
Reversible Structures

Luca Cardelli Cosimo Laneve

January 19, 2012

CMSB referee report #1

Review: This is a well-formulated and rigorous technical

paper, but not likely to be an important paper in the

future development of synthetic systems biology.

On the other hand, if the paper is structured differently,

it may influence others to think about problems of this

nature and develop the field further.

One solutions would be to abandon the Bourbaki style in

which the paper is written, and start by motivating the

problem in terms of DNA computation and then show how it

can be formalized in the framework presented.

There should be a section then summarizing all the

results, how to interpret them and why the results do not

completely correspond to the real physics, thermodynamics,

etc. One technicals section should collect all the

theorems and proofs.

CMSB referee report #1
Review: This is a well-formulated and rigorous technical

paper, but not likely to be an important paper in the

future development of synthetic systems biology.

On the other hand, if the paper is structured differently,

it may influence others to think about problems of this

nature and develop the field further.

One solutions would be to abandon the Bourbaki style in

which the paper is written, and start by motivating the

problem in terms of DNA computation and then show how it

can be formalized in the framework presented.

There should be a section then summarizing all the

results, how to interpret them and why the results do not

completely correspond to the real physics, thermodynamics,

etc. One technicals section should collect all the

theorems and proofs.

CMSB referee report #1
Review: This is a well-formulated and rigorous technical

paper, but not likely to be an important paper in the

future development of synthetic systems biology.

On the other hand, if the paper is structured differently,

it may influence others to think about problems of this

nature and develop the field further.

One solutions would be to abandon the Bourbaki style in

which the paper is written, and start by motivating the

problem in terms of DNA computation and then show how it

can be formalized in the framework presented.

There should be a section then summarizing all the

results, how to interpret them and why the results do not

completely correspond to the real physics, thermodynamics,

etc. One technicals section should collect all the

theorems and proofs.

CMSB referee report #1
Review: This is a well-formulated and rigorous technical

paper, but not likely to be an important paper in the

future development of synthetic systems biology.

On the other hand, if the paper is structured differently,

it may influence others to think about problems of this

nature and develop the field further.

One solutions would be to abandon the Bourbaki style in

which the paper is written, and start by motivating the

problem in terms of DNA computation and then show how it

can be formalized in the framework presented.

There should be a section then summarizing all the

results, how to interpret them and why the results do not

completely correspond to the real physics, thermodynamics,

etc. One technicals section should collect all the

theorems and proofs.

CMSB referee report #1
Review: This is a well-formulated and rigorous technical

paper, but not likely to be an important paper in the

future development of synthetic systems biology.

On the other hand, if the paper is structured differently,

it may influence others to think about problems of this

nature and develop the field further.

One solutions would be to abandon the Bourbaki style in

which the paper is written, and start by motivating the

problem in terms of DNA computation and then show how it

can be formalized in the framework presented.

There should be a section then summarizing all the

results, how to interpret them and why the results do not

completely correspond to the real physics, thermodynamics,

etc. One technicals section should collect all the

theorems and proofs.

... following CMSB’s reviewer: plan

– (motivations) reversibility in nature: the instance of dna
circuits

– (our solution) the algebra of dna circuits: reversible
structures

– (the appendix) overview of the theory of reversible
structures

I reversibility/causality in reversible structures

I causally equivalent computations (permutation
equivalence) and the standardization theorem

I modelling of asynchronous RCCS

motivations/reversibility

– in computational systems, computations are sequence of
irreversible steps

– implementations of these systems in physics or chemistry
are usually reversible

– reversibility means undoing the computation not in a
deterministic way:

states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a
different order

motivations/reversibility

– in computational systems, computations are sequence of
irreversible steps

– implementations of these systems in physics or chemistry
are usually reversible

– reversibility means undoing the computation not in a
deterministic way:

states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a
different order

motivations/reversibility

– in computational systems, computations are sequence of
irreversible steps

– implementations of these systems in physics or chemistry
are usually reversible

– reversibility means undoing the computation not in a
deterministic way:

states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a
different order

motivations/reversibility

– in computational systems, computations are sequence of
irreversible steps

– implementations of these systems in physics or chemistry
are usually reversible

– reversibility means undoing the computation not in a
deterministic way:

states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a
different order

motivations/reversibility/example

transition system

a computation a reverted computation of its

a different computation

motivations/reversibility/example

transition system

a computation a reverted computation of its

a different computation

transition system

a computation a reverted computation of its

a different computation

motivations/reversibility/example

transition system

a computation a reverted computation of its

a different computation

transition system

a computation a reverted computation of its

a different computationtransition system

a computation a reverted computation of its

a different computation

motivations/the formalization of reversibility in nature

since parts of physics and chemistry are reversible,

what is the theory of reversibility underneath?

said otherwise:

taking a reversible system in nature, what properties may
we prove?

motivations/the formalization of reversibility in nature

since parts of physics and chemistry are reversible,

what is the theory of reversibility underneath?

said otherwise:

taking a reversible system in nature, what properties may
we prove?

motivations/reversibility in dna

– subsequences of a dna strand are called domains
• Subsequences on a DNA strand are called domains.

PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

domains are independent of each other

– they cannot hybridize from any other domain except their complement

– there are very few short domains with reversible hybridizations

– and long domains with irreversible hybridizations

motivations/reversibility in dna

– subsequences of a dna strand are called domains
• Subsequences on a DNA strand are called domains.

PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

domains are independent of each other

– they cannot hybridize from any other domain except their complement

– there are very few short domains with reversible hybridizations
Short Domains

t

t
t

Reversible Hybridization

– and long domains with irreversible hybridizations

motivations/reversibility in dna

– subsequences of a dna strand are called domains
• Subsequences on a DNA strand are called domains.

PROVIDED they are “independent” of each other.

• I.e., differently named domains must not hybridize:
o With each other
o With each other’s complement
o With subsequences of each other
o With concatenations of other domains (or their complements)
o Etc.

• Choosing domains (subsequences) that suitably
independent is a tricky issue that is still somewhat of an open
problem (with a vast literature). But it can work in practice.

x zy

Domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG

domains are independent of each other

– they cannot hybridize from any other domain except their complement

– there are very few short domains with reversible hybridizations
Short Domains

t

t
t

Reversible Hybridization
– and long domains with irreversible hybridizations

Long Domains

x

x
x

Irreversible Hybridization

motivations/reversibility in dna/branch migration

clever strand designs give reversible behaviours

reversible strand displacements

• pi

48

displacement reversible releasebranch migrationtoehold binding

toehold mediated strand
displacement

t x

xt t xt xt

x

xtxt t t t t

t

.../reversibility in dna/three-domains structures

– a three-domains transducer

a v
b

v

a

a v
b

u
v

a v
b

vu

a v

bv
u

a
a

a v

bv

u a

c z

w c

a v

bv

u a

a v

u a

– its dynamics

– and causalities

.../reversibility in dna/three-domains structures

– a three-domains transducer

a v
b

v

a

a v
b

u
v

a v
b

vu

a v

bv
u

a
a

a v

bv

u a

c z

w c

a v

bv

u a

a v

u a

– its dynamics

a v

b
v

a

a v

b

u
v

a v

b
vu

a v

bv

u
a

a

a v

bv

u
a

a z

w
a

a v

bv

u
a

a v

u
a

– and causalities

.../reversibility in dna/three-domains structures

– a three-domains transducer

a v
b

v

a

a v
b

u
v

a v
b

vu

a v

bv
u

a
a

a v

bv

u a

c z

w c

a v

bv

u a

a v

u a

– its dynamics

a v

b
v

a

a v

b

u
v

a v

b
vu

a v

bv

u
a

a

a v

bv

u
a

a z

w
a

a v

bv

u
a

a v

u
a

– and causalities

a v

b
v

a

a v

b

u
v

a v

b
vu

a v

bv

u
a

a

a v

bv

u
a

a z

w
a

a v

bv

u
a

a v

u
a

.../reversibility in dna/massive concurrency

dna circuits are massively concurrent:

– solutions consist of populations of species of strands and

– populations are not singletons

it is not possible to desynchronize processes that actually
interacted in the past

.../reversibility in dna/massive concurrency

dna circuits are massively concurrent:

– solutions consist of populations of species of strands and
– populations are not singletons

it is not possible to desynchronize processes that actually
interacted in the past

a v

c
v

a

a v

b

u
v

a v

b
vu

a v

bv

u
a

a

a v

bv

u
a

a z

w
a

a v

bv

u
a

a v

u
a

b v’

c
v’

c w

d
w

c w’

e
w’

au

bu’

.../reversibility in dna/massive concurrency

the situation may be even worse due to bad designs

a v

bv

u
a

c v

w
c

.../reversibility in dna/issues

reversibility/causality in nature (massive concurrent systems)
has not been studied

– theories have been defined for reversible calculi where processes
retain unique ids (Danos-Krivine, Phillips-Ulidowski,
Lanese-Mezzina-Stefani)

question addressed by this talk:

what is the distance between current theories of reversible
algebras and reversibility in nature?

.../reversibility in dna/issues

reversibility/causality in nature (massive concurrent systems)
has not been studied

– theories have been defined for reversible calculi where processes
retain unique ids (Danos-Krivine, Phillips-Ulidowski,
Lanese-Mezzina-Stefani)

question addressed by this talk:

what is the distance between current theories of reversible
algebras and reversibility in nature?

our solution/the algebra of reversible structures

signals

: u:a

gates

: g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ

notation: u, v, w: ids a, a, b, b: names and conames
x, x′: ids, names and conames A, B, C: sequences of names;
A, B, C: sequences of elements u:a A⊥, B⊥, C⊥: sequences of elements u:a

our solution/the algebra of reversible structures

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates

: g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ

notation: u, v, w: ids a, a, b, b: names and conames
x, x′: ids, names and conames A, B, C: sequences of names;
A, B, C: sequences of elements u:a A⊥, B⊥, C⊥: sequences of elements u:a

our solution/the algebra of reversible structures

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ

notation: u, v, w: ids a, a, b, b: names and conames
x, x′: ids, names and conames A, B, C: sequences of names;
A, B, C: sequences of elements u:a A⊥, B⊥, C⊥: sequences of elements u:a

our solution/the algebra of reversible structures

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

ˆa . a′ . v:b u:a . ˆa′ . v:b

u:a .u′:a′ . v:bˆ

notation: u, v, w: ids a, a, b, b: names and conames
x, x′: ids, names and conames A, B, C: sequences of names;
A, B, C: sequences of elements u:a A⊥, B⊥, C⊥: sequences of elements u:a

our solution/the algebra of reversible structures

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’ˆa . a′ . v:b u:a . ˆa′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a .u′:a′ . v:bˆ

notation: u, v, w: ids a, a, b, b: names and conames
x, x′: ids, names and conames A, B, C: sequences of names;
A, B, C: sequences of elements u:a A⊥, B⊥, C⊥: sequences of elements u:a

our solution/the algebra of reversible structures

signals : u:a

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

gates : g input part.output part + ˆ

examples of gates:

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’ˆa . a′ . v:b u:a . ˆa′ . v:b

a v

bv

u a

c v

w c

au

a’ v
b

v

a
a’ v

b
v

a

u
a

a’ v

bv

a

u

a

u’

a’

u:a .u′:a′ . v:bˆ

notation: u, v, w: ids a, a, b, b: names and conames
x, x′: ids, names and conames A, B, C: sequences of names;
A, B, C: sequences of elements u:a A⊥, B⊥, C⊥: sequences of elements u:a

our solution/the algebra of reversible structures/syntax

structures : S ::=
0 (null)

| u:a (signal)
| g (gate)
| S | S (parallel)
| (new x)S (new)

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE: w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b
↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE:

w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b

↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE: w:a | v:a . ˆu:b

→ w:a | v:a .u:bˆ | u:b

↗

v:a | w:a | ˆa .u:b

↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE:

w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b
↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE: w:a | v:a . ˆu:b

→ w:a | v:a .u:bˆ | u:b

↗

v:a | w:a | ˆa .u:b

↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE: w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b

↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE: w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b
↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../the algebra of reversible structures/reductions

input-capture: u:a | A⊥ . ˆa . B . C −→ A⊥ . u:a . ˆB . C

input-release: A⊥ . u:a . ˆB . C −→ u:a | A⊥ . ˆa . B . C

output-release: A⊥ . B . ˆu:a . C −→ u:a | A⊥ . B . u:a . ˆC

output-capture: u:a | A⊥ . B . u:a . ˆC −→ A⊥ . B . ˆu:a . C

EXAMPLE: w:a | v:a . ˆu:b → w:a | v:a .u:bˆ | u:b
↗

v:a | w:a | ˆa .u:b
↘

v:a | w:a . ˆu:b

reverse reductions:

input-capture/input-release and output-release/output-capture

.../modelling of concurrent operators (pearls)

join input (a | b . c)

ˆa. b. u:c

input-guarded choice (a.b + a′.c)

(new v, e)(e. a. u:b | e. a′. u′:c | v:e)

– similarly for mixed-guarded choice

this is the basic scheme for implementing asynchronous RCCS

.../modelling of concurrent operators (pearls)

join input (a | b . c)

ˆa. b. u:c

input-guarded choice (a.b + a′.c)

(new v, e)(e. a. u:b | e. a′. u′:c | v:e)

– similarly for mixed-guarded choice

this is the basic scheme for implementing asynchronous RCCS

.../modelling of concurrent operators (pearls)

join input (a | b . c)

ˆa. b. u:c

input-guarded choice (a.b + a′.c)

(new v, e)(e. a. u:b | e. a′. u′:c | v:e)

– similarly for mixed-guarded choice

this is the basic scheme for implementing asynchronous RCCS

.../modelling of concurrent operators (pearls)

join input (a | b . c)

ˆa. b. u:c

input-guarded choice (a.b + a′.c)

(new v, e)(e. a. u:b | e. a′. u′:c | v:e)

– similarly for mixed-guarded choice

this is the basic scheme for implementing asynchronous RCCS

.../weak coherence and dna realizability

a structure is weak coherent whenever ids are uniquely associated to
names and co-names

– if u:α and u:α′ occur in the structure then either
α = α′ or α = α′

STATEMENT: (weak coherent) reversible structures may be
implemented into three domains dna strands

.../causality in a nutshell

1. reversibility is reduced to causal (in)dependencies
two reductions are (causally) dependent if they have either
the signal or the gate in common

note: two reductions may be dependent even if they concern
different elements (of the same population)

2. STATEMENT: independent reductions can be swapped
(diamond lemma)

3. define permutation equivalence, an equivalence on
computations that is insensible

(i) to swapping of consecutive independent reductions

(ii) to the removal of consecutive reverse reductions

4. a computation σ′ is the reverse of σ if σ; σ′ ∼ ε

.../causality in a nutshell
1. reversibility is reduced to causal (in)dependencies

two reductions are (causally) dependent if they have either
the signal or the gate in common

note: two reductions may be dependent even if they concern
different elements (of the same population)

2. STATEMENT: independent reductions can be swapped
(diamond lemma)

3. define permutation equivalence, an equivalence on
computations that is insensible

(i) to swapping of consecutive independent reductions

(ii) to the removal of consecutive reverse reductions

4. a computation σ′ is the reverse of σ if σ; σ′ ∼ ε

.../causality in a nutshell
1. reversibility is reduced to causal (in)dependencies

two reductions are (causally) dependent if they have either
the signal or the gate in common

note: two reductions may be dependent even if they concern
different elements (of the same population)

2. STATEMENT: independent reductions can be swapped
(diamond lemma)

3. define permutation equivalence, an equivalence on
computations that is insensible

(i) to swapping of consecutive independent reductions

(ii) to the removal of consecutive reverse reductions

4. a computation σ′ is the reverse of σ if σ; σ′ ∼ ε

.../causality in a nutshell
1. reversibility is reduced to causal (in)dependencies

two reductions are (causally) dependent if they have either
the signal or the gate in common

note: two reductions may be dependent even if they concern
different elements (of the same population)

2. STATEMENT: independent reductions can be swapped
(diamond lemma)

3. define permutation equivalence, an equivalence on
computations that is insensible

(i) to swapping of consecutive independent reductions

(ii) to the removal of consecutive reverse reductions

4. a computation σ′ is the reverse of σ if σ; σ′ ∼ ε

.../causality in a nutshell
1. reversibility is reduced to causal (in)dependencies

two reductions are (causally) dependent if they have either
the signal or the gate in common

note: two reductions may be dependent even if they concern
different elements (of the same population)

2. STATEMENT: independent reductions can be swapped
(diamond lemma)

3. define permutation equivalence, an equivalence on
computations that is insensible

(i) to swapping of consecutive independent reductions

(ii) to the removal of consecutive reverse reductions

4. a computation σ′ is the reverse of σ if σ; σ′ ∼ ε

.../causality: diamond lemma and perm. equivalence

u:a | ˆa . v:b | u:a . ˆv:b

u | ˆa◦v↙

↘ u◦ˆv

u:a . ˆv:b | u:a . ˆv:b

u:a | ˆa . v:b | u:a . v:bˆ | v:b

u◦ˆv↘

↙ u | ˆa◦v

u:a . ˆv:b | u:a . v:bˆ | v:b

.../causality: diamond lemma and perm. equivalence

u:a | ˆa . v:b | u:a . ˆv:b

u | ˆa◦v↙ ↘ u◦ˆv

u:a . ˆv:b | u:a . ˆv:b

u:a | ˆa . v:b | u:a . v:bˆ | v:b

u◦ˆv↘

↙ u | ˆa◦v

u:a . ˆv:b | u:a . v:bˆ | v:b

.../causality: diamond lemma and perm. equivalence

u:a | ˆa . v:b | u:a . ˆv:b

u | ˆa◦v↙ ↘ u◦ˆv

u:a . ˆv:b | u:a . ˆv:b u:a | ˆa . v:b | u:a . v:bˆ | v:b

u◦ˆv↘

↙ u | ˆa◦v

u:a . ˆv:b | u:a . v:bˆ | v:b

.../causality: diamond lemma and perm. equivalence

u:a | ˆa . v:b | u:a . ˆv:b

u | ˆa◦v↙ ↘ u◦ˆv

u:a . ˆv:b | u:a . ˆv:b u:a | ˆa . v:b | u:a . v:bˆ | v:b

u◦ˆv↘ ↙ u | ˆa◦v

u:a . ˆv:b | u:a . v:bˆ | v:b

.../causality: issues

u:a | u:a | ˆa . v:b | w:c . u:aˆ

u | ˆa◦v
−→ u:a | u:a . ˆv:b | w:c . u:aˆ

u | w◦uˆ
−→ u:a . ˆv:b | w:c . ˆu:a

cannot be swapped because u | ˆa◦v and u | w◦uˆ have terms in common

RATIONALE: in massive concurrent systems, different
occurrences of a same molecule cannot be separated

– we do not catch multiplicities

– a similar anomaly is present in Petri nets (cf. Degano, Meseguer,
Montanari)

.../causality: issues

u:a | u:a | ˆa . v:b | w:c . u:aˆ
u | ˆa◦v
−→ u:a | u:a . ˆv:b | w:c . u:aˆ

u | w◦uˆ
−→ u:a . ˆv:b | w:c . ˆu:a

cannot be swapped because u | ˆa◦v and u | w◦uˆ have terms in common

RATIONALE: in massive concurrent systems, different
occurrences of a same molecule cannot be separated

– we do not catch multiplicities

– a similar anomaly is present in Petri nets (cf. Degano, Meseguer,
Montanari)

.../causality: issues

u:a | u:a | ˆa . v:b | w:c . u:aˆ
u | ˆa◦v
−→ u:a | u:a . ˆv:b | w:c . u:aˆ

u | w◦uˆ
−→ u:a . ˆv:b | w:c . ˆu:a

cannot be swapped because u | ˆa◦v and u | w◦uˆ have terms in common

RATIONALE: in massive concurrent systems, different
occurrences of a same molecule cannot be separated

– we do not catch multiplicities

– a similar anomaly is present in Petri nets (cf. Degano, Meseguer,
Montanari)

.../causality: issues

u:a | u:a | ˆa . v:b | w:c . u:aˆ
u | ˆa◦v
−→ u:a | u:a . ˆv:b | w:c . u:aˆ

u | w◦uˆ
−→ u:a . ˆv:b | w:c . ˆu:a

cannot be swapped because u | ˆa◦v and u | w◦uˆ have terms in common

RATIONALE: in massive concurrent systems, different
occurrences of a same molecule cannot be separated

– we do not catch multiplicities

– a similar anomaly is present in Petri nets (cf. Degano, Meseguer,
Montanari)

.../causality: issues

u:a | u:a | ˆa . v:b | w:c . u:aˆ
u | ˆa◦v
−→ u:a | u:a . ˆv:b | w:c . u:aˆ

u | w◦uˆ
−→ u:a . ˆv:b | w:c . ˆu:a

cannot be swapped because u | ˆa◦v and u | w◦uˆ have terms in common

RATIONALE: in massive concurrent systems, different
occurrences of a same molecule cannot be separated

– we do not catch multiplicities

– a similar anomaly is present in Petri nets (cf. Degano, Meseguer,
Montanari)

the appendix/the standardization theorem

STATEMENT: let µ1 ; σ ; µn be a computation of a weak coherent
structure such that µn is the reverse of µ1

– there is a shorter computation that is permutation equivalent to
µ1 ; σ ; µn

the evolution of a gate in a computation without reverse
reductions (normal) is unidirectional

the appendix/the standardization theorem

STATEMENT: let µ1 ; σ ; µn be a computation of a weak coherent
structure such that µn is the reverse of µ1

– there is a shorter computation that is permutation equivalent to
µ1 ; σ ; µn

the evolution of a gate in a computation without reverse
reductions (normal) is unidirectional

the appendix/coherence

a structure is coherent when it contains exactly one molecule of every
species and different species have disjoint ids

EXAMPLES: u:a | ˆa . v:a and v:a | u:a . v:aˆ are coherent

v:a | ˆa . v:a and ˆb . v:a | ˆb . v:a are not

the appendix/consequences of coherence

STATEMENT: two coinitial computations of a coherent structure are
permutation equivalent if and only if they are cofinal

(false in weak-coherent structures)

STATEMENT: coherent structures encode in a causally consistent
way asynchronous Reversible CCS

STATEMENT: the reachability problem in coherent structure has a
computational complexity of O(n2), where n is the number of gates in
the structure

(in weak-coherent structures, reachability is expspace complete)

the appendix/consequences of coherence

STATEMENT: two coinitial computations of a coherent structure are
permutation equivalent if and only if they are cofinal

(false in weak-coherent structures)

STATEMENT: coherent structures encode in a causally consistent
way asynchronous Reversible CCS

STATEMENT: the reachability problem in coherent structure has a
computational complexity of O(n2), where n is the number of gates in
the structure

(in weak-coherent structures, reachability is expspace complete)

the appendix/consequences of coherence

STATEMENT: two coinitial computations of a coherent structure are
permutation equivalent if and only if they are cofinal

(false in weak-coherent structures)

STATEMENT: coherent structures encode in a causally consistent
way asynchronous Reversible CCS

STATEMENT: the reachability problem in coherent structure has a
computational complexity of O(n2), where n is the number of gates in
the structure

(in weak-coherent structures, reachability is expspace complete)

the appendix/consequences of coherence

STATEMENT: two coinitial computations of a coherent structure are
permutation equivalent if and only if they are cofinal

(false in weak-coherent structures)

STATEMENT: coherent structures encode in a causally consistent
way asynchronous Reversible CCS

STATEMENT: the reachability problem in coherent structure has a
computational complexity of O(n2), where n is the number of gates in
the structure

(in weak-coherent structures, reachability is expspace complete)

conclusions

research directions:

– coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent

calculi where processes have multiplicities and the causal
dependencies between copies may be exchanged

– reversible structures may be extended with irreversible
combinators (that may be implemented in dna)

+ this makes possible to model standard irreversible
operators of programming languages in dna

– studying biological relevant problems in reversible
structures may be simpler

+ we already studied reachability; other issues are absence of
molecules/processes, persistence of materials, · · ·

conclusions

research directions:

– coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent

calculi where processes have multiplicities and the causal
dependencies between copies may be exchanged

– reversible structures may be extended with irreversible
combinators (that may be implemented in dna)

+ this makes possible to model standard irreversible
operators of programming languages in dna

– studying biological relevant problems in reversible
structures may be simpler

+ we already studied reachability; other issues are absence of
molecules/processes, persistence of materials, · · ·

conclusions

research directions:

– coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent

calculi where processes have multiplicities and the causal
dependencies between copies may be exchanged

– reversible structures may be extended with irreversible
combinators (that may be implemented in dna)

+ this makes possible to model standard irreversible
operators of programming languages in dna

– studying biological relevant problems in reversible
structures may be simpler

+ we already studied reachability; other issues are absence of
molecules/processes, persistence of materials, · · ·

conclusions

research directions:

– coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent

calculi where processes have multiplicities and the causal
dependencies between copies may be exchanged

– reversible structures may be extended with irreversible
combinators (that may be implemented in dna)

+ this makes possible to model standard irreversible
operators of programming languages in dna

– studying biological relevant problems in reversible
structures may be simpler

+ we already studied reachability; other issues are absence of
molecules/processes, persistence of materials, · · ·

