Network Transformations of Switches and Oscillators

Luca Cardelli
Microsoft Research

Cambridge 2011-08-02
http://lucacardelli.name
Motivation

- Building synthetic (DNA) oscillators

DSD simulation
The Trammel of Archimedes

- A device to draw ellipses
 - Two interconnected switches.
 - Note that amplitude is kept constant by mechanical constraints.
 - When one switch is on (off) it flips the other switch on (off).
 When the other switch is on (off) it flips the first switch off (on).

en.wikipedia.org/wiki/Trammel_of_Archimedes
The Shishi Odoshi

• A Japanese scarecrow (scare-deer)
 ○ Used by Bela Novak to illustrate the cell cycle switch.

empty + tap → tap + full
up + full → full + dn
full + dn → dn + empty
dn + empty → empty + up

To make it into a full trammel (dotted line), we could make the up position mechanically open the tap (i.e. take up = tap)
The Cell Cycle

• Feedback speeds
 o fast (post-translational)
 o slow (transcriptional)

• Some feedbacks may be missing

• Switches are asymmetric
 o One switch is usually simpler than that, just causing a negative feedback
 o One switch is usually more sophisticated than that, because of biochemical constraints
Outline

• Questions that nature has answered
 o Building ‘good’ bistable systems
 o Building ‘switches’ (switchable bistable system)
 o Building switches with hysteresys (needed for good oscillators)
 o Building limit-cycle oscillators
 o Building robust oscillators that resist parameter variations

• Engineering solutions to the same problems
 o Are they related?
 o In nature there are chemical constraints
 • Not all reactions can be easily implemented
 • Not all molecules can perform all functions we want them to

• From the point of view of network structure
 o Transforming a network and preserve some function
 o “Program transformations”
Switches
The Cell Cycle Switch

Why this network structure?

- Double positive feedback on x
- Double negative feedback on x
- No feedback on y

Why on earth ??
A Bad Algorithm

• Direct x–y competition
 o x catalyzes the transformation of y into x
 o y catalyzes the transformation of x into y

 $x + y \rightarrow x + x$

 $y + x \rightarrow y + y$

• This system is bistable, but
 o Convergence to a stable state is slow (a random walk).
 o *Any* perturbation of a stable state can initiate a random walk to the other stable state.
 o With 100 molecules of x and y, convergence is quick, but with 10000 molecules, even at the same concentration, you will wait for a long time.
A Very Good Algorithm

• Approximate Majority
 o Decide which of two populations is in majority

• A fundamental ‘population protocol’
 o Agents in a population start in state x or state y.
 o A pair of agents is chosen randomly at each step, they interact ("collide") and change state.
 o The whole population must eventually agree on a majority value (all x or all y) with probability 1.

A Simple Population Protocol for Fast Robust Approximate Majority

We analyze the behavior of the following population protocol with states $Q = \{b, x, y\}$. The state b is the blank state. Row labels give the initiator’s state and column labels the responder’s state.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>b</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>(x, x)</td>
<td>(x, x)</td>
<td>(x, b)</td>
</tr>
<tr>
<td>b</td>
<td>(b, x)</td>
<td>(b, b)</td>
<td>(b, y)</td>
</tr>
<tr>
<td>y</td>
<td>(y, b)</td>
<td>(y, y)</td>
<td>(y, y)</td>
</tr>
</tbody>
</table>
Properties

- Using martingales, we show that with high probability, the number of state changes before converging is $O(n \log n)$.
- The total number of interactions before converging is $O(n \log n)$.
- The final outcome is correct if the initial disparity is $\omega(\sqrt{n \log n})$.
- This algorithm is the fastest possible.
- Must wait $\Omega(n \log n)$ steps in expectation for all agents to interact.

[Angluin et al.]

“Parallel time” is the number of steps divided by the number of agents. Hence the algorithm terminates with high probability in $O(\log n)$ steps per agent.

N.B. this bound holds even if the x, y populations are initially of equal size!
Chemical Implementation

\[x + y \rightarrow y + b \]
\[y + x \rightarrow x + b \]
\[b + x \rightarrow x + x \]
\[b + y \rightarrow y + y \]

Alternatives:

This too is a bistable system, but:
• It converges slowly, by a random walk, hence \(O(n^2) \).
• It is unstable: any random fluctuation from an all-x or all-y state can send it (by a random walk) to the other state.

This one gives no significant improvement over the above.
Majority of $x>y$

Gillespie simulation of the chemical reactions in SPiM.

$2000k$ molecules
$1100k$ x
$900k$ y

All rates are equal.

$x + y \rightarrow y + b$

$y + x \rightarrow x + b$

$b + x \rightarrow x + x$

$b + y \rightarrow y + y$

Eventually:
all x
no y
no b
Majority of $x=y$ (!!)

$x+y \rightarrow y+b$
$y+x \rightarrow x+b$
$b+x \rightarrow x+x$
$b+y \rightarrow y+y$

Eventually either:
all x all y
no y no x
no b no b

2000k molecules
Gillespie simulation of the chemical reactions in SPiM.

All rates are equal.

The final majority is robust (insensitive to possible noise) because a significant majority always stays a majority:
The final outcome is correct if the initial disparity is
$$\omega(\sqrt{n \log n})$$

N.B. a deterministic (ODE) simulation with $x=y$ would not converge ever!
A Digression about Other Switches

• The AM network is an ‘optimal’ switch in a computational sense. How does it compare with other switches?

• Let us first compare the ‘kernel’ of AM without feedbacks (i.e. ‘double phosphorylation’) with the Goldbeter–Koshland switch

• And then compare the full AM network with GK plus the same feedbacks as AM
Double-Phosphorylation Switch

Ultrasensitive (but no hysteresis)

\[x + E \rightarrow E + b \]
\[b + E \rightarrow E + y \]
\[y + F \rightarrow F + b \]
\[b + F \rightarrow F + x \]

AM without feedbacks

Initially 10000 x, no y, 100 F, no E. E growing from 0 (t=100) to 3000 (t=400) then back to 0 (t=800)
The Goldbeter–Koshland Switch

Ultrasensitive (but no hysteresis)

\[S + E \xrightarrow{a} SE \xrightarrow{k} P + E \]
\[P + F \xrightarrow{a} PF \xrightarrow{k} S + F \]

Initially 10000 S, no P, 1000 F, no E.

E growing from 0 (t=100) to 2000 (t=300) then back to 0 (t=500)

The first switch happens at t=200, the second at t=400.

E/F ratio can be lower: GK is a ‘better’ more sensitive switch.
Can GK do majority switching?

GK in "AM configuration"

\[S + P \xleftrightarrow{d}^a PS \rightarrow_k^a P + P \]
\[P + S \xleftrightarrow{d}^a SP \rightarrow_k^a S + S \]

GK in "AM configuration" does not compute a majority.
- The initial minority goes down to 0
- The initial majority goes down to \(\text{maj}_{t=0} - \text{min}_{t=0} \)
- When \(\text{maj}_{t=0} \sim \text{min}_{t=0} \) the system cannot decide.
• Problem may be that the feedbacks put GK outside of zero–order regime.
• Hence, should check to see if GK works in the case of

\[
\begin{align*}
x + w & \xleftrightarrow{a} xw \rightarrow_k y + w \\
y + r & \xleftrightarrow{a} yr \rightarrow_k x + r \\
p + x & \xleftrightarrow{a} px \rightarrow_k r + x \\
r + t & \xleftrightarrow{a} rt \rightarrow_k p + t \\
w + s & \xleftrightarrow{a} ws \rightarrow_k z + s \\
z + y & \xleftrightarrow{a} zy \rightarrow_k w + y
\end{align*}
\]
‘Double phosphorylation’ motif is key

It is not just a non-linearity of the x–y transition mechanism that matters: it is the 'double phosphorylation' network structure of AM, with a common 'undecided' state.
Chemical Constraints

• The AM circuit is ‘chemically demanding’
 o It requires \(x\) molecules to be ‘next’ to \(y\) molecules because they interact directly
 o It requires both \(x\) and \(y\) to be catalysts, and in fact autocatalysts, and in fact each–other’s autocatalyst!
Network Transformations

• An example of relaxing those constraints
 o This circuit works just as well as the original, but it no longer requires x to be ‘next’ to y. They no longer interact directly. Instead, they interact through an additional x_0–y_0 equilibrium.

```plaintext
directive sample 0.0002 1000
directive plot x0; y0; b0
val r = 10.0
new xy0@r:chan new yx0@r:chan new x0y0@r:chan new y0x0@r:chan new bx@r:chan new by@r:chan
let x0 =
do ?xy0; b() or !bx; x() or !y0x0; x()
and y() =
do ?yx0; b() or !by; y() or !x0y0; y()
and b() =
do ?bx; x() or ?by; y()
and y0() =
do ?y0x0; x0() or !y0x0; x0()
and x0() =
do ?x0y0; y0() or !x0y0; y0()
run 5000 of x() run 5000 of x0() run 5000 of y() run 5000 of y0() run 5000 of x0() run 5000 of y0()
```

cf.
Network Transformations

• Another example of relaxing constraints
 o Build an Approximate Majority network that requires only x to be a catalyst. How?
 o Enter the Cell Cycle switches…
Some Notation

• Catalytic reaction

\[x + z \rightarrow z + y \]

\[x \rightarrow y \]

• Double ‘kinase–phosphatase’ reactions

\[x \rightleftharpoons y \]

\[x \rightleftharpoons y \]
Zero–Input Switches

- ‘Zero–input switch’ = majority circuit: just working off the initial conditions, with no other inputs.

- Step 1: the original AM Network
Zero-Input Switches

- Step 2: remove auto-catalysis
 - By introducing intermediate species w, r.
 - Here w breaks the y auto-catalysis, and r breaks the x auto-catalysis, while preserving the feedbacks.
 - w and r need to ‘relax back’ (to z and t) when they are not catalyzed: s and t provide the back pressure.
... can simplify?

(it appears just slightly noisier/slower)
... no, it gets stuck!

- Equal-size initial conditions
Zero–Input Switches

• Step 3: transform a double–positive loop on y into a double–negative loop on x.
 o Instead of y (actively) activating itself through w, we have z activating y (which is passive). To counteract, now x has to switch from inhibiting y to inhibiting z.

 \[
 \begin{array}{c}
 \text{Step 1:} \\
 \text{Step 2:} \\
 \text{Step 3:} \\
 \end{array}
 \]

• So that y no longer catalyzes anything
 o All species have one active and one inactive form
Zero–Input Switches

• Still an AM circuit

(The equal–likelihood outcome here is around 4500 y vs 5500 x, and can be adjusted by s/t ratio)

All rates are equal.
Equal-size initial conditions

All initial species = 10000. Probability of win seems to be x=y=50%
Note that when x wins, the system does not terminate because x has active competition from s.
AM Equal-size initial conditions

All initial species = 100000..
The Cell Cycle Switch

(Some of the bistable states can be enzymatic rather than AM.)
... can simplify?

It works better than the original?!?
... no, it gets stuck!

- Equal-size initial conditions
More Zero–Input Switches

- Other designs
 - A version with no external bias (s,t) where y is still non-catalytic and x and z are self-catalytic.
 - Both x and z have an ‘inactive’ form, y and w, although the both are double catalysts.
• Equal–size initial conditions
One–Input Switches

- Ultrasensitivity (none) and hysteresis (none) in trivial majority

```
let x() = !xcat; x() or ?ycat; y() or ?sycat; y()
let y() = !ycat; y() or ?xcat; x() or ?sxcat; x()
let sy() = !sycat; sy() or ?sykill; ()
let sx() = !sxcat; sx() or ?sxkill; ()

val rt = 10.0
val rx = 5.0
val sy = 1000

let schedule(n:int) = if n < 20000 then sx() else if n < 40000 then !sxkill;() else ()
run clock(schedule, 0.000001)
```
One–Input Switches

- Hysteresis in unbiased AM–like switches.
 - All rates are equal; constant amount of sy is sufficient for switch–back.
One–Input Switches

- Hysteresis in biased AM–like switches

```
x
  sy

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>rx</td>
<td>sx</td>
</tr>
</tbody>
</table>

let x() =
  do !xcat;
  x() or ?ycat;
  b() or ?sxcat;
  b()
  and y() =
  do !ycat;
  y() or ?xcat;
  b() or ?sxcat;
  b()
  and b() =
  do ?xcat;
  x() or ?sxcat;
  x() or ?ycat;
  y() or ?sycat;
  y() 
  and sy() =
  do !sycat;
  sy() or ?sykill;
  ()
  and sx() =
  do !sxcat;
  sx() or ?sxkill;
  ()
run 10000 of y()
run 1000 of sy()
let clock(p:proc(int), t:float) = (* Produce one p(m) every t sec with precision dt, 
  with m incremented from 0 *)
  (val dt= 100.0
  run step(p, 0, t, dt, dt))
and step(p:proc(int), m:int, t:float, n:float, dt:float) =
  if n<=0.0 then (p(m)|step(p,m+1,t,dt,dt))
  else delay@dt/t; step(p,m,t,n_1.0,dt)
let schedule(n:int) =
  if n < 10000 then sx() 
  else if n < 20000 then !sxkill;() 
  else () 
run clock(schedule,0.000001)
```
One–Input Switches

- Hysteresis vs. feedbacks in cell cycle switch

Without pos-pos feedback

Without neg-neg feedback

initial conditions:
1000 of y
1000 of z
1000 of p
1000 of t
200 of s
100 of sy

varying sx 0 to 1000 to 0

References:

[1] Reference System

[2] 2s, ½t, ½sy reference system

[3] All rates are equal.
Ferrell oscillator

Novak–Tyson oscillator
Two–input Switches

- I had rediscovered (but not analyzed so well) the same system, while looking for a memory circuit.
- The point here was not computing majority, but switching easily and quickly and stably.

\[A + B \rightarrow B + C \]
\[B + A \rightarrow A + C \]
\[C + A \rightarrow A + A \]
\[C + B \rightarrow B + B \]

Artificial Biochemistry. Luca Cardelli

In Figure 34 we show a modified version of the groupies, obtained by adding an intermediate state shared by the two state transitions. This automaton has very good memory properties. The top-left and top-center plots show that it is in fact spontaneously bistable. The bottom-left plot shows that it is stable in presence of sustained 10% fluctuations produced by doping automata. The bottom-center plot shows that, although resistant to perturbations, it can be switched from one state to another by a signal of the same magnitude as the stability level: the switching time is comparable to the stabilization time. In addition, this circuit reaches stability 10 times faster than the original groupies: the top-right plot shows the convergence times of 30 runs each of the original groupies with 2 states, the current automaton with 3 states, and a similar automaton (not shown) with 4 states that has two middle states in series. The bottom-right plot is a detailed view of the same data, showing that the automaton with 4 states is not significantly faster than the one with 3 states. Therefore, we have a stable and fast memory element.
Oscillators
The Trammel of Archimedes

• A device to draw ellipses
 o Two interconnected switches.
 o When one switch is on (off) it flips the other switch on (off). When the other switch is on (off) it flips the first switch off (on).

en.wikipedia.org/wiki/Trammel_of_Archimedes
The Shishi Odoshi

- A Japanese scarecrow (scare-deer)
 - Used by Bela Novak to illustrate the cell cycle switch.

To make it into a full trammel (dotted line), we could make the up position mechanically open the tap (i.e. take $up = tap$)
The 2AM Limit–Cycle Oscillator

• Two AM switches in a Trammel pattern

The red reactions need to be slower (even slightly) than the black reactions, but otherwise the oscillation is robust. Oscillation stops at 10 vs. 10 and 1 vs. 10. Here the rates are 8(red) vs 10(black) top, and 2 vs 10, bottom.

(Simple limit–cycle oscillators in the literature have very critical rate ranges.)
The Switch Module

This is flipped!
Replacing Switch Modules

Replace

outX \rightarrow x \rightarrow y \rightarrow outY

inXY

inYX

With

outY \rightarrow s \rightarrow z \rightarrow w \rightarrow p \rightarrow r \rightarrow t \rightarrow outX

inXY

inYX

Or

outY \rightarrow s \rightarrow z \rightarrow w \rightarrow p \rightarrow r \rightarrow t \rightarrow outX

inXY

inYX

Etc..
Modified Oscillator 1

```
directive sample 0.001 10000 directive plot x(); y(); b();
x2(); y2(); b2(); z(); r() valrt = 10.0 valst = 8.0
new ...
run 10000 of z() run 1000 of x() run 6666 of y() run 2333 of b() run 3333 of x2() run 3333 of y2() run 3333 of b2()
```

Diagram Description

- **x2cat** connects to **y2cat1**
- **x2cat1** is connected to **y2cat**
- **zcat1** is connected to **y2cat1**
- **w** and **z** are connected in a loop
- **x** and **y** are connected in a loop
- **p** and **r** are connected in a loop
- **t** is connected to **r**

Graph

- Plot of **x(), y(), b(), x2(), y2(), b2(), z(), r()**
- Horizontal axis: 0 to 0.0012564
- Vertical axis: 0 to 10000
- Multiple traces indicating oscillatory behavior

Notes

- Simulation parameters include **valrt = 10.0** and **valst = 8.0**
- Multiple runs for different variables and parameters
Modified Oscillator 2

```plaintext
2012_11_07 Luca Cardelli

s

w

x

y

z

p

r

outX outY inXY inYX

x2cat y2cat xcat1 y2cat1

valrt = 10.0
valst = 8.0
new...
runt 10000 of z()
runt 6666 of x()
runt 2333 of b()
runt 3333 of x2()
runt 3333 of y2()
runt 3333 of b2()
```

```
SPiM

x0
y0
b0
x20
y20
b20
z0
r0
```

Diagram of the modified oscillator with connections and variables.
Modified Oscillator 3

\[x^2 + (y - c)^2 = r^2 \]

Diagram showing the oscillator with variables and parameters.

Graphs showing the behavior of the oscillator with different values of \(r \).
Constant–Influx Oscillator

As in the Shishi Odoshi (and the cell cycle)
Constant influx

Still working fine with the replaced switch.
The Novak–Tyson Oscillator

• First switch
 o Is the ‘transformed’ AM switch in one-input configuration (driven by constant influx of cyclin).

• Second switch
 o Is a simple two-stage switch working as a delay (the first switch is so good in terms of hysteresis that the second switch is not very critical for oscillation).

• Connection
 o The feedback from second to first switch is a bit complex, since both x and y are repressed by degrading cyclin. And there are more details still.
One of Ferrell’s Oscillators

- Second switch
 - Replaced by a one-stage switch. The oscillation still works, but is it harder to obtain (parameter tuning).
Conclusions
Conclusions

• A vast literature on cell cycle switching
 o Ferrell et.al., Novak–Tyson et.al., etc. Mostly ODE based analysis, plus noise
 o Many bistable transitions have different implementations in different cell cycle phases and organisms (phosphorylation, enzymes, synthesis/degradation, etc.)
 o We focused on a mechanism that can only be seen stochastically (quick majority switching with \(x=y\))

• A range of ‘network transformation’
 o Can explain the structure of some natural networks
 o From some non-trivial underlying algorithms
 o Discovering the transformation can elucidate the structure and function of the networks
 o But how can we say that these transformations ‘preserve (essential) behavior’?
Acknowledgements

• David Soloveichik
• Attila Csikasz-Nagy