinite traces)
o Interferences (deadlocks etc.) between copies of the same gate
o Interferences (deadlocks etc.) between copies of different gates
o Removal of active byproducts (garbage collection) is tricky
Verifying Populations
o Gates come in (large) populations

o Each population shares private domains
(technologically unavoidable)

o Correctness of populations means proofs with large state spaces



Correctness

L

« The spec of a transducer:
XY | X—>Yy

o Is it true at all?
o Is it true possibly, necessarily, or probabilistically ?

o Is it true in the context of a
population of identical transducers?

o Is it true /in all possible contexts?
o If false, does it become true for /nfinite populations?



Interfering Transducers

Let a be the private transducer domain,

but let’s share it between x.y and y.X

Interference: xX.,y | y..X | X »7 X

A large population of such gates

—_—

1 -
3
802

But still: x.,y [ y..x [ x|y =Y x|y™

BN

:[llllil”lju‘lll l{l‘lllll[ljlllllljlfl|lljl|j|IJIlIIIILl]|ll|l'l|'[|f|l|llrl|]IIIIIIILII|I1III
0 50\ 100 150 200 250 300 350 400 450

in practice does not deadlock easily.

Stuck gates in

a population

The wisdom of crowds: individuals can

be wrong, but the population is all right.

€

of 200




Modelchecking DNA Systems

L

« Using the PRISM stochastic modelchecker

o Termination probability of interfering transducers
X | X,y | Y.52Z

1.0

0.9

0.8

0.7
£ 06 E )
n'o.4 N

0.3

. Incorrect
0. Termination
0.0

0 25,000 50,000 75,000 100,000 125,000 150,000 175,000 200,000 225,000 250,000
Time

‘+ Either terminal state —¥ Terminal state 1 —® Terminal state 2|

L. Cardelli, M. Kwiatkowska, M. Lakin, D. Parker and A. Phillips.
Design and Analysis of DNA Circuits using Probabilistic Model Checking.
http://gav.comlab.ox.ac.uk/papers/dna-pmc.pdf. September 2010
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Conclusions




A Brief History of DNA

L

Turing Machine, 1936

to]ofofofelala]B]o]o;

Structural DNA, 1982

() DNA, -3,800,000,000 J[_

Transistor, 1947 <—

Software
Di QM“ systematic
Computer manipulation
of information

programming
20th century

(City encodings) (Hybridized DNA) \

CCCCCC
CCCCCC
GGGGGG

Matterware??
systematic DWFS
manipulation Molecular
of matter

programming
21th century
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