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Motivation

Complex systems are often modelled as stochastic processes
biological and ecological systems, physical systems, social systems, financial systems

• to encapsulate a lack of knowledge or inherent non-determinism,
the information about real systems is based on approximations 

• to model hybrid real-time and discrete-time interacting components,
these systems are frequently studied in interaction with discrete controllers, or with 
interactive environments having continuous behavior

• to abstract complex continuous-time and continuous-space systems
the real systems are reactive systems with continuous behaviour (in space and time)



Motivation

In this context, the stochastic/probabilistic bisimulation is a too strict concept

• the interest is to understand not whether two systems have identical 
behaviours, but when two systems have similar behaviours (up to an 
observational error)

• bisimulation => pseudometric that measures how similar two systems are 
from the point of view of their behaviours

• Model checking => property evaluation: instead of deciding whether “P⊨f”, 
one measures “P⊨f” giving an observational error (granularity).

a, r+e a, r



Overview 

• We focus on continuous-time and continuous-space Markov processes (CMPs)

• We introduce the Continuous Markovian Logic (CML), a multimodal logic that 
characterizes the stochastic bisimulation. We provide complete Hilbert-style 
axiomatizations for CMLs and prove the finite model property 

• We define an approximation of the satisfiability relation that induces:
– a bisimulation pseudodistance on CMPs
– a syntactic pseudodistance on logical formulas 

• The pseudodistances are used to state the Strong Robustness Theorem and 
the finite model construction to approximate it in the form of the Weak 
Robustness Theorem

………………………………………………………………………………………………………………..
• The complete axiomatization allows the transfer of topological properties 

between the space of CMPs and the space of logical formulas. 



Labelled Markov kernel 

A tuple =(M,Σ,A,{Ra|a∊A}) where
- (M,Σ) is an analytic set (measurable space)
- Σ is the Borel-algebra generated by the topology
- A is a set of labels
- for each a∊A, Ra:M×Σ →[0,1] is such that

Ra(m,−) - (sub-)probability measure on (M,Σ)
Ra(−,S) - measurable function

Equivalent definition:

……………………………………………………
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A tuple =(M,Σ,θ)  where θ∈ M → Π(M,Σ) A

θa: M → Π(M,Σ),   θa(m)∈Π(M,Σ),    θa(m)(S)∈ [0,1]

Π(M,Σ) is a measurable space with the sigma-algebra generated, for arbitrary S∈Σ and r∈ℚ, by
{μ∈Π(M,Σ) | μ(S)≤r}.

(E. Doberkat, Stochastic Relations, 2007.)

(P. Panangaden, Labelled Markov Processes, 2009.)



Continuous (Labelled) Markov kernel 

A tuple =(M,Σ,A,{Ra|a∊A}) where
- (M,Σ) is an analytic set (measurable space)
- A is a set of labels
- for each a∊A, Ra:M×Σ →[0,∞) is such that

Ra(m,−) – a measure on (M,Σ)
Ra(−,S) – a measurable function

Equivalent definition:

………………………………………
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A tuple  =(M,Σ,θ),  where θ∈ M → ∆(M,Σ) A

θa: M → ∆(M,Σ),   θa(m)∈∆(M,Σ),    θa(m)(S)∈ [0,+∞)

• Ra(m,S)=r ∈[0,+∞) - the rate of an exponentially distributed random variable that 
characterizes the time of a-transitions from m to arbitrary elements of S.

• the probability of the transition within time t is given by the cumulative distribution function
P(t)= 1– e-rt

Continuous Markov process            ( ,m),    m∈M



Given a probabilistic/stochastic (Markovian) system =(M,Σ,θ), a bisimulation
relation is an equivalence relation ∼⊆M×M such that whenever m1∼m2, for arbitrary 
S∈Σ(∼) and a∈A
• If  m1 S, then m2              S and 
• If  m2 S, then m1              S.

K. G. Larsen and A. Skou. Bisimulation through probabilistic testing, I&C 1991
P. Panangaden , Labelled Markov Processes, 2009.

Stochastic/Probabilistic Bisimulation
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θa(m)(S)=θa(m’)(S)



(m, )⊨T         always
(m, )⊨¬f       iff (m, )⊭f
(m, )⊨f1⋀f2 iff (m, )⊨f1 and (m, )⊨f2

(m, )⊨ La
rf iff θa(m)([f])≥r,  where [f]={n∊M | (n, )⊨f} 

Continuous Markovian Logic

f:= T | ¬f | f1⋀f2 | La
rf r∈ℚ+ a∈A

Syntax: CML(A) 
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Semantics: Let (m, ) be an arbitrary CMP with =(M,Σ,θ).



Continuous Markovian Logic

f:= T | ¬f | f1⋀f2 | La
rf | Ma

rf r∈ℚ+ a∈A

Syntax: CML+(A) 
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f
f f f

f
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Semantics: Let (m, ) be an arbitrary CMP with =(M,Σ,θ).

(m, )⊨T         always
(m, )⊨¬f       iff (m, )⊭f
(m, )⊨f1⋀f2 iff (m, )⊨f1 and (m, )⊨f2
(m, )⊨ La

rf iff θa(m)([f])≥r 

(m, )⊨ Ma
rf iff θa(m)([f])≤r,  where [f]={n∊M | (n, )⊨f} 



Continuous Markovian Logic

f:= T | ¬f | f1⋀f2 | La
rf | Ma

rf r∈ℚ+ a∈A

Syntax: CML(A) & CML+(A)

Semantics: Let (m, ) be an arbitrary CMP with =(M,Σ,θ).

(m, )⊨T         always
(m, )⊨¬f       iff (m, )⊭f
(m, )⊨f1⋀f2 iff (m, )⊨f1 and (m, )⊨f2
(m, )⊨ La

rf iff θa(m)([f])≥r 
(m, )⊨ Ma

rf iff θa(m)([f])≤r,  where [f]={n∊M | (n, )⊨f} 

Theorem: For arbitrary continuous Markov processes (m, ) and (n, ), the following 
assertions are equivalent

(i) (m, )∼(n, ),

(ii) ∀ f∈CML(A), (m, )⊨f  iff (n, )⊨f,

(iii) ∀ f∈CML+(A), (m, )⊨f  iff (n, )⊨f.

(P. Panangaden, Labelled Markov Processes, 2009.)



Modal Probabilistic Logic      versus    Continuous Markovian Logic

f:= T | ¬f | f1⋀f2 | La
rf | Ma

rf a∈A

MPL(A) for LMPs CML(A) for CMPs 

=(M,Σ,θ),  θ∈ M → Π(M,Σ) A

S∊Σ, θa(m)(S)∈ [0,1]
=(M,Σ,θ), θ∈ M → ∆(M,Σ) A

S∊Σ, θa(m)(S)∈ [0,+∞)

⊢ Ma
rf ↔ La

1-r¬f

⊢ [If a is active] → La
rT

⊢ La
sf → La

rT

⊢ La
rf ↔ ¬La

s¬f,   r+s>1

For a fixed q∊ the set
{p/q∊[0,1] | p∊ } is finite

For a fixed q∊ the set
{p/q∊[0,+∞) | p∊ } is not finite

Ma
rf and La

sf are independent 
operators

⊢ La
s+rf → ¬Ma

rf ,  s>0
⊢ Ma

s+rf → ¬La
rf ,  s>0

⊢ ¬La
rf → Ma

rf
⊢ ¬Ma

rf → La
rf

K.G. Larsen, A. Skou. Bisimulation through probabilistic testing, 1991.
R. Fagin, J.Y. Halpern, Reasoning about Knowledge and Probability, 1994
A. Heifetz, P. Mongin, Probability Logic for Type Spaces, 2001
C. Zhou, A complete deductive system for probability logic with application to Harsanyi
type spaces, 2007.



(A1) ⊢ La
0f               

(A2) ⊢ La
r+sf → La

rf
(A3) ⊢ La

r(f⋀g) ⋀ La
s(f ⋀¬g) → La

r+sf
(A4)⊢ ¬La

r(f⋀g) ⋀ ¬La
s(f⋀¬g) → ¬La

r+sf

Axiomatic Systems

n
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f
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fg
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(B1) ⊢ La
0f                                           

(B2) ⊢ La
r+sf → ¬Ma

rf , s>0
(B3) ⊢ ¬La

rf → Ma
rf

(B4) ⊢ ¬La
r(f⋀g) ⋀ ¬La

s(f⋀¬g) → ¬La
r+sf

(B5) ⊢ ¬Ma
r(f⋀g) ⋀ ¬Ma

s(f ⋀¬g) → ¬Ma
r+sf

CML(A) CML+(A)



(A1) ⊢ La
0f               

(A2) ⊢ La
r+sf → La

rf
(A3) ⊢ La

r(f⋀g) ⋀ La
s(f ⋀¬g) → La

r+sf
(A4)⊢ ¬La

r(f⋀g) ⋀ ¬La
s(f⋀¬g) → ¬La

r+sf

(R1) If ⊢ f→ g ,  then ⊢ La
rf→ La

rg
(R2) If  ∀ r<s, ⊢ f→ La

rg , then ⊢ f→ La
sg

(R3) If  ∀r>s, ⊢ f→ La
rg , then  ⊢ f→ ¬T

Axiomatic Systems

A. Heifetz, P. Mongin, Probability Logic for Type Spaces, 2001
C. Kupke, D. Pattinson. On Modal Logics of Linear Inequalities, AiML 2010.

(B1) ⊢ La
0f                                           

(B2) ⊢ La
r+sf → ¬Ma

rf , s>0
(B3) ⊢ ¬La

rf → Ma
rf

(B4) ⊢ ¬La
r(f⋀g) ⋀ ¬La

s(f⋀¬g) → ¬La
r+sf

(B5) ⊢ ¬Ma
r(f⋀g) ⋀ ¬Ma

s(f ⋀¬g) → ¬Ma
r+sf

(S1) If ⊢ f→ g ,  then ⊢ La
rf→ La

rg
(S2) If  ∀ r<s, ⊢ f→ La

rg , then ⊢ f→ La
sg

(S3) If  ∀ r>s, ⊢ f→ Ma
rg , then ⊢ f→ Ma

sg
(S4) If  ∀r>s, ⊢ f→ La

rg , then  ⊢ f→ ¬T

CML(A) CML+(A)



Metaproperties

Metatheorem [Soundness & Weak Completeness]:

The axiomatic system of CML(A) and CML+(A) are sound and complete w.r.t. the 

Markovian semantics, 

⊢f  iff ⊨f.

Metatheorem [Small model property]:

If f is consistent (in CML(A) or CML+(A)), there exists a CMP (m, e
f) that satisfies f. 

The support of e
f is finite of cardinality bound by the dimension of f; the 

construction of e
f is parametric (e>0) and depends on the granularity of f.

The granularity of a set S⊆ℚ+ is the least common denominator of the elements of S.



Similar Behaviours

• Stochastic bisimulation equates CMPs with identical stochastic behaviours

• CMLs are multimodal logics that characterize stochastic bisimulation

• CMLs are completely axiomatized for CMP-semantics

• We have a clear intuition of what a distance between CMPs should be

a, r+e a, r



Similar Behaviours

D. Kozen, A Probabilistic PDL, 1985.

Classical Logic

Truth values  {0,1}

Propositional function

State

The satisfiability relation ⊨

Generalization

Interval  [0,1]

Measurable function

Measure

Integration  ∫



Similar Behaviours

The satisfiability relation is replaced by a pseudometric over the space of CMPs.

d:℘☓ → [0,1]  ⊨:℘☓ → {0,1}

d((m, ),T)=0         

d((m, ),¬f)=1– d((m, ),f)

d((m, ),f1⋀f2)=max{d((m, ),f1),d((m, ),f2)}

d((m, ), La
rf)=<r, θa(m)([f])> 

d((m, ), Ma
rf)=<θa(m)([f]), r> 

(m, )⊨T         always

(m, )⊨¬f       iff (m, )⊭f

(m, )⊨f1⋀f2 iff (m, )⊨f1, (m, )⊨f2
(m, )⊨ La

rf iff θa(m)([f])≥r 

(m, )⊨ Ma
rf iff θa(m)([f])≤r,

<r,s>=
(r-s)/r , if  r>s

0,         otherwise

Example:

(m, )⊨ La
rf => θa(m)([f])≥r => d((m, ), La

rf)=0 

(m, )⊭ La
rf => θa(m)([f])<r => d((m, ), La

rf)>0



Similar Behaviours

d:℘☓ → [0,1] 

d((m, ),T)=0         

d((m, ),¬f)=1– d((m, ),f)

d((m, ),f1⋀f2)=max{d((m, ),f1),d((m, ),f2)}

d((m, ), La
rf)=<r, θa(m)([f])> 

d((m, ), Ma
rf)=<θa(m)([f]), r> 

D:℘☓℘ → [0,1],          
D((m, ), (m’, ’)) = sup{|d((m, ),f) – d((m’, ’),f)|,  f∈ } 

<r,s>=
(r-s)/r , if  r>s

0,         otherwise

δ: ☓ → [0,1],          
δ(f,f’) = sup{|d((m, ),f) – d((m, ),f’)|, (m, )∈℘} 



Metaproperties

Theorem [Strong Robustness]:

For arbitrary f,f’ ∈ , and arbitrary (m, )∈℘,

d((m, ),f’) ≤ d((m, ),f) + δ(f,f’) 

Theorem [Weak Robustness]:

For arbitrary f,f’ ∈ , and arbitrary (m, )∈℘,

d((m, ),f’) ≤ d((m, ),f) + δ*(f,f’) +2/e 

δ*: ☓ → [0,1],          

δ*(f,f’) = sup{|d((m, e
f⋀f’),f) – d((m, f⋀f’),f’)|, m∈sup( f⋀f’)}

where e
f⋀f’ is the finite model of ~(f⋀f’) of parameter e>0.  

Lemma: For arbitrary f,f’ ∈

δ(f,f’) ≤ δ*(f,f’) + 2/e



Towards a metric semantics
Working hypothesis: 
• Let (℘,D) be a pseudometrizable space of Markovian systems such that D 

converges to bisimulation;  
• Let be the continuous Markovian logic (that characterizes the bisimulation and is 

completely axiomatized for ℘)

f:= T | ¬f | f⋀f | La
rf | Ma

rf

(+)    g:= T | g⋀g | La
rf | Ma

rf

(-) = - (+)

Theorem: If  ⊢ f ↔ g , then  δ(f,g)=0.

In this context, δ is a pseudometric that measure the syntactical equivalence on ℒ(+).

Theorem: If  δ(f,g)=0  and  f∈ℒ (+) , then  ⊢ g → f.

Theorem: If  δ(f,g)=0  and  f,g∈ℒ (+) , then  ⊢ f ↔ g.



Future work: some dualities

Working hypothesis: 
• Let (℘,D) be a pseudometrizable space of Markovian systems such that D 

converges to bisimulation;  
• Let be the continuous Markovian logic (that characterizes the bisimulation and is 

completely axiomatized for ℘)

• has a canonical model Ὧ=(Ω,2Ω,θ), where each F∈Ω is a maximally consistent set 
of formulas: for each CMP ( ,m) there exists a unique F∈Ω such that    

(m, )∼(F,Ὧ). 
In fact, F={f∈ℒ, (m, )⊨f}.

If for an arbitrary distance D we use DH  to denote the Hausdorff distance associated to 
D, then the complete axiomatization suggest the following conjectures.

Conjecture1: (DH)H=D

Conjecture2: (δ H)H= δ


