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Motivation 

Complex networks/systems are often modelled as stochastic processes  

• to encapsulate a lack of knowledge or inherent non-determinism,  

• to model hybrid real-time and discrete-time interacting components, 

• to abstract complex continuous-time and continuous-space systems.  

Such systems are frequently modular in nature 
• consist of parts which are systems in their own right,  
• their global behaviour depends on the behaviour of their parts and on the links which 

connect them, 
• the modules are easier to test/measure/analyse, 
• often the knowledge of some modules is the only information available. 

Such systems are extremely complex and large  
• the classic verification techniques, designed to analyse complete systems, are often 

inefficient for study and predict their behaviours.  
• Instead, various “ad hoc sematic tricks” are used to handle modularity. 



Motivation 

The role of modularity 

• local knowledge sometimes provides global information  

e.g., the presence of a promoter, the absence of a catalyst or the occurrence of a 
triggering event entails certain global behaviours 

• concurrent behaviours are sometimes essential for explaining patterns of behaviour 

e.g., often oscillating behaviours can be explained by synchronised actions of two 
modules with antagonist non-oscillatory behaviours 

• modularity can prove properties in systems with unknown or inaccessible parts  

e.g., communication and security protocols on complex networks, predictions for natural 
systems where the information is always incomplete 

• modularity can be used to test causality scenarios  

e.g., one can test the degree of connectivity between modules and predict the existence 
of various elements in inaccessible parts of the system 

 

To what extent is it possible to predict the behaviour of a complex system or to prove 
some of its properties from the local observations of its modules?  

P1⊨f1, P2⊨f2, …, Pk⊨fk 
P1|P2|…|Pk⊨f 

C(f,f1,f2,…,fk) 



A General Pattern for a Theory of Systems 

The behaviour 

• Systems are reactive – (unlike algorithms) they do not terminate their evolution and 
announce a result; they run “forever” and communicate, while running with their 
environment. 

• Systems have interfaces – used for describing the possible communication with the 
environment; an external observer can observe a system only through the interface. 

• The black box view of a system – the external observer’s view. The black box view is 
given by the overall observable behaviour of the system. 

 

The structure 

• The systemic view comprises the concept of modularity/compositionality: 

• A system is a network of modules  

(subsystems – independent units of behaviour/computation). 

• The modules communicate, interact or interrupt each other. 

• The behaviour of a system emerges from the behaviours of its subsystems.  
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The structure of a system is defined by a 𝔍-algebra for an endofunctor 𝔍. 
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The behavior of a system is defined by a 𝔅-coalgebra, for an endofunctor 𝔅.   

 
                                    M         𝔅M 
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Compositionality: λ (a natural transformation between 𝔍 and 𝔅) defines a GSOS  
   ⟹ 𝔍𝔅-Bialgebra  
D. Turi, G. Plotkin, Towards a mathematical operational semantics, LICS’97 

A logic for bialgebraic semantics should express both algebraic & coalgebraic properties. 

A General Pattern for a Theory of Systems 



The structure of the talk 

 

• We introduce a general concept of modular continuous Markov process (MMP) 
that extends Panangaden’s continuous Markov process to a Bialgebraic structure.  

  parallel composition => commutative monoid. 

 

• stochastic bisimulation => structural bisimulation (sensitive to modularity). 

 

• We introduce the Modular Markovian Logic (MML) for MMPs  

 MML expresses both stochastic and modular properties of systems. 

 

• For MML, logical equivalence=structural bisimulation 

 

• We present a Hilbert-style axiomatization for MML that is sound-complete w.r.t. 
Markovian semantics  

 

• We prove some metaproperties of MML. 

 



Focusing on behaviors… coalgebraically 

Markov chain  

a tuple ℳ=(M,R) where 

• M is a (countable) set of states 

• R:M×M→[0,1] - probability matrix 

 for each m∊M,  ∑m’∊M R(m,m’)=1 

If R(m,m’)=p∈[0,1], we write m         m’ p 

m

1m 2m

3m
4m 5m

1/3 

1/2 1/2 1/3 

2/3 

1 

1/3 1/3 

1 1 

Equivalent representation: 
m ↦ μ,    μ: 2M→[0,1] – probabilistic distribution 

Markov chain  
    ℳ=(M,2M,θ),     θ∈[M → Π(M,2M)],            
             θ(m): 2M→[0,1]  

e.g., 
μ({m,m1})=1/2,   
μ({m,m1,m3})=1/2, 
μ({m3,m4})=0 



Focusing on behaviors… coalgebraically 

Labelled Markov kernel  

a tuple ℳ=(M,Σ,A,{Ra|a∊A}) where 

- (M,Σ) is an analytic set (measurable space) 

- Σ is the Borel-algebra generated by the topology 

- A is a set of labels 

- for each a∊A, Ra:M×Σ →[0,1] is such that 

 Ra(m,−) - (sub-)probability measure on (M,Σ) 

 Ra(−,S) - measurable function 

(P. Panangaden, Labelled Markov Processes, 2009.) 

Equivalent representation: 
(m,a) ↦ μa,   μa: Σ→[0,1],   μa(S)=Ra(m,S) 

…………………………………………………… 

a,r a,s 

m 

m1 

m2 m3 

m4 
m5 

a,r+s 

m        {m1,m2},  m          {m3,m4}  
m              {m1,m2,m3,m4} 
m          {m2,m3} 

a,s a,r 

a,r+s 

(E. Doberkat, Stochastic Relations, 2007.) 

Labelled Markov kernel  
       ℳ=(M,Σ,θ),          θ∈⟦M → Π(M,Σ)⟧A 

μa({m1,m2})=r,     μa({m3,m4})=s, 
μa({m1,m2,m3,m4})=r+s 



Focusing on behaviors… coalgebraically 

Continuous (Labelled) Markov kernel  

a tuple ℳ=(M,Σ,A,{Ra|a∊A}) where 

- (M,Σ) is an analytic set (measurable space) 

- A is a set of labels 

- for each a∊A, Ra:M×Σ →[0,∞) is such that 

 Ra(m,−) – a measure on (M,Σ) 

 Ra(−,S) – a measurable function 

Equivalent representation: 

……………………………………… 

a,r a,s 

m 

S1 S2 

a,r+s 

m         S1,  m          S2,  m              S1∪S2 
a,s a,r a,r+s 

Continuous (Labelled) Markov kernel       ℳ=(M,Σ,θ),  θ∈⟦M → Δ(M,Σ)⟧A 

θa: M → Δ(M,Σ),   θa(m)∈Δ(M,Σ), θa(m)(S)∈ [0,+∞) 

  
Continuous Markov process                       (ℳ,m),    m∈M     

• Ra(m,S)=r ∈[0,+∞) - the rate of an exponentially distributed random variable that 

characterizes the time of a-transitions from m to arbitrary elements of S. 
• the probability of the transition within time t is given by the cumulative distribution function 

P(t)= 1– e-rt  

J. Desharnais, P. Panangaden, Continous Stochastic Logic 
Characterizes Bisimulation of Continuous-time Markov 
Processes, 2003.  



Focusing on behaviors… coalgebraically 

Unlabeled transition systems 
      ℳ=(M,2M,θ),           θ ∈ [M → D(M,2M)]      

Labeled transition systems  
      ℳ=(M,2M,θ),           θ ∈ [M → D(M,2M)]A 

Markov chain 
       ℳ=(M,2M,θ),           θ ∈ [M → Π(M,2M)] 

Reactive probabilistic automata 
       ℳ=(M, 2M,θ),          θ ∈ [M → Π(M,2M)]A  

Labeled Markov kernel 
      ℳ=(M,Σ,θ),             θ ∈ ⟦M → Π(M,Σ)⟧A 

Discrete stochastic transition systems  
       ℳ=(M,2M,θ),            θ ∈ ⟦M → Δ(M,2M)⟧A 

Continuous Markov kernel 
                                                              ℳ=(M,Σ,θ),             θ ∈ ⟦M → Δ(M,Σ)⟧A 

The behavior of a system is defined by a 𝔅-coalgebra, for an endofunctor 𝔅.   

 
        ℳ=(M,θ), where    M         𝔅M θ 

(J. M. M. Rutten, Universal coalgebra: a theory of systems, 2000.) 



Given a probabilistic/Markovian system ℳ=(M,Σ,θ), a bisimulation relation is an 
equivalence relation ∼⊆M×M such that whenever m1∼m2,  

for arbitrary S∈Σ(∼) and a∈A 

• If  m1         S, then m2              S   and  
• If  m2         S, then m1              S. 

K. G. Larsen and A. Skou. Bisimulation through probabilistic testing, 1991 

P. Panangaden , Labelled Markov Processes, 2009. 

Bisimulation 

a,3 b,2 
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Given a labelled transition system ℳ=(M,2M,θ), a bisimulation relation is an 
equivalence relation ∼⊆M×M such that whenever m1∼m2, for arbitrary a∈A 

• If  m1⟶m’1, there exists m’2∈M such that m2⟶m’2   and m’1∼m’2 

• If  m2⟶m’2, there exists m’1∈M such that m1⟶m’1   and m’1∼m’2 

Bisimulation 

a a 

a a 

Given a system ℳ=(M,Σ,θ), a bisimulation relation is an equivalence relation ∼⊆M×M 

such that whenever m∼m’, for arbitrary S∈Σ(∼) and a∈A, 
                                                                     θa(m)(S)=θa(m’)(S)              

  

Alternatively:  

Given a probabilistic/Markovian system ℳ=(M,Σ,θ), a bisimulation relation is an 
equivalence relation ∼⊆M×M such that whenever m1∼m2,  

for arbitrary S∈Σ(∼) and a∈A 

• If  m1         S, then m2              S   and  
• If  m2         S, then m1              S. 

a,p a,p 

a,p a,p 



• The coalgebraic structure 

• The algebraic structure 

c=a*b is the result of synchronizing a and b. 

Examples: 

CCS: a*a’=Շ, for a fixed Շ∈A;    

CSP: a*a=a;    

interleaving: a*δ=a, for a reflexive δ∈A. 

Synchronization function:   * : A⨉A ↪ A   that is commutative: a*b=b*a. 

Focusing on modularity… algebraically 

Continuous Markov kernel  

a tuple ℳ=(M,Σ,θ), where (M,Σ) is an analytic set and θ∈⟦M → Δ(M,Σ)⟧A.  



Modular Markov Processes 

n

1n
2n

   b,s    b’,s’ 

m

1m 2m

   a’,r’    a,r 

a*b=a*b’=c,   a’*b’=d 

n)(m,

)21 n,(m )22 n,(m

d,? c,? 
c,? 

)11 n,(m



Modular Markov Processes 

• The coalgebraic structure 

• The algebraic structure 

Synchronization function:   * : A⨉A ↪ A   (commutative). 

by synchronizing a with rate r and b with rate s, we obtain a*b with rate r๏s. 
Examples: 
The mass action law in Chemical Kinetics;      
The minimal rate law in performance evaluation. 

Rate function: ๏ :ℝ+⨉ℝ+→ℝ+ is  

commutative: r๏s=s๏r,   
associative:   (r๏s)๏t= r๏(s๏t),  
bilinear:        r๏(s+t)=(r๏s)+(r๏t),  (s+t)๏r=(s๏r)+(t๏r),  
continuous. 

Continuous Markov kernel  

a tuple ℳ=(M,Σ,θ), where (M,Σ) is an analytic set and θ∈⟦M → Δ(M,Σ)⟧A.  



Modular Markov Processes 

n

1n
2n

   b,s    b’,s’ 

m

1m 2m

   a’,r’    a,r 

a*b=a*b’=c,   a’*b’=d 

n)(m,
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Modular Markov Processes 

n

1n
2n

   b,s    b’,s’ 

m

1m 2m

   a’,r’    a,r 

a*b=a*b’=c,   a’*b’=d 

n|m

   c,r๏s+r๏s’ 

d,r’๏s’ 

22 n|m2111 n|mn|m 



Modular Markov Processes 

Modular Markov kernel  

a tuple ℳ=(M,Σ,θ,|,≡), where  

• (M,Σ,θ) is a continuous Markov kernel 

• (M,|,≡) is a modular structure 

• m|m’≡m’|m,   (m|m’)|m’’≡m|(m’|m’’) 

• m≡m’   m|m’’≡m’|m’’ 

• ∀m, ∃! m1,…,mk – atomic modules, m≡m1|…|mk  
• (m’,m’’) ∼ m’|m’’ 

Continuous Markov kernel  

a tuple ℳ=(M,Σ,θ), where (M,Σ) is an analytic set and θ∈⟦M → Δ(M,Σ)⟧A.    

Modular Markov process  

a tuple (ℳ,m), where ℳ=(M,Σ,θ,|,≡) is a modular Markov kernel and m∈M 



Structural Bisimulation 

Modular Markov kernel  

a tuple ℳ=(M,Σ,θ,|,≡), where  

• (M,Σ,θ) is a continuous Markov kernel 

• (M,|,≡) is a modular structure 

• (m’,m’’) ∼ m’|m’’ 

Structural bisimulation 

Two modular Markov processes (ℳ,m) and (ℳ,n) are structural bisimilar,  m ≅ n,  if 

• m ∼ n 

• if m ≡m1|…|mk, then n ≡n1|…|nk  and  mi ≅ ni  

• if n ≡n1|…|nk, then m ≡m1|…|mk  and  mi ≅ ni  

 

Lemma: Structural bisimulation is a congruence w.r.t. the modular structure, i.e., 

                          if m’ ≅ n’ and m’’ ≅ n’’, then m’|m’’ ≅ n’|n’’. 



Models and Properties  

Models 

e.g. coalgebras, algebras, bialgebras,  

transition systems, Markov processes, 

process algebras, Petri Nets, automata 

 

 

• describe globally and exhaustively 
the systems; are not “authentic” 
logical structures (do not involve 
Boolean operators: ¬,⋀,⋁,→,T).  

 

• behavioural/structural equivalence: 
when different systems are 
indistinguishable from a modeling 
perspective 

 

 

 

 

Properties 

e.g. modal logics, dynamic logics,  

Hennessy-Milner logic, 

temporal (probabilistic/stochastic) logics, 

equational and co-equational logics 

 

• describe properties of systems in 
given states; can specify partial 
properties; use the Boolean 
operators. 

 

• logical equivalence: when two 
systems or processes satisfy the 
same properties 

The challenge: given a class of systems (bialgebras), define a logic for them such that  

structural bisimulation=logical equivalence 



(m,ℳ)⊨T         always 

(m,ℳ)⊨¬f       iff  (m,ℳ)⊭f 

(m,ℳ)⊨f1⋀f2    iff  (m,ℳ)⊨f1  and (m,ℳ)⊨f2 

 

 

Modular Markovian Logic 

                      f:= T | ¬f | f1⋀f2 

Syntax: MML(A)  

Semantics: Let (m,ℳ) be an arbitrary MMP with ℳ=(M,Σ,θ,|,≡). 



(m,ℳ)⊨T         always 

(m,ℳ)⊨¬f       iff  (m,ℳ)⊭f 

(m,ℳ)⊨f1⋀f2    iff  (m,ℳ)⊨f1  and (m,ℳ)⊨f2 

 

(m,ℳ)⊨ La
rf     iff  θa(m)([f])≥r,  where [f]={n∊M | (n,ℳ)⊨f}  

 

 

 

Modular Markovian Logic 

                      f:= T | ¬f | f1⋀f2 | L
a
rf                      r∈ℚ+ a∈A           

Syntax: MML(A)  

n

   a,w 
   a,t 

   a,s 
   a,u 

   a,v 

   a,q 

f

   a,p 

f
f f f

f
f

Semantics: Let (m,ℳ) be an arbitrary MMP with ℳ=(M,Σ,θ,|,≡). 



(m,ℳ)⊨T         always 

(m,ℳ)⊨¬f       iff  (m,ℳ)⊭f 

(m,ℳ)⊨f1⋀f2    iff  (m,ℳ)⊨f1  and (m,ℳ)⊨f2 

(m,ℳ)⊨ La
rf     iff  θa(m)([f])≥r,  where [f]={n∊M | (n,ℳ)⊨f}  

 

(m,ℳ)⊨ f1|f2      iff  ∃ n,k∈M,  m≡n|k,  (n,ℳ)⊨f1 and (k,ℳ)⊨f2  

 

 

 

 

Modular Markovian Logic 

                      f:= T | ¬f | f1⋀f2 | L
a
rf | f1|f2             r∈ℚ+ a∈A           

Syntax: MML(A)  

≡ f1|f2 
f1 

f2 

A. Urquhart, Semantics for Relevant Logics, 1972. 
L. Cardelli, A. D. Gordon, Anytime, Anywhere. Modal Logics for Mobile Ambients, 2000. 
J. C. Reynolds, Separation Logic: A Logic for Shared Mutable Data Structures, 2002. 

Semantics: Let (m,ℳ) be an arbitrary MMP with ℳ=(M,Σ,θ,|,≡). 



 
 
m ⊨ La

r ”red” 
m ⊨ ¬ Lb

s ”blue” 

 
n ⊨ Lb

s ”blue” 
n ⊨ ¬ La

r ”red” 

 
 
 
 
m|n ⊨ Lc

0 ”blue” 
m|n ⊨ Lc

0 ”red” 

 
m|n ⊨ La

r ”red” | Lb
s ”blue” 

m|n ⊨ ¬ La
r ”red” | ¬Lb

s ”blue” 

 
 
m|n ⊨ Lc

(r๏s+r๏s’) ”purple” 
m|n ⊨ Ld

r’๏s’ ”purple” 

2m

   a’,r’    a,r 

m1⊨”red” 

m⊨”red” 

Modular Markovian Logic 

n1⊨”blue” n2⊨”blue” 

n⊨”blue” 

   b,s    b’,s’ 

a*b=a*b’=c,   a’*b’=d 

n|m

   c,r๏s+r๏s’ d,r’๏s’ 

22 n|m
2111 n|mn|m 



(m,ℳ)⊨T         always 

(m,ℳ)⊨¬f       iff  (m,ℳ)⊭f 

(m,ℳ)⊨f1⋀f2    iff  (m,ℳ)⊨f1  and (m,ℳ)⊨f2 

 

(m,ℳ)⊨ La
rf     iff  θa(m)([f])≥r, where [f] = {n∊M|(n,ℳ)⊨f}  

 

(m,ℳ)⊨ f1|f2      iff  ∃ n,k∈M,  m≡n|k,  (n,ℳ)⊨f1  and  (k,ℳ)⊨f2  

 

 

 

Modular Markovian Logic 

f:= T | ¬f | f1⋀f2 | L
a
rf | f1|f2 ,             r∈ℚ+ a∈A           

Syntax: MML(A)  

Modalities:  
• (X,R), R⊆X⨉X 
(X,R,x)⊨ ⟡f     iff ∃ x’∈X,  (x,x’)∈R  and  (X,R,x’)⊨ f 
• (X,R’), R’⊆X⨉X⨉X 
(X,R’,x)⊨ ∆(f1,f2)    iff ∃ x’,x’’∈X,  (x,x’,x’’)∈R’  and (X,R’,x’)⊨ f1, (X,R’,x’’)⊨ f2 

𝔍M              M             𝔅M 

 
                                                                                             
      𝔅𝔍M               𝔍𝔅M 

μ θ 

𝔍θ 𝔅μ 
λ 

Models:  

Semantics: Let (m,ℳ) be an arbitrary MMP. 



(A1) ⊢ La
0f                                            

(A2) ⊢ La
r+sf  La

rf           

(A3) ⊢ La
r(f⋀g) ⋀ La

s(f ⋀¬g)  La
r+sf        

(A4)⊢ ¬La
r(f⋀g) ⋀ ¬La

s(f⋀¬g)  ¬La
r+sf 

 

(R1) If  ⊢ f g ,  then  ⊢ La
rf La

rg 

(R2) If  ∀ r<s, ⊢ f  La
rg , then  ⊢ f  La

sg       

(R3) If  ∀r>s, ⊢ f La
rg , then  ⊢ f  ¬T 

 

Axiomatization of Modular Markovian Logic 

n

   a,w    a,t    a,s 
   a,u 

   a,v 

   a,q 

f

   a,p 

f
f f f

f
fg

g g g

L. Cardelli, K. G. Larsen, R. Mardare, Continuous Markovian Logic - From Complete Axiomatization to 
the Metric Space of Formulas,  CSL 2011. 



(A5) ⊢ f|g g|f     

               

(A6) ⊢ f|(g|h)(f|g)|h  

                 

(A7) ⊢ f|¬T¬T 

 

(A8) ⊢ f|(gVh)  f|g V f|h   

               

(R4) If ⊢ fg , then  ⊢ f|hg|h 

 

(R5) If ⊢ ff|T , then  ⊢ f¬T  

Axiomatization of Modular Markovian Logic 

R. Mardare, A. Policriti, A Complete Axiomatic System for Process-based Spatial Logic, 2008. 
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f' 

f’’ 

g g' g" 

m 

n 

m|n 

Axiomatization of Modular Markovian Logic 

ρ 
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f’’ 

g g' g" 

m 

n 
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Axiomatization of Modular Markovian Logic 

ρ 



Axiomatization of Modular Markovian Logic 

Theorems: 

(T1) ⊢ La
rT | Lb

sT  La*b
r๏sT|T 

 

(T2) ⊢ (La
rf ⋀ Lb

sg) | (La
r’f ⋀ Lb

s’g)  La*b
(r๏s’+s๏r’) f|g 

P1⊨f1, P2⊨f2, …, Pk⊨fk 
P1|P2|…|Pk⊨f 

C(f,f1,f2,…,fk) 

P1⊨La
rT,   P2⊨Lb

sT 
P1|P2⊨La*b

r๏sT|T 

P1⊨La
rf ⋀ Lb

sg,    P2⊨La
r’f ⋀ Lb

s’g 
P1|P2⊨La*b

(r๏s’+s๏r’) f|g 

m⊨La
r”red” ⋀ Lb

0”blue”,    n⊨La
0”red” ⋀ Lb

s”blue” 
m|n⊨La*b

r๏s ”purple” 
⊨“red”|”blue”  ”purple” 



Metaproperties 

Metatheorem [Logical characterisation of Structural Bisimulation]:  

For arbitrary modular Markov processes (m,ℳ) and (n,ℋ), 

(m,ℳ) ≅ (n,ℋ)   iff   [∀ f∈MML(A), (m,ℳ)⊨f  iff  (n,ℋ)⊨f ]. 

Two modular Markov processes (ℳ,m) and (ℳ,n) are structural bisimilar,  m ≅ n,  if 

• m ∼ n 

• if m ≡m1|…|mk, then n ≡n1|…|nk  and  mi ≅ ni  

• if n ≡n1|…|nk, then m ≡m1|…|mk  and  mi ≅ ni  

 

Corollary:  

For arbitrary modular Markov processes (m,ℳ) and (n,ℋ), 

If [∀ f∈MML(A), (m,ℳ)⊨f  iff  (n,ℋ)⊨f] then (m,ℳ)∼(n,ℋ). 



Metaproperties 

Metatheorem 2 [Soundness & Weak Completeness]:  

The axiomatic system of MML(A) is sound-complete w.r.t. the Markovian semantics,  

⊢f  iff ⊨f. 

If for any modular Markov process (m,ℳ),  (m,ℳ)⊨f,  we write ⊨f. 
We write ⊢f  if  f is either an axiom or it can be proved from the axioms of MML(A). 

Metatheorem 1 [Small model property]:  

If f is consistent, there exists a modular Markov process that satisfies f.  

Moreover, its support is finite and bound by the dimension of f. 



Summary 

• We have developed a class of models for continuous-time and continuous-space 
Markov processes. 
 

• Our Markov processes are compositional and encode a fairly general notion of 
synchronization/communication. 
 

• The concept of stochastic bisimulation generalizes the one of probabilistic 
bisimulation. 
 

• Stochastic bisimulation is “invariant” to parallel composition. 
 

• We have introduced the Modular Markovian Logic (MML) for Markov processes. 
 

• MML characterizes the stochastic bisimulation and can encode modular properties. 
 

• MML enjoys the small model property. 
 

• We have identified a sound and complete Hilbert-style axiomatic system for MML. 
 

 
 


