Reversibility in massive concurrent systems

Luca Cardelli Cosimo Laneve

MecBic 2011

programme

- study reversibility in dna circuits
- define the algebra of dna circuits - reversible structures
- analyze the interplay between reversibility and causal dependency
+ grasp causal dependency between coinitial reductions
+ investigate causal equivalent computations (permutation equivalence)
- measure the expressive power of reversible structures
+ implementation of asynchronous RCCS

"natural" reversibility?

- in computational systems, computations are sequence of irreversible steps
- implementations of these systems in physics or chemistry are usually reversible
- reversibility means undoing the computation not in a deterministic way:

```
states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a
different order
```


"natural" reversibility?

- in computational systems, computations are sequence of irreversible steps
- implementations of these systems in physics or chemistry are usually reversible
- reversibility means undoing the computation not in a deterministic way:

> states reached during a backward computation are states that could have been reached during the forward computation by just performing independent actions in a different order

"natural" reversibility?

- in computational systems, computations are sequence of irreversible steps
- implementations of these systems in physics or chemistry are usually reversible
- reversibility means undoing the computation not in a deterministic way:
states reached during a backward computation are states
that could have been reached during the forward
computation by just performing independent actions in a different order

"natural" reversibility?

- in computational systems, computations are sequence of irreversible steps
- implementations of these systems in physics or chemistry are usually reversible
- reversibility means undoing the computation not in a deterministic way:
states reached during a backward computation are states that could have been reached during the forward computation by just performing independent actions in a different order

"natural" reversibility? example

transition system

a wrong backward computation

"natural" reversibility? example

transition system

a wrong backward computation

"natural" reversibility? example

transition system

a wrong backward computation

formal "natural" reversibility?

since part of physics and chemistry is reversible,
what is the formal theory of reversibility in these fields?
said otherwise:
taking a natural reversible system, what properties may we prove?

formal "natural" reversibility?

since part of physics and chemistry is reversible,
what is the formal theory of reversibility in these fields?
said otherwise:
taking a natural reversible system, what properties may we prove?

reversibility in DNA circuits (cf. Cardelli/Phillips)

- subsequences on a dna strand are called domains
CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG
\mathbf{X}
\mathbf{X}
\mathbf{y}
domains are independent of each other
- they cannot hybridize from any other domain except their complement
- there are very few short domains with reversible hybridizations
and long domains with irreversible hybridizations

reversibility in DNA circuits (cf. Cardelli/Phillips)

- subsequences on a dna strand are called domains

domains are independent of each other
- they cannot hybridize from any other domain except their complement
- there are very few short domains with reversible hybridizations

and long domains with irreversible hybridizations

reversibility in DNA circuits (cf. Cardelli/Phillips)

- subsequences on a dnA strand are called domains

CTTGAGAATCGGATATTTCGGATCGCGATTAAATCAAATG
domains are independent of each other

- they cannot hybridize from any other domain except their complement
- there are very few short domains with reversible hybridizations

- and long domains with irreversible hybridizations

reversibility in DNA circuits

short-domains mediated strand displacements

are irreversible
however clever designs may make them reversible

reversibility in DNA circuits

short-domains mediated strand displacements

are irreversible

toehold binding branch migration

displacement irreversible release
however clever designs may make them reversible

reversibility in DNA circuits

short-domains mediated strand displacements

are irreversible

toehold binding branch migration
displacement irreversible release
however clever designs may make them reversible

two-domains structures and causality

- a transducer

- its dynamics
- and the causality problems

two-domains structures and causality

- a transducer

- its dynamics

two-domains structures and causality

- a transducer

- its dynamics

- and the causality problems

a better model for causality: three-domains structures

- a three-domains transducer

- its dynamics

- and causalities

a better model for causality: three-domains structures

- a three-domains transducer

- its dynamics

a better model for causality：three－domains structures

－a three－domains transducer

－its dynamics

－and causalities

causality and massive concurrency

dna circuits are massively concurrent:

- solutions consist of populations of species of strands and
- populations are not singletons
it is not possible to desynchronize processes that actually interacted in the past

causality and massive concurrency

dna circuits are massively concurrent:

- solutions consist of populations of species of strands and
- populations are not singletons
it is not possible to desynchronize processes that actually interacted in the past

causality and massive concurrency

the situation may be even worse due to bad designs

a theory of massive concurrency?

reversibility/causality in massive concurrent systems has not been studied

- theories have been defined for reversible calculi where processes retain unique ids (Danos-Krivine, Phillips-Ulidowski, Lanese-Mezzina-Stefani)

a theory of massive concurrency?

reversibility/causality in massive concurrent systems has not been studied

- theories have been defined for reversible calculi where processes retain unique ids (Danos-Krivine, Phillips-Ulidowski, Lanese-Mezzina-Stefani)
question: what is the distance between current theories of reversible algebras and reversibility in massive concurrent systems?

the algebra of reversible structures

notation: $u, v, w: \quad$ ids
$a, \bar{a}, b, \bar{b}: \quad$ names and conames
x, x^{\prime} : ids, names and conames
A, B, C : sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}: \quad$ sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: sequences of elements $u: a$
gates:
g
input part.output part +

the algebra of reversible structures

notation: $u, v, w: \quad$ ids
$a, \bar{a}, b, \bar{b}: \quad$ names and conames
x, x^{\prime} : ids, names and conames
A, B, C : sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}$: sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: \quad sequences of elements $u: a$

$$
\text { signals : u: } \bar{a}
$$

the algebra of reversible structures

notation: u, v, w : ids
$a, \bar{a}, b, \bar{b}: \quad$ names and conames x, x^{\prime} : ids, names and conames
A, B, C : sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}$: sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: sequences of elements $u: a$

$$
\begin{aligned}
\text { signals : } & u: \bar{a} \\
\text { gates }: & g \quad \text { input part.output part }+^{\wedge}
\end{aligned}
$$

the algebra of reversible structures

notation: $u, v, w: \quad$ ids
a, \bar{a}, b, \bar{b} : names and conames x, x^{\prime} : ids, names and conames
$\mathrm{A}, \mathrm{B}, \mathrm{C}$: sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}: \quad$ sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: sequences of elements $u: a$

$$
\begin{array}{rlc}
\text { signals : } & u: \bar{a} & \xrightarrow{\mathrm{u}} \xrightarrow{\mathrm{a}} \\
\text { gates }: & g \text { input part.output part }+^{\wedge}
\end{array}
$$

examples of gates:

the algebra of reversible structures

notation: $u, v, w: \quad$ ids
$a, \bar{a}, b, \bar{b}: \quad$ names and conames
x, x^{\prime} : ids, names and conames
A, B, C : sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}$: sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: \quad sequences of elements $u: a$
signals : u: \bar{a}

gates : $\quad g$ input part.output part $+^{\wedge}$
examples of gates:

the algebra of reversible structures

notation: $u, v, w: \quad$ ids
$a, \bar{a}, b, \bar{b}: \quad$ names and conames
$x, x^{\prime}:$ ids, names and conames
A, B, C: sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}$: sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: sequences of elements $u: a$
signals: $u: \bar{a}$
gates: g input part.output part $+^{\wedge}$
examples of gates:

the algebra of reversible structures

notation: $u, v, w:$ ids
$a, \bar{a}, b, \bar{b}: \quad$ names and conames
$x, x^{\prime}:$ ids, names and conames
A, B, C : sequences of names;
$\overline{\mathrm{A}}, \overline{\mathrm{B}}, \overline{\mathrm{C}}: \quad$ sequences of elements $u: \bar{a}$
$\mathrm{A}^{\perp}, \mathrm{B}^{\perp}, \mathrm{C}^{\perp}$: \quad sequences of elements $u: a$
signals: u: \bar{a}
gates : $\quad g$ input part.output part $+^{\wedge}$
examples of gates:

$u: a \cdot u^{\prime}: a^{\prime} \cdot v: \bar{b}^{\wedge}$

the algebra of reversible structures - syntax

structures: S ::=

$\mathbf{0}$	(null)	
$\|$u: \mid \mid \mid $\mathrm{S} \mid \mathrm{S}$	(signal)	(gate)
(narallel)		
(new x)S	(new)	

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$ input release:

$$
\mathrm{A}^{\perp} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, \mid, and \equiv)

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$ input release:

$$
\mathrm{A}^{\perp} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot \wedge \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, \mid, and \equiv)
example:
$v: \bar{a}|w: \bar{a}|{ }^{\wedge} a \cdot u: \bar{b}$

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$
input release:

$$
\mathrm{A}^{\perp} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, | , and \equiv)
example:

$$
w: \bar{a} \mid v: a, ~ \wedge u: \bar{b}
$$

$v: \bar{a}|w: \bar{a}|$ ^ $a, u: \bar{b}$

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$ input release:

$$
\mathrm{A}^{\perp} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, | , and \equiv)
example:
$v: \bar{a}|w: \bar{a}|$ ^ $a \cdot u: \bar{b}$

$$
v: \bar{a} \mid \text { w:a • } u: \bar{b}
$$

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$
input release:

$$
\mathrm{A}^{\perp} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, | , and \equiv)
example:

$$
w: \bar{a} \mid v: a, ~ \wedge u: \bar{b}
$$

$v: \bar{a}|w: \bar{a}|$ ^ $a, u: \bar{b}$

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$
input release:

$$
\mathrm{A}^{\perp} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, | , and \equiv)
example:

$$
w: \bar{a} \mid \text { v:a.^u:解 } \rightarrow \text { w:伩| v:a•u:b}{ }^{\wedge} \mid u: \bar{b}
$$

$v: \bar{a}|w: \bar{a}|$ ^ $a \cdot u: \bar{b}$

the algebra of reversible structures - reductions

input capture: $\quad u: \bar{a} \mid \mathrm{A}^{\perp} \cdot{ }^{\wedge} a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}} \longrightarrow \mathrm{A}^{\perp} \cdot \mathrm{u}: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}}$ input release:

$$
\mathrm{A}^{+} \cdot u: a \cdot{ }^{\wedge} \mathrm{B} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{+} \cdot \wedge a \cdot \mathrm{~B} \cdot \overline{\mathrm{C}}
$$

$$
\mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}} \longrightarrow u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}}
$$

output capture: $u: \bar{a} \mid \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot u: \bar{a} \cdot{ }^{\wedge} \overline{\mathrm{C}} \quad \longrightarrow \quad \mathrm{A}^{\perp} \cdot \overline{\mathrm{B}} \cdot{ }^{\wedge} u: \bar{a} \cdot \overline{\mathrm{C}}$
(plus the standard contextual rules about new, | , and \equiv)
example:
$v: \bar{a}|w: \bar{a}|$ ^^ $\cdot u: \bar{b}$

$$
w: \bar{a} \mid v: a \bullet \wedge u: \bar{b} \rightarrow \text { w:就 } \mid \text { v:a } \cdot u: \bar{b} \wedge \mid u: \bar{b}
$$

$v: \bar{a} \mid w: a \cdot{ }^{\wedge} u: \bar{b}$

pearls of expressive power

join input $(a \mid b \triangleright \bar{c})$
input-guarded choice $\left(a . \bar{b}+a^{\prime} \cdot \bar{c}\right)$
(new $v, e)\left(e . a \cdot u: \bar{b} \quad \mid \quad\right.$ e. $\left.a^{\prime} \cdot u^{\prime}: \bar{c} \quad \mid \quad v: \bar{e}\right)$

pearls of expressive power

join input $(a \mid b \triangleright \bar{c})$

$$
\text { ^a.b. u: } \bar{c}
$$

```
input-guarded choice (a.\overline{b}+\mp@subsup{a}{}{\prime}.\overline{c})
```


pearls of expressive power

join input $(a \mid b \triangleright \bar{c})$

$$
\text { ^a.b. u: } \bar{c}
$$

input-guarded choice $\left(a \cdot \bar{b}+a^{\prime} \cdot \bar{c}\right)$

$$
(\text { new } v, e)\left(e . a \cdot u: \bar{b} \quad \mid \quad \text { e. } a^{\prime} \cdot u^{\prime}: \bar{c} \quad \mid \quad v: \bar{e}\right)
$$

weak coherence

remark: it is possible to restrict the arguments about the dynamics of reversible structures to structures without news (this simplifies the theory)
a structure S is weak coherent whenever ids are uniquely associated to names and co-names

$$
\text { (if } u: \alpha \text { and } u: \alpha^{\prime} \text { occur in } \mathrm{S}^{\prime} \text { then either } \alpha=\alpha^{\prime} \text { or } \alpha=\overline{\alpha^{\prime}} \text {) }
$$

proposition: weak coherent reversible algebra may be implemented into three domains DNA circuits

- the correspondence is consistent and complete wrt reductions

causality: the tour

1. define causal dependence on coinitial reductions

- two reductions are dependent if they have either the signal or the gate in common
- independent reductions can be swapped (diamond lemma)

2. define permutation equivalence, an equivalence on derivations that is insensible
i. to swapping of independent reductions
ii. to the removal of reverse reductions
3. study the theory of permutation equivalence

causality: the tour

1. define causal dependence on coinitial reductions

- two reductions are dependent if they have either the signal or the gate in common
- independent reductions can be swapped (diamond lemma)

2. define permutation equivalence, an equivalence on derivations that is insensible
i. to swapping of independent reductions
ii. to the removal of reverse reductions

causality: the tour

1. define causal dependence on coinitial reductions

- two reductions are dependent if they have either the signal or the gate in common
- independent reductions can be swapped (diamond lemma)

2. define permutation equivalence, an equivalence on derivations that is insensible
i. to swapping of independent reductions
ii. to the removal of reverse reductions
3. study the theory of permutation equivalence

causal independence

a reduction can be addressed by the signal/gate that move
remark: in weak-coherent structures, names and co-names when prefixed by ids are useless

- a signal $u: \bar{a} \quad$ can be addressed by
- a gate
can be addressed by
can be addressed by
$u: a \cdot u^{\prime}: a^{\prime} \cdot v: \bar{b}^{\wedge} \quad$ can be addressed by

causal independence

a reduction can be addressed by the signal/gate that move
remark: in weak-coherent structures, names and co-names when prefixed by ids are useless

- a signal $u: \bar{a}$ can be addressed by u
- a gate
^a. á $\cdot v: \bar{b} \quad$ can be addressed by
$u: a \cdot u^{\prime}: a^{\prime} \cdot v: \bar{b}^{\wedge} \quad$ can be addressed by

causal independence

a reduction can be addressed by the signal/gate that move
remark: in weak-coherent structures, names and co-names when prefixed by ids are useless

- a signal $u: \bar{a}$ can be addressed by u
- a gate

$$
\begin{array}{rrr}
\wedge a \cdot a^{\prime} \cdot v: \bar{b} & \text { can be addressed by } & \wedge a a^{\prime} \circ v \\
u: a \cdot{ }^{\wedge} a^{\prime} \cdot v: \bar{b} & \text { can be addressed by } & u^{\wedge} a^{\prime} \circ v \\
u: a \cdot u^{\prime}: a^{\prime} \cdot v: \bar{b}^{\wedge} & \text { can be addressed by } & u u^{\prime} \circ v^{\wedge}
\end{array}
$$

causal independence

a reduction can be addressed by the signal/gate that move
remark: in weak-coherent structures, names and co-names when prefixed by ids are useless

- a signal $u: \bar{a}$ can be addressed by u
- a gate

$$
\begin{array}{rrr}
\wedge a \cdot a^{\prime} \cdot v: \bar{b} & \text { can be addressed by } & \wedge a a^{\prime} \circ v \\
u: a .^{\wedge} a^{\prime} \cdot v: \bar{b} & \text { can be addressed by } & u^{\wedge} a^{\prime} \circ v \\
u: a \cdot u^{\prime}: a^{\prime} \cdot v: \bar{b}^{\wedge} & \text { can be addressed by } & u u^{\prime} \circ v^{\wedge}
\end{array}
$$

cf. Lévy labels in lambda calculus

causal independence/cont.

an example

$$
\begin{gathered}
u: \bar{a}\left|{ }^{\wedge} a \cdot v: \bar{b}\right| u: a \wedge^{\wedge} v: \bar{b} \\
u \mid \wedge a_{\circ} v \swarrow \\
u: a \wedge^{\wedge} v: \bar{b} \mid u: a \cdot{ }^{\wedge} v: \bar{b} \\
u_{\circ} \wedge v \searrow \\
u: a \cdot{ }^{\wedge} v: \bar{b}\left|u: a \cdot v: \bar{b}^{\wedge}\right| v: \bar{b}
\end{gathered}
$$

two coinitial reductions are causally independent if the corresponding labels have no sublabel in common
(causal dependency is the opposite notion)

causal independence/cont.

an example

$$
\begin{gathered}
u: \bar{a}\left|{ }^{\wedge} a \cdot v: \bar{b}\right| u: a \wedge^{\wedge} v: \bar{b} \\
u \mid \wedge a_{\circ} v \swarrow \\
u: a \cdot \wedge v: \bar{b} \mid u: a \bullet^{\wedge} v: \bar{b} \quad \searrow u_{\circ}{ }^{\wedge} v \\
u_{\circ}{ }^{\wedge} v \searrow \\
u: a \cdot \bar{a}\left|{ }^{\wedge} v: \bar{b}\right| u: v: \bar{b}|u: a \cdot v: \bar{b} \wedge| v: \bar{b} \wedge \mid v: \bar{b}
\end{gathered}
$$

two coinitial reductions are causally independent if the corresponding labels have no sublabel in common (causal dependency is the opposite notion)

causal independence/cont.

an example

$$
\begin{gathered}
u: \bar{a}|\wedge a \cdot v: \bar{b}| u: a \wedge^{\wedge} v: \bar{b} \\
u \mid \wedge a_{0} v \swarrow \quad \searrow u_{0}{ }^{\wedge} v \\
u: a \bullet \wedge v: \bar{b}\left|u: a \wedge^{\wedge} v: \bar{b} \quad u: \bar{a}\right| \wedge a \cdot v: \bar{b}|u: a \cdot v: \bar{b} \wedge| v: \bar{b} \\
u_{0}{ }^{\wedge} v \searrow \\
u: a \wedge^{\wedge} v: \bar{b}|u: a \cdot v: \bar{b} \wedge| v: \bar{b}
\end{gathered}
$$

two coinitial reductions are causally independent if the corresponding labels have no sublabel in common (causal dependency is the opposite notion)

causal independence／cont．

an example

$$
\begin{aligned}
& u: \bar{a} \mid \text { ^a •v: } \bar{b} \mid u: a, ~ \wedge v: \bar{b} \\
& u \|^{\wedge} a_{0} v \swarrow \quad \searrow u_{0}{ }^{\wedge} v
\end{aligned}
$$

$$
\begin{aligned}
& \left.u_{0}{ }^{\wedge} v \searrow \quad \swarrow u\right|^{\wedge} a_{0} v \\
& \text { u:a•^v:就|u:a•v:漓 | v: } \bar{b}
\end{aligned}
$$

two coinitial reductions are causally independent if the corresponding labels have no sublabel in common （causal dependency is the opposite notion）

causal independence/cont.

an example

$$
\begin{gathered}
u: \bar{a}\left|{ }^{\wedge} a \cdot v: \bar{b}\right| u: a \wedge^{\wedge} v: \bar{b} \\
u \mid \wedge a_{\circ} v \swarrow \\
u: a \cdot \wedge v: \bar{b}\left|u: a \bullet^{\wedge} v: \bar{b} \quad u: \bar{a}\right|{ }_{\circ}{ }^{\wedge} v \\
u_{\circ}{ }^{\wedge} v \searrow v: \bar{b}|u: a \cdot v: \bar{b} \wedge| v: \bar{b} \\
u: a \wedge^{\wedge} v: \bar{b}\left|u: a \cdot v: \bar{b}^{\wedge}\right| v: \bar{b}
\end{gathered}
$$

two coinitial reductions are causally independent if the corresponding labels have no sublabel in common

causal independence／cont．

an example

$$
\begin{aligned}
& u: \bar{a}|\wedge a \cdot v: \bar{b}| u: a \cdot{ }^{\wedge} v: \bar{b} \\
& u \|^{\wedge} a_{0} v \swarrow \quad u_{0}{ }^{\wedge} v
\end{aligned}
$$

$$
\begin{aligned}
& \left.u_{0}{ }^{\wedge} v \searrow \quad \swarrow u\right|^{\wedge} a_{0} v \\
& \text { u:a•^v:就|u:a•v:漓 | v: } \bar{b}
\end{aligned}
$$

two coinitial reductions are causally independent if the corresponding labels have no sublabel in common （causal dependency is the opposite notion）

the diamond lemma

Lemma. Let $\mathrm{S} \xrightarrow{\mu} \mathrm{S}^{\prime}$ and $\mathrm{S} \xrightarrow{v} \mathrm{~S}^{\prime \prime}$ be such that μ and v are causally independent. Then there exists $\mathrm{S}^{\prime \prime \prime}$ such that $\mathrm{S}^{\prime} \xrightarrow{v} \mathrm{~S}^{\prime \prime \prime}$ and $\mathrm{S}^{\prime \prime} \xrightarrow{\mu} \mathrm{S}^{\prime \prime \prime}$.

causal independence: issues

$$
\begin{aligned}
& \xrightarrow{\mid \text { woou }} \text { u:a.^^v:b̄b w:c.^u:a }
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

causal independence: issues

$$
\begin{aligned}
& u: \bar{a}|u: \bar{a}| \wedge a \cdot v: \bar{b} \mid w: c \cdot u: \bar{a}^{\wedge} \xrightarrow{\left.u\right|^{\wedge} \text { aov }} \text { u:a } \mid \text { u:a.^v: } \bar{b} \mid w: c \cdot u: \bar{a} \wedge \\
& \xrightarrow{\text { wooln }} \text { u:a.^^v:̄̄b| w:c. ^u:ā }
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{0} v$ and $u \mid w_{0} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

causal independence: issues

$$
\begin{aligned}
& u: \bar{a}|u: \bar{a}| \wedge a \cdot v: \bar{b} \mid w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow[\longrightarrow]{u} \text { nov } \\
& u: \bar{a}\left|u: a \cdot{ }^{\wedge} v: \bar{b}\right| w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow{u \mid w o \wedge^{\wedge}} u: a,{ }^{\wedge} v: \bar{b} \mid w: c .{ }^{\wedge} u: \bar{a}
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

causal independence: issues

$$
\begin{aligned}
& u: \bar{a}|u: \bar{a}| \wedge a \cdot v: \bar{b} \mid w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow[\longrightarrow]{u} \text { nov } \\
& u: \bar{a}\left|u: a \cdot{ }^{\wedge} v: \bar{b}\right| w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow{u \mid w o \wedge^{\wedge}} u: a,{ }^{\wedge} v: \bar{b} \mid w: c .{ }^{\wedge} u: \bar{a}
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

causal independence: issues

$$
\begin{aligned}
& \xrightarrow{u \mid \text { wou^ }} u: a \cdot{ }^{\wedge} v: \bar{b} \mid \text { w:c. }{ }^{\wedge} u: \bar{a}
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

causal independence: issues

$$
\begin{aligned}
& u: \bar{a}|u: \bar{a}| \wedge a \cdot v: \bar{b}\left|w: c \cdot u: \bar{a}^{\wedge} \xrightarrow{\left.u\right|^{\wedge} \text { aov }} u: \bar{a}\right| u: a \bullet \wedge v: \bar{b} \mid w: c \cdot u: \bar{a} \wedge \\
& \xrightarrow{u \mid{ }^{\text {won^ }}} \text { ^ } u: a \cdot{ }^{\wedge} v: \bar{b} \mid \text { w:c. }{ }^{\wedge} u: \bar{a}
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

causal independence: issues

$$
\begin{aligned}
& u: \bar{a}|u: \bar{a}| \wedge a \cdot v: \bar{b} \mid w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow{u}{ }^{\wedge} \text { aov } \\
& u: \bar{a}\left|u: a \cdot{ }^{\wedge} v: \bar{b}\right| w: c \cdot u: \bar{a} \wedge \\
& \xrightarrow{u \mid w_{0} n^{\wedge}} u: a{ }^{\wedge} v: \bar{b} \mid w: c .{ }^{\wedge} u: \bar{a}
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)

causal independence: issues

$$
\begin{aligned}
& u: \bar{a}|u: \bar{a}|^{\wedge} a \cdot v: \bar{b} \mid w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow{u \mid n} a \\
& u: \bar{a}\left|u: a \cdot{ }^{\wedge} v: \bar{b}\right| w: c \cdot u: \bar{a}^{\wedge} \\
& \xrightarrow{u \mid \text { wou^^ }} u: a \cdot{ }^{\wedge} v: \bar{b} \mid \text { w:c. ^u:a }
\end{aligned}
$$

cannot be swapped because $u \mid{ }^{\wedge} a_{\circ} v$ and $u \mid w_{\circ} u^{\wedge}$ have sublabels in common
rationale:

- labels are not expressive enough to catch multiplicities
- a similar anomaly is present in Petri nets (cf. Degano, Meseguer, Montanari)
- in massive concurrent systems, different occurrences of a same molecule cannot be separated

permutation equivalence

notation:
let $\mu_{1} ; \cdots$; μ_{n} be the computation $\mathrm{S}_{1} \xrightarrow{\mu_{1}} \cdots \xrightarrow{\mu_{n}} \mathrm{~S}_{n+1}$
let $[\mu]^{+}$be the reverse label of μ defined as

$$
\begin{aligned}
& {\left[u \mid v^{\wedge} a_{0} \tau v\right]^{+}=\widetilde{v} u \wedge{ }^{\wedge} \bar{w}} \\
& {\left[v u^{\wedge} \circ w\right]^{+}=u \mid v^{\wedge} a_{\circ} w} \\
& {\left[v u^{\wedge} w\right]^{+}=u \mid v u_{\circ} w^{\wedge}} \\
& {\left[u \mid v u_{\circ} w^{\wedge}\right]^{+}=v u_{\circ}{ }^{\wedge} w}
\end{aligned}
$$

permutation equivalence \sim is the least equivalence relation
between computations closed under composition and such that:

$\mu ; v \sim v ; \mu$ if μ and v are coinitial and causally independent

permutation equivalence

notation:
let $\mu_{1} ; \cdots ; \mu_{n}$ be the computation $\mathrm{S}_{1} \xrightarrow{\mu_{1}} \cdots \xrightarrow{\mu_{n}} \mathrm{~S}_{n+1}$
let $[\mu]^{+}$be the reverse label of μ defined as

$$
\begin{aligned}
& {\left[u \mid v^{\wedge} a_{0} v_{v}\right]^{+}=\widetilde{v u}{ }^{\wedge} \widetilde{v_{v}}} \\
& {\left[v u^{\wedge} \circ v\right]^{+}=u \mid v^{\wedge} a_{0} v} \\
& {\left[v u_{\circ}{ }^{\wedge} w\right]^{+}=u \mid v u_{\circ} w^{\wedge}} \\
& {\left[u \mid v u_{\circ} w w^{\wedge}\right]^{+} v u_{\circ}{ }^{\wedge} v}
\end{aligned}
$$

permutation equivalence \sim is the least equivalence relation
between computations closed under composition and such that:

permutation equivalence

notation:
let $\mu_{1} ; \cdots ; \mu_{n}$ be the computation $\mathrm{S}_{1} \xrightarrow{\mu_{1}} \cdots \xrightarrow{\mu_{n}} \mathrm{~S}_{n+1}$
let $[\mu]^{+}$be the reverse label of μ defined as

$$
\begin{aligned}
{\left[u \mid v^{\wedge} a_{\circ} w\right]^{+} } & =\widetilde{v} u^{\wedge} \circ \widetilde{w} \\
{\left[v u^{\wedge} \circ w\right]^{+} } & =u \mid v^{\wedge} a_{\circ} w \\
{[v u \circ \wedge w]^{+} } & =u \mid v u_{\circ} w^{\wedge} \\
{\left[u \mid v u \circ w^{\wedge}\right]^{+} } & =v u_{\circ}{ }^{\wedge} w
\end{aligned}
$$

permutation equivalence \sim is the least equivalence relation
between computations closed under composition and such that:
\square

permutation equivalence

notation:
let $\mu_{1} ; \cdots ; \mu_{n}$ be the computation $\mathrm{S}_{1} \xrightarrow{\mu_{1}} \cdots \xrightarrow{\mu_{n}} \mathrm{~S}_{n+1}$
let $[\mu]^{+}$be the reverse label of μ defined as

$$
\begin{aligned}
{\left[u \mid v^{\wedge} a_{\circ} w\right]^{+} } & =\widetilde{v} u^{\wedge} \circ \widetilde{w} \\
{\left[v u^{\wedge} \circ w\right]^{+} } & =u \mid v^{\wedge} a_{\circ} w \\
{\left[v u_{\circ}{ }^{\wedge} w\right]^{+} } & =u \mid v u \circ w^{\wedge} \\
{\left[u \mid v u \circ w^{\wedge}\right]^{+} } & =v u_{\circ} \wedge w
\end{aligned}
$$

permutation equivalence \sim is the least equivalence relation between computations closed under composition and such that:

$$
\begin{aligned}
\mu ;[\mu]^{+} & \sim \varepsilon \\
\mu ; v & \sim v ; \mu \quad \text { if } \mu \text { and } v \text { are coinitial and causally independent }
\end{aligned}
$$

permutation equivalence: examples

is computationally equivalent to

is equivalent to

$v: \bar{a}|\wedge a, u: \bar{b}| w: a,{ }^{\wedge} z: \bar{c}$ v:a. ^u:就| w:a • ${ }^{\wedge}: \bar{c}$
$v: \bar{a}|\wedge a \cdot u: \bar{b}|$ w:a, ${ }^{*} z: \bar{c}$
and to

permutation equivalence: examples

- v:a \mid w: $\bar{a} \mid \wedge a \cdot u: \bar{b} \xrightarrow{\wedge^{\wedge} \text { aou }}$ w: $\bar{a}\left|v: a \cdot \wedge u: \bar{b} \xrightarrow{v^{\wedge} o u} v: \bar{a}\right| w: \bar{a} \mid \wedge a \cdot u: \bar{b}$ is computationally equivalent to ε

and to

permutation equivalence: examples

- v:a \mid w: $\bar{a} \mid \wedge a \cdot u: \bar{b} \xrightarrow{v} \xrightarrow{\wedge}$ aou $w: \bar{a}\left|v: a . \wedge u: \bar{b} \xrightarrow{v^{\wedge} o u} v: \bar{a}\right| w: \bar{a} \mid \wedge a \cdot u: \bar{b}$ is computationally equivalent to ε

$$
\begin{aligned}
& w \xrightarrow{\mid a_{\circ} z} \\
& \text { v:a•^u:就 w:a. }{ }^{\wedge} z: \bar{c} \\
& v: \bar{a}|\wedge a \cdot u: \bar{b}| w: a,{ }^{\wedge} z: \bar{c}
\end{aligned}
$$

is equivalent to

$$
\begin{aligned}
& v: \bar{a}|w: \bar{a}| \wedge \wedge \cdot u: \bar{b}\left|\wedge a, z: \bar{c} \xrightarrow{w \mid{ }^{\wedge} a_{0} z} v: \bar{a}\right| \wedge a, u: \bar{b} \mid w: a,{ }^{\wedge} z: \bar{c} \\
& \xrightarrow{v{ }^{\wedge} \text { aou }} \quad v: a .{ }^{\wedge} u: \bar{b} \mid w: a .{ }^{\wedge} z: \bar{c} \\
& \xrightarrow{v^{\wedge} o u} \text { v:a } \mid \wedge \text { ^a.u: } \bar{b} \mid \text { w:a. }{ }^{\wedge} z: \bar{c}
\end{aligned}
$$

and to
$v: \bar{a}|w: \bar{a}| \wedge a, u: \bar{b}|\wedge a, z: \bar{c} \xrightarrow{w \mid \wedge a o z} v: \bar{a}| \wedge a, u: \bar{b} \mid$ w: $w,{ }^{\wedge} z: \overline{\bar{c}}$

the standardization theorem

let $\mu_{1} ; \cdots ; \mu_{n}$ be a computation of a weak coherent structure such that μ_{n} is the converse of μ_{1}

- there is a shorter computation that is permutation equivalent to $\mu_{1} ; \cdots ; \mu_{n}$
the evolution of a gate in a computation without converse labels (normal) is unidirectional

the standardization theorem

let $\mu_{1} ; \cdots ; \mu_{n}$ be a computation of a weak coherent structure such that μ_{n} is the converse of μ_{1}

- there is a shorter computation that is permutation equivalent to $\mu_{1} ; \cdots ; \mu_{n}$
the evolution of a gate in a computation without converse labels (normal) is unidirectional

coherence

a solution must contain exactly one molecule of every species
a weak-coherent structure is coherent whenever

- different gates have types with no id in common - the type of a gate is the sequence of ids in the output part
- ids occur at most twice: one occurrence is positive and the other is negative
$u_{1}: a_{1}, \cdots u_{m}: a_{m}, \quad v_{1}: \overline{b_{1}}, \cdots \cdot v_{k}: \overline{b_{k}} \quad{ }^{\wedge} v_{k+1}: \overline{b_{k+1}}, \cdots, v_{n}: \overline{b_{n}}$
negative occurrences
examples: $u: \bar{a} \mid{ }^{\wedge} a \cdot v: \bar{a}$ and $v: \bar{a} \mid u: a \cdot v: \bar{a}^{\wedge}$ are coherent
$v: \bar{a} \mid \dot{a} \cdot v: \bar{a}$ and $\bar{b} \cdot v: \bar{a} \mid{ }^{\prime} a \cdot v: \bar{a}$ are not

coherence

a solution must contain exactly one molecule of every species
a weak-coherent structure is coherent whenever

- different gates have types with no id in common - the type of a gate is the sequence of ids in the output part
- ids occur at most twice: one occurrence is positive and the other is negative

$$
u_{1}: a_{1} \cdots u_{m}: a_{m} \cdot \underbrace{v_{1}: \overline{b_{1}} \cdot \cdots \cdot v_{k}: \overline{b_{k}}}_{\text {negative occurrences }} \quad{ }^{\wedge} v_{k+1}: \overline{b_{k+1}} \cdot \cdots \cdot v_{n}: \overline{b_{n}}
$$

coherence

a solution must contain exactly one molecule of every species
a weak-coherent structure is coherent whenever

- different gates have types with no id in common - the type of a gate is the sequence of ids in the output part
- ids occur at most twice: one occurrence is positive and the other is negative

$$
u_{1}: a_{1} \cdots u_{m}: a_{m} \cdot \underbrace{v_{1}: \overline{b_{1}} \cdot \cdots \cdot v_{k}: \overline{b_{k}}}_{\text {negative occurrences }} \cdot{ }^{\wedge} v_{k+1}: \overline{b_{k+1}} \cdot \cdots \cdot v_{n}: \overline{b_{n}}
$$

examples: $u: \bar{a} \mid{ }^{\wedge} a \cdot v: \bar{a}$ and $v: \bar{a} \mid u: a \cdot v: \bar{a} \wedge$ are coherent

$$
v: \bar{a} \mid \wedge a \cdot v: \bar{a} \text { and }{ }^{\wedge} b \cdot v:\left.\bar{a}\right|^{\wedge} a \cdot v: \bar{a} \text { are not }
$$

consequences of coherence

theorem: two coinitial computations of a coherent structure are permutation equivalent if and only if they are cofinal (false in weak-coherent structures)
theorem: the reachability problem in coherent structure has a
computational complexity of $O\left(n^{2}\right)$, where n is the number of gates in the structure
(in weak-coherent structures, reachability is ExPSPACE complete)

consequences of coherence

theorem: two coinitial computations of a coherent structure are permutation equivalent if and only if they are cofinal
(false in weak-coherent structures)
theorem: the reachability problem in coherent structure has a
computational complexity of $O\left(n^{2}\right)$, where n is the number of gates in
the structure
(in weak-coherent structures, reachability is EXPSPACE complete)

consequences of coherence

theorem: two coinitial computations of a coherent structure are permutation equivalent if and only if they are cofinal
(false in weak-coherent structures)
theorem: the reachability problem in coherent structure has a computational complexity of $O\left(n^{2}\right)$, where n is the number of gates in the structure
(in weak-coherent structures, reachability is ExPSPACE complete)

expressive power of coherent structures

coherent structures encode in a causally consistent way asynchronous Reversible CCS
asynchronous Reversible CCS in a nutshell
memories $m::=\langle \rangle\left|\langle i\rangle_{n} \bullet m\right|\langle m, \alpha, Q\rangle \bullet m$
processes $\quad P::=0\left|\sum_{i \in I} a_{i} \cdot P_{i}+\sum_{j \in J} \overline{a_{j}}\right| \prod_{i \in I} P_{i} \mid$ (new $\left.a\right) P$
$r-t$ processes $R \quad:=m \triangleright P|R| R \mid($ new $a) R$

expressive power of coherent structures

coherent structures encode in a causally consistent way asynchronous Reversible CCS
asynchronous Reversible CCS in a nutshell
memories $m::=\langle \rangle\left|\langle i\rangle_{n} \bullet m\right|\langle m, \alpha, Q\rangle \bullet m$
processes $\quad P::=\mathbf{0}\left|\sum_{i \in I} a_{i} \cdot P_{i}+\sum_{j \in J} \overline{a_{j}}\right| \prod_{i \in I} P_{i} \mid$ (new $\left.a\right) P$
r-t processes $\quad R \quad:=m \triangleright P|R| R \mid($ new $a) R$
transitions $m \triangleright(a . P+Q)\left|m^{\prime} \triangleright(\bar{a}+R) \longleftrightarrow\left\langle m^{\prime}, a, Q\right\rangle \bullet m \triangleright P\right|\langle m, \bar{a}, R\rangle \bullet m^{\prime} \triangleright \mathbf{0}$

the encoding of mixed choice in asynchronous RCCS

$a . P+\bar{a} \quad$ is encoded as $\quad \llbracket a . P+\bar{a} \rrbracket_{c}=$

$$
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\circ} c \cdot a \cdot u: \overline{c^{\prime}} \mid \llbracket P \rrbracket_{c^{\prime}}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right)
$$

(new $\left.c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: c^{\prime} \mid \llbracket P \rrbracket_{c^{c}}\right) \mid u^{\prime}: c \cdot{ }^{\wedge} v: \bar{a}\right)$
(new $\left.c^{\prime}, u, v\right)\left(\left(u^{\prime}: c \cdot \vee a \cdot u: c^{\prime} \mid \llbracket P \|_{c}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right)$
remark: RCcs memories are (fine-grain) implemented by inactive

the encoding of mixed choice in asynchronous RCCS

$a . P+\bar{a} \quad$ is encoded as $\quad \llbracket a . P+\bar{a} \rrbracket_{c}=$

$$
\begin{gathered}
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \overline{c^{\prime}} \mid \llbracket P \rrbracket_{c^{\prime}}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right) \\
u^{\prime}: \bar{c} \swarrow \nearrow
\end{gathered}
$$

$$
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \overline{c^{\prime}} \mid \llbracket P \rrbracket_{c^{\prime}}\right) \mid u^{\prime}: c \cdot{ }^{\wedge} v: \bar{a}\right)
$$

the encoding of mixed choice in asynchronous RCCS

$a . P+\bar{a} \quad$ is encoded as $\quad \llbracket a . P+\bar{a} \rrbracket_{c}=$

$$
\begin{aligned}
&\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \overline{c^{\prime}} \mid\right.\right.\left.\left.\llbracket P \rrbracket_{c^{\prime}}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right) \\
& \vdots u^{\prime}: \bar{c}
\end{aligned}
$$

remark: RCCS memories are (fine-grain) implemented by inactive

the encoding of mixed choice in asynchronous RCCS

$a . P+\bar{a} \quad$ is encoded as $\quad \llbracket a . P+\bar{a} \rrbracket_{c}=$

$$
\begin{array}{cc}
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \overline{c^{\prime}} \mid\right.\right. & \left.\left.\llbracket P \rrbracket_{c^{\prime}}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right) \\
u^{\prime}: \bar{c} \swarrow \nearrow & \searrow u^{\prime}: \bar{c}
\end{array}
$$

$$
\left.\left.\begin{array}{rl}
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \bar{c}^{\prime}\right.\right.
\end{array} \right\rvert\, \llbracket P \rrbracket_{c^{\prime}}\right) \left\lvert\, \begin{array}{ll}
& \left.u^{\prime}: c \cdot \wedge v: \bar{a}\right) \\
& \left(\text { new } c^{\prime}, u, v\right)\left(\left(u^{\prime}: c \cdot \wedge a \cdot u: \overline{c^{\prime}} \mid \llbracket P \rrbracket_{c^{\prime}}\right) \mid \wedge \wedge \cdot v: \bar{a}\right)
\end{array}\right.
$$

remark: RCCS memories are (fine-grain) implemented by inactive

the encoding of mixed choice in asynchronous RCCS

$a \cdot P+\bar{a} \quad$ is encoded as $\quad \llbracket a \cdot P+\bar{a} \rrbracket_{c}=$

$$
\begin{array}{cc}
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \overline{c^{\prime}} \mid\right.\right. & \left.\left.\llbracket P \rrbracket_{c^{\prime}}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right) \\
u^{\prime}: \bar{c} \swarrow \nearrow & \searrow u^{\prime}: \bar{c}
\end{array}
$$

$$
\left(\text { new } c^{\prime}, u, v\right)\left(\left({ }^{\wedge} c \cdot a \cdot u: \overline{c^{\prime}} \mid \llbracket P \rrbracket_{c^{\prime}}\right) \mid u^{\prime}: c \cdot{ }^{\wedge} v: \bar{a}\right)
$$

$$
\left(\text { new } c^{\prime}, u, v\right)\left(\left(u^{\prime}: c \cdot \wedge a \cdot u: \overline{c^{\prime}} \mid \llbracket P \rrbracket_{c^{\prime}}\right) \mid{ }^{\wedge} c \cdot v: \bar{a}\right)
$$

remark: rccs memories are (fine-grain) implemented by inactive processes

conclusions

possible research directions

- coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent calculi where processes have multiplicities and the causal dependencies between copies may be exchanged
- reversible structures may be extended with irreversible combinators (that may be implemented in DNA)
+ this makes possible to model standard irreversible operators of programming languages in DNA
- studying biological relevant problems in reversible structures may be simpler
+ we already studied reachability; other issues are absence of molecules/processes, persistence of materials,

conclusions

possible research directions

- coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent calculi where processes have multiplicities and the causal dependencies between copies may be exchanged
- reversible structures may be extended with irreversible combinators (that may be implemented in DNA) + this makes possible to model standard irreversible operators of programming languages in DNA
studying biological relevant problems in reversible structures may be simpler
+ we already studied reachability; other issues are absence of molecules/processes, persistence of materials,

conclusions

possible research directions

- coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent calculi where processes have multiplicities and the causal dependencies between copies may be exchanged
- reversible structures may be extended with irreversible combinators (that may be implemented in DNA)
+ this makes possible to model standard irreversible operators of programming languages in DNA
- studying biological relevant problems in reversible structures may be simpler molecules/processes, persistence of materials,

conclusions

possible research directions

- coherence is very hard to achieve in nature
+ biology prompts a thorough study of reversible concurrent calculi where processes have multiplicities and the causal dependencies between copies may be exchanged
- reversible structures may be extended with irreversible combinators (that may be implemented in DNA)
+ this makes possible to model standard irreversible operators of programming languages in DNA
- studying biological relevant problems in reversible structures may be simpler
+ we already studied reachability; other issues are absence of molecules/processes, persistence of materials, \cdots

